草业学报 ›› 2023, Vol. 32 ›› Issue (1): 89-98.DOI: 10.11686/cyxb2021494
彭彤1,2(), 马少兰3, 马彩霞3, 宋燕芳1,2, 高娜1,2, 李凯乐1,2, 张传继1,2, 李静雯4, 纳小凡1,2, 王立光4()
收稿日期:
2021-12-28
修回日期:
2022-04-09
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
王立光
作者简介:
E-mail: wodepengyouwlg@163.com基金资助:
Tong PENG1,2(), Shao-lan MA3, Cai-xia MA3, Yan-fang SONG1,2, Na GAO1,2, Kai-le LI1,2, Chuan-ji ZHANG1,2, Jing-wen LI4, Xiao-fan NA1,2, Li-guang WANG4()
Received:
2021-12-28
Revised:
2022-04-09
Online:
2023-01-20
Published:
2022-11-07
Contact:
Li-guang WANG
摘要:
土壤微生物群落多样性及其活性对维持农田土壤生态系统稳定和功能至关重要。前期研究表明,长期单作可导致枸杞园土壤微生物多样性降低和群落结构变异,但对其如何影响土壤微生物代谢活性尚不明确。为研究微生物代谢活性对长期单作的响应,利用Biolog Eco平板分析了枸杞园表层(0~20 cm)和亚表层(20~40 cm)土壤微生物底物利用谱(CLPP)的年代变化规律。结合土壤酶活性和理化性质测定和分析,探索了土壤微生物底物利用谱变化的驱动因子。结果表明,长期单作促进了枸杞园表层土壤微生物群落的代谢活性(P<0.05),但不影响亚表层土壤微生物的代谢活性和Shannon指数。随种植年限增加,表层土壤微生物对吐温80和衣康酸的代谢活性增加,而亚表层土壤微生物对D-葡萄氨酸和苯乙基胺的利用显著降低(P<0.05)。对不同碳源类型的分析发现,长期单作抑制了枸杞园表层和亚表层土壤微生物对多聚物的利用能力(P<0.05),说明土壤微生物对复杂有机物的降解能力可能受到干扰。变差分解分析表明,土壤理化性质和真菌丰度是驱动枸杞园土壤微生物代谢多样性变异的主要因子。这些结果表明长期单作干扰了枸杞园,尤其是亚表层土壤微生物的代谢活性,影响了其对复杂有机物的分解过程。在长期单作下,枸杞园亚表层土壤的植物-土壤负反馈作用可能更加严重,应受到更多关注。
彭彤, 马少兰, 马彩霞, 宋燕芳, 高娜, 李凯乐, 张传继, 李静雯, 纳小凡, 王立光. 长期单作对枸杞园不同土层土壤微生物代谢活性和多样性的影响[J]. 草业学报, 2023, 32(1): 89-98.
Tong PENG, Shao-lan MA, Cai-xia MA, Yan-fang SONG, Na GAO, Kai-le LI, Chuan-ji ZHANG, Jing-wen LI, Xiao-fan NA, Li-guang WANG. Effects of long-term monocropping on soil microbial metabolic activity and diversity in topsoil and subsoil horizons of Lycium barbarum fields[J]. Acta Prataculturae Sinica, 2023, 32(1): 89-98.
