草业学报 ›› 2024, Vol. 33 ›› Issue (5): 166-182.DOI: 10.11686/cyxb2023225
• 综合评述 • 上一篇
段海霞1(), 师茜1, 康生萍1, 苟海青1, 罗崇亮2(), 熊友才3
收稿日期:
2023-07-03
修回日期:
2023-08-28
出版日期:
2024-05-20
发布日期:
2024-02-03
通讯作者:
罗崇亮
作者简介:
E-mail: luochl@nwipb.cas.cn基金资助:
Hai-xia DUAN1(), Qian SHI1, Sheng-ping KANG1, Hai-qing GOU1, Chong-liang LUO2(), You-cai XIONG3
Received:
2023-07-03
Revised:
2023-08-28
Online:
2024-05-20
Published:
2024-02-03
Contact:
Chong-liang LUO
摘要:
丛枝菌根真菌(AMF)和根瘤菌可以影响植物生产力、微生物群落结构和土壤质量,是生态系统可持续发展的重要驱动因子。在长期的进化过程中,AMF和根瘤菌逐步形成了互惠互利共生关系,充分发挥AMF-根瘤菌-植物共生体的生物固氮和养分吸收等作用,对于减少化学肥料的投入,保障农业可持续发展具有重要意义。但也有研究表明AMF和根瘤菌之间存在相互制约的作用,这可能与环境因素密切相关。因此,需要系统总结AMF-根瘤菌与植物共生相互作用的机理及其影响因素。本研究通过文献梳理以及定性比较分析,阐明了植物根系通过根系分泌物刺激根瘤菌和AMF形成结瘤因子和菌根因子,激活后续信号通路,从而使根瘤菌和AMF与植物建立共生关系的过程和机制;概述了AMF-根瘤菌与植物共生的协同增效和拮抗作用;总结了影响AMF和根瘤菌与植物共生及其相互作用的生物和非生物因素。最后,本研究提出AMF-根瘤菌与植物建立共生关系的作用机理目前还不完全明确,微生物菌肥研发缓慢等问题,并从理论、技术和应用等层面对未来研究的重点方向进行了展望,以期为利用AMF和根瘤菌促进农业可持续发展提供新思路和新方法。
段海霞, 师茜, 康生萍, 苟海青, 罗崇亮, 熊友才. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182.
Hai-xia DUAN, Qian SHI, Sheng-ping KANG, Hai-qing GOU, Chong-liang LUO, You-cai XIONG. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants[J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182.
图1 丛枝菌根真菌(AMF)和根瘤菌与豆科和非豆科植物的共生机制在豆-禾间作系统中,这两种植物的根系分泌物(独角金内酯和黄酮类化合物)可以分别刺激AMF的Myc因子和根瘤菌的Nod因子,激活钙离子(Ca2+)依赖性信号级联,进而激活信号通路诱导AMF和根瘤菌与植物根系共生。在间作系统中非豆科植物根系分泌物(如黄酮类化合物)也可以刺激豆科植物根瘤菌的Nod因子和生物固氮,从而提高氮营养、生物量和产量。作为交换,豆科植物通过根瘤菌固定的氮等分泌物可以转移到非豆科植物,从而提高其氮营养、生长和产量。In the soybean-grass intercropping system, the root exudates of these two plants (unicorn lactone and flavonoid) can stimulate the Myc factor of AMF and the Nod factor of rhizobia respectively, activate the calcium ion (Ca2+) dependent signal cascade, and then activate the signal pathway to induce AMF and rhizobia to coexist with plant roots. In the intercropping system, the root exudates of non-leguminous plants (such as flavonoid) can also stimulate the Nod factor and biological nitrogen fixation of rhizobia, thus improving nitrogen nutrition, biomass and yield. In exchange, nitrogen fixed by leguminous plants can be transferred to non-leguminous plants, so as to improve their nitrogen nutrition, growth and yield.
