欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2025, Vol. 34 ›› Issue (2): 184-195.DOI: 10.11686/cyxb2024106

• 研究论文 • 上一篇    

盐生草HgS5基因的克隆与抗旱性鉴定

汪欣瑶1,3(), 彭亚萍1,3, 姚立蓉1,3, 汪军成1,3, 司二静1,3, 张宏1,3, 杨轲1,3, 马小乐1,3, 孟亚雄1,3, 王化俊1,3(), 李葆春1,2   

  1. 1.甘肃农业大学省部共建干旱生境作物学国家重点实验室,甘肃省作物遗传改良与种质创新重点实验室,甘肃 兰州 730070
    2.甘肃农业大学生命科学技术学院,甘肃 兰州 730070
    3.甘肃农业大学农学院,甘肃 兰州 730070
  • 收稿日期:2024-04-02 修回日期:2024-06-04 出版日期:2025-02-20 发布日期:2024-11-27
  • 通讯作者: 王化俊
  • 作者简介:E-mail: huajunwang@sina.com
    汪欣瑶(1998-),女,甘肃兰州人,在读博士。E-mail: 921032613@qq.com
  • 基金资助:
    甘肃省优秀研究生“创新之星”项目(2022CXZXS-020);国家自然科学基金项目(31960072);财政部和农业农村部:国家现代农业产业技术体系项目(CARS-05-04B-2);甘肃省教育厅:产业支撑计划项目(2021CYZC-12);甘肃省青年基金项目(22JR5A880);甘肃省自然基金项目(20JR10RA507);甘肃农业大学伏羲青年英才计划(Ganfx-04Y11);甘肃农业大学国家级大学生创新创业训练计划重点支持领域项目(202110733001)

Gene cloning and drought resistance identification of the gene HgS5 in Halogeton glomeratus

Xin-yao WANG1,3(), Ya-ping PENG1,3, Li-rong YAO1,3, Jun-cheng WANG1,3, Er-jing SI1,3, Hong ZHANG1,3, Ke YANG1,3, Xiao-le MA1,3, Ya-xiong MENG1,3, Hua-jun WANG1,3(), Bao-chun LI1,2   

  1. 1.State Key Laboratory of Aridland Crop Science by Gansu Agricultural University,Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement,Lanzhou 730070,China
    2.College of Life Sciences and Technology,Gansu Agricultural University,Lanzhou 730070,China
    3.College of Agronomy,Gansu Agricultural University,Lanzhou 730070,China
  • Received:2024-04-02 Revised:2024-06-04 Online:2025-02-20 Published:2024-11-27
  • Contact: Hua-jun WANG

摘要:

为应对日益严峻的干旱环境问题,发掘植物体内的抗旱基因具有重要意义。基于前期盐生草转录组测序数据分析结果,盐胁迫后HgS5基因的表达量与差异倍数最高,故选其为研究对象,对目的基因编码的蛋白进行生物信息学分析并进行亚细胞定位;通过qRT-PCR检测目的基因在拟南芥植株叶片和根系的相对表达量,并利用农杆菌完成拟南芥异源表达,以验证目的基因的抗旱能力。结果表明,HgS5基因中碱基对的数量为1738,编码370个氨基酸,编码蛋白为酸性亲水性蛋白且没有跨膜区;具有116个启动子顺式作用元件;HgS5基因和巨人柱、苋菜和甜菜相关同源基因拥有相同的A_thal_3526保守结构域;亚细胞定位显示HgS5基因主要在细胞膜上表达; 荧光定量结果显示HgS5基因主要在拟南芥根系表达,处理第6天表达量与其他组别差异显著(P<0.05);抗旱鉴定结果显示过表达拟南芥的抗旱性明显增强,具体表现为植株枯萎程度减缓;基因HgS5通过影响酶活性来对抗干旱环境,过表达拟南芥根系超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性在干旱胁迫后期整体高于野生型。综上所述,基因HgS5在抗旱过程中起到了积极的调控作用。研究结果旨在为进一步探索HgS5基因应对干旱胁迫的分子响应机制提供理论依据。

关键词: 盐生草, 基因家族, 生物信息学分析, 基因克隆, 抗旱性鉴定

Abstract:

To address environmental challenges involving escalating frequency and severity of drought, it is of utmost importance to develop a deep understanding of drought-resistance genes in plant genomes. Based on our initial laboratory analysis of transcriptome sequencing data from Halogeton glomeratus, the HgS5 gene exhibited the highest expression level and differential fold change following salt stress. This study focused on the HgS5 gene, conducting bioinformatics analysis and subcellular localization of the protein encoded by this target gene. We employed qRT-PCR to assess the relative expression of the target gene in the leaves and roots of Arabidopsis thaliana, and achieved heterologous expression in A. thaliana using Agrobacterium as a vector. In this experiment, we cloned the HgS5 gene from H. glomeratus and validated its drought resistance in A. thaliana. It was found that the HgS5 gene comprises 1738 base pairs, encoding 370 amino acids. The encoded protein is acidic and hydrophilic, lacking a transmembrane region. Featuring 116 promoter cis-acting elements, the HgS5 gene shares a A_thal_3526 conserved domain with homologous genes related to Carnegiea giganteaAmaranthus tricolor, and Beta vulgaris. Subcellular localization indicated that the HgS5 gene is primarily expressed on the cell membrane. Fluorescence quantitative analysis showed that the HgS5 gene is predominantly expressed in the roots of A. thaliana, with a significantly increased expression level compared to other groups at 6 days (P<0.05). The drought resistance assessment revealed a notable enhancement in drought tolerance in A. thaliana overexpressing the HgS5 gene, evident in a slower wilting rate of the plants. The HgS5 gene conferred resistance to dry conditions by influencing enzyme activity, initially increasing and subsequently decreasing the activities of superoxide dismutase, peroxidase, and catalase in the roots of A. thaliana. To summarize, the gene HgS5 plays a pivotal role in the process of drought resistance. The aim of this study was to provide a theoretical basis for further exploration of the molecular response mechanism of the HgS5 gene to drought stress.

Key words: Halogeton glomeratus, gene families, bioinformatics analysis, gene cloning, drought resistance identification