底物 Substrate | 表层土壤Topsoil | 亚表层土壤Subsoil | ||
---|---|---|---|---|
r | P | r | P | |
β-甲基-D-葡萄糖苷β-methyl-D-glucoside | -0.136 | 0.557 | 0.038 | 0.870 |
D-半乳糖内酯D-galactonic acid γ-lactone | -0.074 | 0.751 | -0.093 | 0.688 |
L-精氨酸L-arginine | 0.015 | 0.950 | -0.212 | 0.356 |
丙酮酸甲酯Pyruvic acid methyl ester | -0.047 | 0.841 | -0.357 | 0.112 |
D-木糖D-xylose | 0.244 | 0.287 | 0.001 | 0.997 |
D-半乳糖醛酸D-galacturonic acid | 0.358 | 0.111 | -0.016 | 0.946 |
L-天冬酰胺酸L-asparagine | 0.139 | 0.548 | -0.206 | 0.371 |
吐温40 Tween 40 | 0.098 | 0.674 | -0.052 | 0.823 |
I-赤藻糖醇I-erythritol | -0.157 | 0.496 | 0.092 | 0.691 |
2-羟苯甲酸2-Hydroxy benzoic acid | -0.367 | 0.102 | -0.326 | 0.149 |
L-苯基丙氨酸L-phenylalanine | -0.093 | 0.689 | 0.354 | 0.116 |
吐温80 Tween 80 | 0.462 | 0.035* | 0.088 | 0.705 |
D-甘露醇D-mannitol | 0.042 | 0.858 | -0.300 | 0.187 |
4-羟基苯甲酸4-Hydroxy benzoic acid | 0.142 | 0.540 | -0.223 | 0.331 |
L-丝氨酸L-serine | 0.009 | 0.970 | -0.063 | 0.787 |
α-环式糊精α-cyclodextrin | 0.186 | 0.419 | 0.101 | 0.664 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.140 | 0.546 | 0.000 | 0.999 |
γ-羟基丁酸γ-hydroxybutyric acid | 0.222 | 0.333 | -0.268 | 0.240 |
L-苏氨酸L-threonine | 0.139 | 0.547 | -0.057 | 0.806 |
肝糖Glycogen | 0.416 | 0.061 | 0.261 | 0.253 |
D-葡萄氨酸D-glucosaminic acid | -0.126 | 0.586 | -0.560 | 0.008* |
衣康酸Itaconic acid | 0.434 | 0.050* | -0.068 | 0.770 |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.314 | 0.166 | 0.100 | 0.666 |
D-纤维二糖D-cellobiose | 0.174 | 0.450 | 0.166 | 0.471 |
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.036 | 0.877 | 0.286 | 0.209 |
α-丁酮酸α-ketobutyric acid | 0.210 | 0.362 | 0.303 | 0.182 |
苯乙基胺Phenylethyl-amine | 0.020 | 0.932 | -0.510 | 0.019* |
α-D-乳糖α-D-lactose | 0.180 | 0.436 | 0.059 | 0.800 |
D, L-α-甘油D, L-α-glycerol phosphate | 0.221 | 0.336 | 0.052 | 0.821 |
D-苹果酸D-malic acid | 0.354 | 0.116 | 0.170 | 0.460 |
腐胺Putrescine | 0.069 | 0.765 | -0.197 | 0.391 |
表1 枸杞园土壤微生物不同碳源利用率与种植年限的相关性
Table 1 Pearson’s correlation between stand age and the utilization rates of different carbon sources of soil microorganisms in L. barbarum fields
底物 Substrate | 表层土壤Topsoil | 亚表层土壤Subsoil | ||
---|---|---|---|---|
r | P | r | P | |
β-甲基-D-葡萄糖苷β-methyl-D-glucoside | -0.136 | 0.557 | 0.038 | 0.870 |
D-半乳糖内酯D-galactonic acid γ-lactone | -0.074 | 0.751 | -0.093 | 0.688 |
L-精氨酸L-arginine | 0.015 | 0.950 | -0.212 | 0.356 |
丙酮酸甲酯Pyruvic acid methyl ester | -0.047 | 0.841 | -0.357 | 0.112 |
D-木糖D-xylose | 0.244 | 0.287 | 0.001 | 0.997 |
D-半乳糖醛酸D-galacturonic acid | 0.358 | 0.111 | -0.016 | 0.946 |
L-天冬酰胺酸L-asparagine | 0.139 | 0.548 | -0.206 | 0.371 |
吐温40 Tween 40 | 0.098 | 0.674 | -0.052 | 0.823 |
I-赤藻糖醇I-erythritol | -0.157 | 0.496 | 0.092 | 0.691 |
2-羟苯甲酸2-Hydroxy benzoic acid | -0.367 | 0.102 | -0.326 | 0.149 |
L-苯基丙氨酸L-phenylalanine | -0.093 | 0.689 | 0.354 | 0.116 |
吐温80 Tween 80 | 0.462 | 0.035* | 0.088 | 0.705 |
D-甘露醇D-mannitol | 0.042 | 0.858 | -0.300 | 0.187 |