Fig.1 Symbiosis mechanism of arbuscular mycorrhizal fungi (AMF) and rhizobia with leguminous and non-leguminous plants
图2 丛枝菌根真菌(AMF)和根瘤菌对宿主植物共生的效应AMF和根瘤菌可以通过共生为宿主植物提供益处。这些益处包括促进生长(蓝色),抵抗胁迫(绿色)以及防御病原体和害虫(红色)。微生物组介导的益处主要在地下部分引发,并可以通过植物介导的运输或信号传递到其他部分(显示为蓝色、绿色和红色虚线箭头,分别代表有助于植物生长的机制,缓解胁迫和防御力)。根瘤菌可以固定大气中的氮(N2),AMF和根瘤菌增强植物吸收土壤养分[例如磷酸盐(Pi)和铵根(NH4+)]的能力,并将NH4+和硝酸根(NO3-)主动转运到宿主,也通过调节渗透保护剂和提高抗氧化能力来减轻胁迫。总体而言,AMF和根瘤菌相互作用改善了植物的生长性能和/或健康。AMF and rhizobia can provide benefits for host plants through symbiosis. These benefits include promoting growth (blue), resisting stress (green), and defending against pathogens and pests (red). The benefits mediated by microbiota are mainly triggered in the underground part and can be transmitted to other parts through plant-mediated transportation or signaling (blue, green, and red dashed arrow representing mechanisms that help plant growth, alleviate stress, and defense, respectively). Rhizobia can fix nitrogen (N2) in the atmosphere. AMF and rhizobia enhance the ability of plants to absorb soil nutrients [such as phosphate (Pi) and ammonium (NH4+)], and actively transport NH4+ and nitrate (NO3-) to the host. They also reduce stress by adjusting osmotic protectants and improving the antioxidant capacity of plants. In general, the interaction of AMF and rhizobia improves the growth performance and/or health of plants.
Fig.2 The symbiotic effect of arbuscular mycorrhizal fungi (AMF) and rhizobia on host plants
图3 生物和非生物因素影响丛枝菌根真菌(AMF)和根瘤菌的共生及其相互作用AMF提供植物根瘤固氮作用所需的P素,提高植株的固氮能力,同时植株根瘤菌共生固氮为AMF提供N素,二者产生协同增效作用。但有时候受到生物或非生物因素的影响,AMF与根瘤菌之间无协同增效作用甚至有时会相互制约。AMF provides the P required for nitrogen fixation of plant nodules, improving the nitrogen fixation capacity of plants. At the same time, plant rhizobia symbiotic nitrogen fixation provides N for AMF, AMF and rhizobia have synergistic effects. However, sometimes under the influence of biological or abiotic factors, there is no synergy between AMF and rhizobia or even mutual restriction.
Fig.3 Biological and abiotic factors affect the interaction between arbuscular mycorrhizal fungi (AMF) and rhizobia
1 | Wheeler T, Braun J V. Climate change impacts on global food security. Science, 2013, 341(6145): 508-513. |
2 | Zheng W, Luo B, Hu X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production, 2020, 272(1): 123054. |
3 | Zhu Y G, Xiong C, Wei Z, et al. Impacts of global change on phyllosphere microbiome. New Phytologist, 2022, 234(6): 1977-1986. |
4 | Sun R, Wang F, Hu C, et al. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry, 2021, 156(1): 108214. |
5 | Wang E T. Plant-rhizobium symbiosis. China Basic Science, 2016, 18(1): 21-27, 2. |
王二涛. 植物-根瘤菌共生固氮. 中国基础科学, 2016, 18(1): 21-27, 2. | |
6 | Bauer J T, Blumenthal N, Miller A J, et al. Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. Journal of Applied Ecology, 2017, 54(4): 1028-1039. |
7 | Smith S E, Read D J. Mycorrhizal symbiosis (third edition). London: Academic Press, 2008. |
8 | Sui X, Zhang T, Tian Y, et al. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist, 2019, 221(1): 470-481. |
9 | Duan H X, Luo C L, Li J Y, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density- and moisture-dependent. Agronomy for Sustainable Development, 2021, 41(1): 1-12. |
10 | Qiao X, Bei S K, Li H G, et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant and Soil, 2016, 406: 173-185. |
11 | Pereira S, Mucha A, Gonçalves B, et al. Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop and Pasture Science, 2019, 70(7): 595-605. |