4-羟基苯甲酸4-Hydroxy benzoic acid | 0.142 | 0.540 | -0.223 | 0.331 |
L-丝氨酸L-serine | 0.009 | 0.970 | -0.063 | 0.787 |
α-环式糊精α-cyclodextrin | 0.186 | 0.419 | 0.101 | 0.664 |
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.140 | 0.546 | 0.000 | 0.999 |
γ-羟基丁酸γ-hydroxybutyric acid | 0.222 | 0.333 | -0.268 | 0.240 |
L-苏氨酸L-threonine | 0.139 | 0.547 | -0.057 | 0.806 |
肝糖Glycogen | 0.416 | 0.061 | 0.261 | 0.253 |
D-葡萄氨酸D-glucosaminic acid | -0.126 | 0.586 | -0.560 | 0.008* |
衣康酸Itaconic acid | 0.434 | 0.050* | -0.068 | 0.770 |
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.314 | 0.166 | 0.100 | 0.666 |
D-纤维二糖D-cellobiose | 0.174 | 0.450 | 0.166 | 0.471 |
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.036 | 0.877 | 0.286 | 0.209 |
α-丁酮酸α-ketobutyric acid | 0.210 | 0.362 | 0.303 | 0.182 |
苯乙基胺Phenylethyl-amine | 0.020 | 0.932 | -0.510 | 0.019* |
α-D-乳糖α-D-lactose | 0.180 | 0.436 | 0.059 | 0.800 |
D, L-α-甘油D, L-α-glycerol phosphate | 0.221 | 0.336 | 0.052 | 0.821 |
D-苹果酸D-malic acid | 0.354 | 0.116 | 0.170 | 0.460 |
腐胺Putrescine | 0.069 | 0.765 | -0.197 | 0.391 |
图1 长期单作对枸杞园土壤微生物6类碳源利用活性的影响A: 氨基化合物Amino compounds; B: 氨基酸Amino acids; C: 糖类Carbohydrates; D: 羧酸Carboxylic acids; E: 双亲化合物Amphiphiles; F: 聚合物Polymers.
Fig.1 Effects of long-term monocropping on utilization rate of different carbon groups of the soil microorganisms in L. barbarum fields
图2 枸杞园土壤微生物底物利用多样性分析A与B分别为不同深度土壤微生物代谢活性和香农指数随种植年限增加的变化趋势。C与D分别为枸杞园表层和亚表层土壤微生物底物利用的主坐标分析。虚线箭头表示不同采样地区底物利用谱随种植年限增加的变化趋势。A and B are the shift in average well color development and Shannon-Wiener index with the increase of stand age at different soil depths of L. barbarum fields, respectively. C and D are the principal coordinate analysis of the utilization profile of soil microbial community in topsoil and subsoil of L. barbarum fields, respectively. The arrows indicate the variation pattern of soil microbial metabolic profiles at each site with the increase in stand age.
Fig.2 Analysis of metabolic activity and diversity of soil microbes in distinct soil depths of L. barbarum fields
图3 枸杞园土壤微生物特征、理化性质及土壤酶活性的相关性分析H': 微生物底物利用香农指数Shannon-Wiener index of microbial substrate utilization; AWCD: 平均每孔吸光度Average well color development; WC: 含水量Water content; TOC: 总有机碳Total organic carbon; TP: 全磷Total phosphorus; TN: 全氮Total nitrogen; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium; EC: 电导率Electrical conductivity; SC: 沙粒含量Sand content; AHN: 碱解氮Alkali-hydro nitrogen; SIA: 蔗糖酶活性Soil invertase activity; UA: 脲酶活性Urease activity; APA: 酸性磷酸酶活性Acid phosphatase activity; DHA: 脱氢酶活性Dehydrogenase activity; PA: 蛋白酶活性Protease activity; OTUB: 细菌群落丰富度Bacterial community OTU richness; Shannon B: 细菌香农指数Shannon index of bacteria; OTUF: 真菌群落丰富度Fungal community OTU richness; Shannon F: 真菌香农指数Shannon index of fungi; BF ratio: 细菌绝对丰度/真菌绝对丰度Ratio of bacterial absolute abundance to fungi; MBC: 微生物碳Microbial carbon; MBN: 微生物氮Microbial nitrogen. *: P<0.05, **: P<0.01; n=42. 下同The same below.