12 | He S B, Guo L X, Li J, et al. Advances in arbuscular mycorrhizal fungi and legumes symbiosis research. Acta Prataculturae Sinica, 2017, 26(1): 187-194. |
何树斌, 郭理想, 李菁, 等. 丛枝菌根真菌与豆科植物共生体研究进展. 草业学报, 2017, 26(1): 187-194. | |
13 | Ossler J N, Zielinski C A, Heath K D. Tripartite mutualism: Facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. American Journal of Botany, 2015, 102(8): 1-10. |
14 | Cavicchioli R, Ripple W J, Timmis K N, et al. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17(9): 569-586. |
15 | Coskun D, Britto D T, Shi W, et al. How plant root exudates shape the nitrogen cycle. Trends in Plant Science, 2017, 22(8): 661-673. |
16 | Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18(1): 607-621. |
17 | de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368(6488): 270-274. |
18 | Wu Y F, Liu Q M, Liu W H, et al. Effects of inoculation of AMF and Rhizobium on photosynthetic and respiratory metabolism and growth of intercropping Glycine max. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(2): 231-241. |
吴艳芬, 刘秋鸣, 刘卫欢, 等. AMF与根瘤菌对间作大豆光合与呼吸代谢的影响. 广西师范大学学报(自然科学版), 2022, 40(2): 231-241. | |
19 | Endlweber K, Scheu S. Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biology and Fertility of Soils, 2007, 43(6): 741-749. |
20 | Lin J, Roswanjaya Y P, Kohlen W, et al. Nitrate inhibits nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nature Communications, 2021, 12(1): 6544. |
21 | Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18(11): 649-660. |
22 | Chen W X, Wang E T, Chen W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. Scientia Agricultura Sinica, 2004, 37(1): 81-86. |
陈文新, 汪恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86. | |
23 | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007: 22-24. |
刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007: 22-24. | |
24 | Feng G, Zhang F S, Li X L, et al. Functions of arbuscular mycorrhizal fungi in agricultural and their manipulation. Acta Pedologica Sinica, 2010, 47(5): 995-1004. |
冯固, 张福锁, 李晓林, 等. 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 2010, 47(5): 995-1004. | |
25 | Zhao Z, Wang Z H. The relationships between mycorrhizal fungi and microbe of rhizosphere and their influences on host plant. Journal of Northwest Forestry University, 2001, 16(4): 70-75. |
赵忠, 王真辉. 菌根真菌与根际微生物间的关系及其对宿主植物的影响. 西北林学院学报, 2001, 16(4): 70-75. | |
26 | Minerdi D, Fani R, Gallo R, et al. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology, 2001, 67(2): 725-732. |
27 | Alguacil M D M, Lozano Z, Campoy M J, et al. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology and Biochemistry, 2010, 42(7): 1114-1122. |
28 | Dénarié J, Cullimore J. Lipo-oligosaccharide nodulation factors: A new class of signaling molecules mediating recognition and morphogenesis. Cell, 1993, 74(6): 951-954. |
29 | Hassan S, Mathesius U, Hassan S, et al. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany, 2012, 63(9): 3429-3444. |
30 | Oldroyd G. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11(1): 252-263. |
31 | Barker D G, Chabaud M, Russo G, et al. Nuclear Ca2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytologist, 2017, 214(2): 533-538. |
32 | Martin F M, Uroz S, Barker D G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356(6340): 819. |
33 | Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343): 1172-1175. |
34 | Wang X, Feng H, Wang Y, et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 2021, 14(3): 503-516. |