Fig.3 Correlation analysis among soil microbial characters, abiotic properties, and soil enzyme activities
图4 变差分解分析枸杞园土壤微生物底物利用谱变化的主要解释因子A:本试验所有土壤样本底物利用谱的变差分解分析。B和C分别为枸杞园表层和亚表层土壤理化性质、酶活性和微生物特征对微生物底物利用谱变化的解释。A: Variance partitioning analysis of microbial substrate utilization profile in all soil samples of the experiment. B and C are the variance partitioning analysis determines the explanation rates of soil abiotic properties, enzyme activities, and microbial characters on the shift in microbial substrate utilization profile in topsoil and subsoil of L. barbarum fields, respectively. ***: P<0.001, NS: P>0.05.
Fig.4 Analysis of the explanatory factors for the shift in soil microbial substrate utilization profile of L. barbarum fields using variance partitioning analysis
微生物群落水平生理特征 Community-level physiological profiles (CLPP) | 所有样本All sample | 表层土壤Topsoil | 亚表层土壤Subsoil | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
土壤理化性质Soil abiotic property | 0.265 | 0.001** | 0.181 | 0.081 | 0.287 | 0.001** |
土壤酶活性Soil enzyme activity | 0.084 | 0.150 | 0.011 | 0.423 | -0.091 | 0.786 |
土壤微生物特征Soil microbial character | 0.214 | 0.013* | 0.075 | 0.257 | 0.073 | 0.227 |
细菌群落组成Bacterial community composition | 0.065 | 0.114 | 0.008 | 0.441 | 0.036 | 0.251 |
真菌群落组成Fungal community composition | 0.140 | 0.038* | 0.084 | 0.208 | 0.125 | 0.114 |
表2 Mantel test分析土壤微生物底物利用谱与土壤理化性质、酶活性及微生物群落组成间的关系
Table 2 Mantel test detects the relationships between soil microbial community-level physiological profiles and soil abiotic property, enzyme activity, and soil microbial community composition in L. barbarum fields
微生物群落水平生理特征 Community-level physiological profiles (CLPP) | 所有样本All sample | 表层土壤Topsoil | 亚表层土壤Subsoil | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
土壤理化性质Soil abiotic property | 0.265 | 0.001** | 0.181 | 0.081 | 0.287 | 0.001** |
土壤酶活性Soil enzyme activity | 0.084 | 0.150 | 0.011 | 0.423 | -0.091 | 0.786 |
土壤微生物特征Soil microbial character | 0.214 | 0.013* | 0.075 | 0.257 | 0.073 | 0.227 |
细菌群落组成Bacterial community composition | 0.065 | 0.114 | 0.008 | 0.441 | 0.036 | 0.251 |
真菌群落组成Fungal community composition | 0.140 | 0.038* | 0.084 | 0.208 | 0.125 | 0.114 |
1 | Lee S R, An M Y, Hwang H J, et al. Antioxidant effect of Lycium barbarum leaf through inflammatory and endoplasmic reticulum stress mechanism. Antioxidants, 2020, DOI: 10.3390/ANTIOX10010020. |
2 | Luo Q, Cai Y, Yan J, et al. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 2004, 76(2): 137-149. |
3 | Wei Y, Xu X, Tao H, et al. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Annals of Applied Biology, 2006, 149(3): 263-269. |
4 | Li Y K, Ma Q L, Wang Y L, et al. Effects of medlar planting on active organic carbon and carbon pool management index in secondary salinized soil. Arid Zone Research, 2015, 32(2): 235-239. |
李银科, 马全林, 王耀琳, 等. 种植枸杞对次生盐渍化土壤活性有机碳和碳库管理指数的影响. 干旱区研究, 2015, 32(2): 235-239. | |
5 | Intelligence Research Group. Forecast report on operation dynamics and investment trend of Chinese wolfberry industry from 2022 to 2028. Beijing: Intelligence Research Group, 2021: 7-11. |
智研咨询. 2022-2028年中国枸杞行业运行动态及投资趋势预测报告. 北京: 智研咨询, 2021: 7-11. | |
6 | Li Y X, Zhang X J, Liu X T, et al. Variation of soil fertility in wolfberry orchards of different growing years. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(9): 48-50. |
李云翔, 张学军, 刘晓彤, 等. 不同种植年限枸杞园土壤肥力变异特征. 宁夏农林科技, 2018, 59(9): 48-50. | |
7 | Na X F, Zheng G Q, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history. Acta Pedologica Sinica, 2016, 53(1): 241-252. |
纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化. 土壤学报, 2016, 53(1): 241-252. | |
8 | Zhang J H, Zheng G Q. Soil nematode community structure in the rhizosphere of Lycium barbarum. Chinese Journal of Applied Ecology, 2016, 27(5): 1647-1656. |
张俊华, 郑国琦. 宁夏枸杞根际土壤线虫群落特征. 应用生态学报, 2016, 27(5): 1647-1656. | |
9 | Xu S R, Zhang E H, Ma R L, et al. Effects of planting years on the root system and soil environment of Lycium barbarum L. Acta Agronomica Sinica, 2018, 44(11): 1725-1732. |
胥生荣, 张恩和, 马瑞丽, 等. 不同种植年限对枸杞根系及土壤环境的影响. 作物学报, 2018, 44(11): 1725-1732. | |
10 | Ma S L, Ma C X, Xu P X, et al. Effects of long-term monocropping of Lycium barbarum L. on function and composition of fungal community in rhizosphere of replanted Lycium barbarum L. Acta Pedologica Sinica, 2019, 56(6): 1493-1503. |
马少兰, 马彩霞, 徐鹏鑫, 等. 再植枸杞根际真菌群落对长期连作的响应研究. 土壤学报, 2019, 56(6): 1493-1503. | |
11 | Na X, Ma C, Ma S, et al. Monocropping decouples plant-bacteria interaction and strengthens phytopathogenic fungi colonization in the rhizosphere of a perennial plant species. Plant and Soil, 2019, 445(1): 549-564. |
12 | Na X, Ma S, Ma C, et al. Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Applied Soil Ecology, 2021, 168(1/2): 104107. |
13 | Na X F, Zheng G Q, Xing Z C, et al. Effects of monocropping on diversity and structure of the bacterial community in rhizosphere of replanted Lycium barbarum L. Acta Pedologica Sinica, 2017, 54(5): 1280-1292. |
纳小凡, 郑国旗, 邢正操, 等. 连作对再植枸杞根际细菌群落多样性和群落结构的影响. 土壤学报, 2017, 54(5): 1280-1292. | |
14 | Andreo-Jimenez B, Schilder M T, Nijhuis E H, et al. Chitin-and keratin-rich soil amendments suppress Rhizoctonia solani disease via changes to the soil microbial community. Applied and Environmental Microbiology, 2021, 87(11): e00318-21. |
15 | Gao R P, Zhao P Y, Han Y F, et al. Effects of straw returning and nitrogen application on soil water, carbon and nitrogen coupling and crop yield. Soils, 2021, 53(5): 952-960. |
高日平, 赵沛义, 韩云飞, 等. 秸秆还田与氮肥运筹对土壤水碳氮耦合及作物产量的影响. 土壤, 2021, 53(5): 952-960. | |
16 | Kushwaha P, Neilson J W, Maier R M, et al. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 2022, 803(10): 150006. |
17 | Zheng S, Hu J, Chen K, et al. Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biology and Biochemistry, 2009, 41(10): 2094-2099. |
18 | Zhang Y J, Wang B, Li Z C, et al. Effects of fertilization measures on soil labile organic carbon and nutrient of old Torreya grandis. Forest Research, 2019, 32(2): 87-93. |
张雨洁, 王斌, 李正才, 等. 施肥措施对古香榧林地土壤活性有机碳和养分的影响. 林业科学研究, 2019, 32(2): 87-93. | |
19 | Nazaries L, Singh B P, Sarker J R, et al. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agriculture, Ecosystems & Environment, 2021, 307(28): 107206. |
20 | Zhang G L, Gong Z T. Soil survey laboratory methods. Beijing: Science Press, 2012: 47-70. |