35 | Yu K, Wang X L, Zhang X B, et al. Research progress on interactions between root and beneficial microbes. Plant Physiology Journal, 2020, 56(11): 2275-2287. |
禹坷, 王孝林, 张学斌, 等. 植物根系与益生菌相互作用的研究进展. 植物生理学报, 2020, 56(11): 2275-2287. | |
36 | Erik S. The nitrogen fix. Science, 2016, 353(6305): 1225-1227. |
37 | Ryu M H, Zhang J, Toth T, et al. Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 2020, 5: 314-330. |
38 | Beatty P H, Good A G. Future prospects for cereals that fix nitrogen. Science, 2011, 333(6041): 416-417. |
39 | Jian L, Bai X, Zhang H, et al. Promotion of growth and metal accumulation of alfalfa by co-inoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. PeerJ, 2019, 7: e6875. |
40 | Abd-Alla M H, El-Enany A W E, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 2014, 169(1): 49-58. |
41 | Liu Y, Yuan L. Effects of rhizobia and arbuscular mycorrhizal fungi on nodulation, yield and quality of Medicago sativa. Acta Pedologica Sinica, 2020, 57(5): 1292-1298. |
刘忆, 袁玲. 根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响. 土壤学报, 2020, 57(5): 1292-1298. | |
42 | Tavasolee A, Aliasgharzad N, SalehiJouzani G, et al. Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. African Journal of Biotechnology, 2011, 10(39): 7585-7591. |
43 | Sakamoto K, Ogiwara N, Kaji T, et al. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Journal of Plant Research, 2019, 132(4): 541-568. |
44 | Wang X Y, Ding T T, Li Y Z, et al. Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot. Acta Prataculturae Sinica, 2019, 28(8): 139-149. |
王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28(8): 139-149. | |
45 | Liu Q, Gao Y N, Liu X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecologica Sinica, 2018, 38(17): 6143-6155. |
刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018, 38(17): 6143-6155. | |
46 | Wang X, Fang L, Beiyuan J, et al. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277(1): 116758. |
47 | Luna L, Miralles I, Andrenelli M C, et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 2016, 143(1): 256-264. |
48 | Ding X D, Zhang S R, Wang R P, et al. AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. Journal of Plant Nutrition, 2016, 39(13): 1915-1925. |
49 | Tajini F, Trabelsi M, Drevon J J. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. |
50 | van Rhijn P, Fang Y, Galili S, et al. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and rhizobium-induced nodules may be conserved. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5467-5472. |
51 | Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling and Behavior, 2012, 7(6): 636-641. |
52 | Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2016, 95(4): 1045-1054. |
53 | Kaschuk G, Leffelaar P A, Giller K E, et al. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 2010, 42(1): 125-127. |
54 | Tsimilli-Michael M, Eggenberg P, Biro B, et al. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology, 2000, 15(2): 169-182. |
55 | Liu Y, Patko D, Engelhardt I, et al. Plant-environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2109176118. |
56 | Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90(6): 635-644. |
57 | Clark R B, Zeto S K. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 2000, 23(7): 867-902. |
58 | Azcón R, Rubio R, Barea J M. Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (5N) and nutrition of Medicago sativa L. New Phytologist, 1991, 117(3): 399-404. |