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012: 47-70. | |
21 | Jiang Q L, Su B Y. Study of spectrophotometry for determining clay concentration. Journal of Qingdao Institute of Chemical Technology, 2000, 21(2): 124-126. |
姜庆利, 苏本寅. 粘土含量测定方法的研究. 青岛化工学院学报, 2000, 21(2): 124-126. | |
22 | Feyzi H, Chorom M, Bagheri G. Urease activity and microbial biomass of carbon in hydrocarbon contaminated soils. A case study of cheshmeh-khosh oil field, Iran. Ecotoxicology and Environmental Safety, 2020, 199(12): 110664. |
23 | Hu W, Jiao Z, Wu F, et al. Long-term effects of fertilizer on soil enzymatic activity of wheat field soil in Loess Plateau, China. Ecotoxicology, 2014, 23(10): 2069-2080. |
24 | Kandeler E, Luxhøi J, Tscherko D, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology and Biochemistry, 1999, 31(8): 1171-1179. |
25 | Chen F S, Zeng D H, Chen G S, et al. Comparative analysis on spatial patterns of soil moisture under different land use types in Kerqin sandy land. Chinese Journal of Ecology, 2003(6): 43-48. |
陈伏生, 曾德慧, 陈广生, 等. 不同土地利用方式下沙地土壤水分空间变异规律. 生态学杂志, 2003(6): 43-48. | |
26 | Xie X, Pu L, Zhu M, et al. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, Eastern China. Journal of Soil & Sediments, 2019, 19(11): 3699-3707. |
27 | Zhou H, Shi H B, Zhang W C, et al. Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 86-95. |
周慧, 史海滨, 张文聪, 等. 有机无机肥配施对盐渍化土壤微生物量和呼吸的影响. 农业工程学报, 2021, 37(15): 86-95. | |
28 | Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 2015, 81: 108-123. |
29 | Zhang Z, Feng S, Luo J, et al. Evaluation of microbial assemblages in various saline-alkaline soils driven by soluble salt ion components. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3390-3400. |
30 | Zhang T, He J, Feng H, et al. Improvement of soil nutrient and biological properties and establishment of Lycium barbarum L. in an impermeable saline-sodic soil using drip irrigation. Soil Research, 2018, 57(1): 75-84. |
31 | Jones D L, Magthab E A, Gleeson D B, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 2018, 117: 72-82. |
[1] | 戈建珍, 傅文慧, 张露, 蔺宝珺, 赵帅, 白玛噶翁, 寇建村. 多菌灵在果园白三叶青贮中的降解及其对微生物群落的影响[J]. 草业学报, 2022, 31(7): 64-75. |
[2] | 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展[J]. 草业学报, 2022, 31(6): 221-234. |
[3] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[4] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[5] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[6] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[7] | 周承福, 汪水平, 张佰忠, 张秀敏, 王荣, 马志远, 王敏. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响[J]. 草业学报, 2022, 31(2): 171-181. |
[8] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[9] | 王春雯, 赵芳, 张晨, 解李娜, 马成仓. 小叶锦鸡儿灌丛对草地土壤固氮微生物群落的影响[J]. 草业学报, 2022, 31(10): 28-40. |
[10] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
[11] | 郑娟善, 丁考仁青, 李新圃, 梁泽毅, 张剑搏, 杜梅, 丁学智. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192. |
[12] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[13] | 余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
[14] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[15] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||