59 | Ahmad M H. Compatibility and co-selection of vesicular-arbuscular mycorrhizal fungi and rhizobia for tropical legumes. Critical Reviews in Biotechnology, 1995, 15: 229-239. |
60 | Guo C, Zhou J Q, Zhang Y J. Host and nutrient mediated the synergistic effect of arbuscular mycorrhizal fungi (AMF) and rhizobium on plant growth. Acta Agrestia Sinica, 2023, 31(7): 1931-1938. |
郭川, 周冀琼, 张英俊. 宿主和养分介导了AMF和根瘤菌对植物生长的协同效应. 草地学报, 2023, 31(7): 1931-1938. | |
61 | Pan Y, Zhou J Q, Guo C, et al. Arbuscular mycorrhizal fungi and rhizobia regulate plant interspecific interaction of three legumes and grasses species. Acta Agrestia Sinica, 2021, 29(4): 644-654. |
潘越, 周冀琼, 郭川, 等. 丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响. 草地学报, 2021, 29(4): 644-654. | |
62 | Zhou X Y, Tang Y L, Wang Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1139-1146. |
周贤玉, 唐艺玲, 王志国, 等. 减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响. 中国生态农业学报, 2017, 25(8): 1139-1146. | |
63 | Scheublin T R, van Logtestijn R S P, van der Heijden M G A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 2010, 95(4): 631-638. |
64 | Diaye D N, Duponnois R, Brauman A, et al. Impact of a soil feeding termite, Cubitermes niokoloensis, on the symbiotic microflora associated with a fallow leguminous plant Crotalaria ochroleuca. Biology and Fertility of Soils, 2003, 37(5): 313-318. |
65 | Cao J, Wang C, Huang Y, et al. Effects of earthworm on soil microbes and biological fertility: A review. Chinese Journal of Applied Ecology, 2015, 26(5): 1579-1586. |
曹佳, 王冲, 皇彦, 等. 蚯蚓对土壤微生物及生物肥力的影响研究进展. 应用生态学报, 2015, 26(5): 1579-1586. | |
66 | Requena N, Jimenez I, Toro M, et al. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium ssp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytologist, 1997, 136(4): 667-677. |
67 | Tian C J, He X Y, Zhong Y, et al. Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests, 2003, 25(2): 125-131. |
68 | Ashrafi E, Zahedi M, Razmjoo J. Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Science and Plant Nutrition, 2014, 60(5): 619-629. |
69 | Shafer S R, Schoeneberger M M, Horton S J, et al. Effects of rhizobium, arbuscular mycorrhizal fungi and anion content of simulated rain on subterranean clover. Environmental Pollution, 1996, 92(1): 55-66. |
70 | Meng C, Lu N, Chai Q. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa in acidic soil. Pratacultural Science, 2017, 34(2): 352-360. |
蒙程, 陆妮, 柴琦. 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响. 草业科学, 2017, 34(2): 352-360. | |
71 | Wu H, Yang J J, Fu W, et al. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. Soil Biology and Biochemistry, 2023, 237(1): 279-294. |
72 | van der Heijden M G A, Verkade S, Bruin S J D. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2010, 14(11): 2626-2635. |
73 | Yasmeen S, Bano A. Combined effect of phosphate-solubilizing microorganisms, rhizobium and enterobacter on root nodulation and physiology of soybean (Glycine max L.). Communications in Soil Science and Plant Analysis, 2014, 45(18): 2373-2384. |
74 | Li X L, Cao Y P. Effects of VA mycorrhizal hyphal uptake of phosphorus on N-fixation and growth of white clover. Acta Agricultural Universitatis Pekinensis, 1992, 18(3): 299-302. |
李晓林, 曹一平. VA菌根菌丝对三叶草固氮的影响. 北京农业大学学报, 1992, 18(3): 299-302. | |
75 | Reddell P, Yun Y, Shipton W A. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Australian Journal of Botany, 1997, 45(1): 41-51. |
76 | Shantz A A, Lemoine N P, Burkepile D E. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecology Letters, 2016, 19(1): 20-28. |
77 | Aryal U K, Xu H L, Fujita M. Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. Journal of Sustainable Agriculture, 2003, 21(3): 27-39. |
78 | Pan S, Wang Y, Qiu Y, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biology, 2020, 26(11): 6568-6580. |
79 | van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 2010, 13(5): 683-695. |
80 | Warburton L M E, Allen E B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 2000, 10(2): 484-496. |
81 | Jiang Q Q, Tang J J, Chen X, et al. Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake. Chinese Journal of Applied Ecology, 2005, 16(5): 951-955. |
蒋琦清, 唐建军, 陈欣, 等. 模拟氮沉降对杂草生长和氮吸收的影响. 应用生态学报, 2005, 16(5): 951-955. | |
82 | Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 2017, 63(5): 470-482. |
83 | Yang Z W, Shen Y Y, Xie T L, et al. Biological nitrogen fixation efficiency in soybean under different levels of nitrogen supply. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 574-579. |
杨子文, 沈禹颖, 谢田玲, 等. 外源供氮水平对大豆生物固氮效率的影响. 西北植物学报, 2009, 29(3): 574-579. | |
84 | Wang H, Mo J M, Lu X K, et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China. Acta Ecologica Sinica, 2008, 28(2): 470-478. |
王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应. 生态学报, 2008, 28(2): 470-478. | |
85 | Liu W, Jiang L, Hu S J, et al. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry, 2014, 72(6): 116-122. |
86 | Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196(1): 143-158. |
87 | Andrade S, Abreu C A, Abreu M, et al. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 2004, 26(2): 123-131. |
88 | Ren C G, Kong C C, Wang S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 2019, 217(1): 773-779. |
89 | Pelaez C, Olivares E, Cuenca G, et al. Manganese modulates the responses of nitrogen-supplied and Rhizobium-nodulated Phaseolus vulgaris L. to inoculation with arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2010, 42(11): 1924-1933. |
90 | Bitterlich M, Franken P, Graefe J. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Mycorrhiza, 2019, 29(1): 13-28. |
91 | Lang M, Li X, Zheng C, et al. Shading mediates the response of mycorrhizal maize (Zea mays L.) seedlings under varying levels of phosphorus. Applied Soil Ecology, 2021, 166(1): 104060. |
92 | Clark A L, Clair S S B. Mycorrhizas and secondary succession in aspen-conifer forest: light imitation differentially affects a dominant early and late successional species. Forest Ecology and Management, 2011, 262(2): 203-207. |
93 | Zheng C, Ji B, Zhang J, et al. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytologist, 2015, 205(1): 361-368. |
94 | Taylor B N, Menge D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4(9): 655-661. |
95 | Antunes P M, Lehmann A, Hart M M, et al. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Functional Ecology, 2012, 26(2): 532-540. |
96 | Goicoechea N, Merino S, Sánchez-Díaz M. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology, 2005, 162(1): 27-35. |
97 | Erman M, Demir S, Ocak E, et al. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1-Yield, yield components, nodulation and AMF colonization. Field Crops Research, 2011, 122(1): 14-24. |
98 | Gao W L, Chen X N, Yilinuer·Aili, et al. Effects of double inoculation with arbuscular mycorrhizal fungi and rhizobia under different water treatments on growth and nitrogen transfer of Alhagi sparsifolia. Acta Ecologica Sinica, 2022, 42(16): 6816-6826. |
高文礼, 陈晓楠, 伊力努尔·艾力, 等. 不同水分处理下双接种丛枝菌根真菌和根瘤菌对疏叶骆驼刺生长及氮素转移的影响. 生态学报, 2022, 42(16): 6816-6826. | |
99 | Yinsuo J, Myles G V, John S C. The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Annals of Botany, 2004, 94(2): 251-258. |
100 | Catford J G, Staehelin C, Lerat S, et al. Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with nod factors. Journal of Experimental Botany, 2003, 54(386): 1481-1487. |
101 | Dong C J, Zhao B. Interaction between AM fungi and Rhizobium and effects of flavonoids on it. Chinese Journal of Applied Ecology, 2004, 15(9): 1585-1588. |
董昌金, 赵斌. 丛枝菌根真菌与根瘤菌互作及类黄酮对互作效果的影响. 应用生态学报, 2004, 15(9): 1585-1588. | |
102 | Wang H. Influencing factors on the symbiosis of Ammopiptanthus mongolicus (Maxim.) with rhizobia and arbuscular mycorrhizal fungi (AMF). Beijing: Beijing Forestry University, 2008. |
王华. 沙冬青与根瘤菌和丛枝菌根真菌(AMF)共生关系影响因素的研究. 北京: 北京林业大学, 2008. | |
103 | Zhuang Q, Zhao X J, Song F Q. Amorpha fruticosa arbuscular mycorrhizal (AM) root exudate induced nodulation factors of rhizobia and their interactions. Journal of Northwest Forestry University, 2018, 33(3): 164-168. |
庄倩, 赵晓娟, 宋福强. 紫穗槐丛枝菌根(AM)根系分泌物诱导根瘤菌结瘤因子及作用研究. 西北林学院学报, 2018, 33(3): 164-168. | |
104 | Maron J L, Marler M, Klironomos J N, et al. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 2011, 14(1): 36-41. |
105 | Yang H Q. The effect of four herbicides on rhizobium, AMF and other soil microbe. Microbiology China, 2009, 36(4): 511-514. |
杨会青. 四种除草剂对根瘤菌、AMF等土壤微生物的影响. 微生物学通报, 2009, 36(4): 511-514. | |
106 | Niranjan R, Mohan V, Rao V M. Effect of indole acetic acid on the synergistic interactions of Bradyrhizobium and Glomus fasciculatum on growth, nodulation, and nitrogen fixation of Dalbergia sissoo Roxb. Arid Land Research and Management, 2007, 21(4): 329-342. |
107 | Wurst S, Vender V, Rillig M C. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecology, 2010, 211(1): 19-26. |
108 | Wang T, Guo J, Peng Y, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374(6563): 65-71. |
109 | Wang B, Zhang R, Liu J, et al. Effects of incorporated and mulched tree branches on arbuscular mycorrhizal fungi in the desertified soil and root of alfalfa in arid areas. Acta Prataculturae Sinica, 2023, 32(2): 15-25. |
王博, 张茹, 刘静, 等. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响. 草业学报, 2023, 32(2): 15-25. | |
110 | Oehl F, Laczko E, Bogenrieder A, et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 2010, 42(5): 724-738. |
[1] | 马路平, 石兆勇, 韦文敬, 杨爽. 基于Meta分析菌根菌对植物叶片生理的影响[J]. 草业学报, 2024, 33(4): 99-109. |
[2] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
[3] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[4] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[5] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[6] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[7] | 卫宏健, 贺文员, 王越, 唐明, 陈辉. 丛枝菌根真菌与褪黑素对多年生黑麦草耐热性的影响[J]. 草业学报, 2023, 32(12): 126-138. |
[8] | 王升升, 段珍, 周培, 张吉宇. 白花草木樨结瘤缺失型突变体的结瘤表型及生物量分析[J]. 草业学报, 2023, 32(10): 247-256. |
[9] | 刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187. |
[10] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[11] | 常单娜, 马晓彤, 周国朋, 高嵩涓, 刘蕊, 曹卫东. 不同根瘤菌与紫云英主栽品种的共生匹配性[J]. 草业学报, 2022, 31(12): 171-180. |
[12] | 王春雯, 赵芳, 张晨, 解李娜, 马成仓. 小叶锦鸡儿灌丛对草地土壤固氮微生物群落的影响[J]. 草业学报, 2022, 31(10): 28-40. |
[13] | 陈永岗, 康文娟, 吴芳, 阿芸, 师尚礼, 张翠梅, 李自立. 硼对根瘤菌胞外多糖和吲哚乙酸分泌的调控研究[J]. 草业学报, 2021, 30(5): 42-51. |
[14] | 魏志敏, 孙斌, 方成, 代子雯, 刘满强, 焦加国, 胡锋, 李辉信, 徐莉. 根瘤菌与固氮菌联合对毛叶苕子的促生效果[J]. 草业学报, 2021, 30(5): 94-102. |
[15] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||