草业学报 ›› 2024, Vol. 33 ›› Issue (8): 25-36.DOI: 10.11686/cyxb2023370
杜文盼(), 赵桂琴(), 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄
收稿日期:
2023-10-09
修回日期:
2023-11-29
出版日期:
2024-08-20
发布日期:
2024-05-13
通讯作者:
赵桂琴
作者简介:
E-mail: zhaogq@gsau.edu.cn基金资助:
Wen-pan DU(), Gui-qin ZHAO(), Ji-kuan CHAI, Li YANG, Jian-gui ZHANG, Yi-chao SHI, Guan-lu ZHANG
Received:
2023-10-09
Revised:
2023-11-29
Online:
2024-08-20
Published:
2024-05-13
Contact:
Gui-qin ZHAO
摘要:
为了解燕麦/豌豆间作系统中根系分隔对地上生物量和土壤养分的影响,本研究设燕麦单作、豌豆单作、燕麦豌豆间作不分隔、尼龙网分隔和塑料膜分隔共5个处理,分析了燕麦/豌豆间作后株高、地上生物量、土壤养分和根系性状的变化。结果表明,塑料膜分隔处理降低了燕麦株高和间作地上生物量,其土地当量比小于1,而尼龙网分隔、不分隔处理的土地当量比大于1,间作优势明显。塑料膜分隔处理的土壤有机质含量较尼龙网分隔和不分隔处理降低了14.75%~78.53%,有效磷含量降低了9.31%~29.73%,土壤全氮含量在拔节和开花期的根系分隔处理中无显著变化(P>0.05),灌浆期塑料膜分隔较尼龙网分隔和不分隔处理分别降低了22.16%和18.38%,成熟期不分隔处理较塑料膜分隔高10.83%(P<0.05)。对豌豆而言,塑料膜分隔处理的土壤有机质含量显著高于不分隔和尼龙网分隔。此外,不分隔处理的燕麦根长较尼龙网分隔、单作和塑料膜分隔分别增加了43.03%、59.02%和96.38%;根表面积分别增大了14.84%、30.20%和45.55%;根体积分别增加了17.37%、38.15%和106.15%。由此可见,燕麦/豌豆间作显著影响了作物的根系性状,使根系对土壤养分的竞争力发生了变化,从而影响了地上生物量;根系互作越紧密,燕麦和豌豆的地上生物量越高;根系无互作的塑料膜分隔导致燕麦根系生长较差,土壤养分含量较低,间作生物量较低。
杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36.
Wen-pan DU, Gui-qin ZHAO, Ji-kuan CHAI, Li YANG, Jian-gui ZHANG, Yi-chao SHI, Guan-lu ZHANG. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea[J]. Acta Prataculturae Sinica, 2024, 33(8): 25-36.
图2 不同处理下各生育时期燕麦的株高OD: 燕麦单作Oat monoculture; IC: 燕麦豌豆间作根系不分隔The oat and pea intercropping are not separated; NS: 间作尼龙网分隔Intercropping with nylon mesh separation; PS: 间作塑料膜分隔Intercropping with plastic film separation; 同一时期不同小写字母代表在0.05水平差异显著Different lowercase letters at the same stage represent significant differences at 0.05 level; 下同The same below.
Fig.2 Oat plant height at different growth stages under different treatments
时期 Stage | 处理 Treatment | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有效磷Available phosphorus (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
拔节期 Jointing stage | OD | 8.34a | 11.91h | 1.02g | 13.91f | 0.48ab |
IC | 8.31a | 13.32fg | 1.02g | 12.50gh | 0.42c | |
NS | 8.35a | 12.11gh | 1.11fg | 13.70fg | 0.41cd | |
PS | 8.32a | 10.32i | 1.11fg | 13.63fg | 0.53a | |
开花期 Flowering stage | OD | 8.39a | 12.13g | 1.14ef | 14.16f | 0.44bc |
IC | 8.34a | 14.47ef | 1.24cde | 17.59bc | 0.37e | |
NS | 8.33a | 14.45ef | 1.18def | 16.95bcd | 0.38de | |
PS | 8.40a | 12.61g | 1.16ef | 12.36h | 0.41cd | |
灌浆期 Grain filling stage | OD | 8.42a | 10.54i | 1.45b | 16.21cde | 0.27g |
IC | 8.25a | 18.71bc | 1.85a | 19.53a | 0.22h | |
NS | 8.32a | 17.74cd | 1.94a | 17.61bc | 0.22h | |
PS | 8.42a | 10.48i | 1.51b | 15.97de | 0.27g | |
成熟期 Mature stage | OD | 8.49a | 14.88e | 1.28cd | 14.09f | 0.41cd |
IC | 8.35a | 23.13a | 1.33c | 19.48a | 0.32f | |
NS | 8.39a | 20.20b | 1.16ef | 18.12ab | 0.31f | |
PS | 8.42a | 16.96d | 1.20def | 15.51e | 0.48b |
表1 不同处理下燕麦各生育时期根际土壤理化性质
Table 1 Soil physicochemical properties of oat at different growth stages under different treatments
时期 Stage | 处理 Treatment | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有效磷Available phosphorus (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
拔节期 Jointing stage | OD | 8.34a | 11.91h | 1.02g | 13.91f | 0.48ab |
IC | 8.31a | 13.32fg | 1.02g | 12.50gh | 0.42c | |
NS | 8.35a | 12.11gh | 1.11fg | 13.70fg | 0.41cd | |
PS | 8.32a | 10.32i | 1.11fg | 13.63fg | 0.53a | |
开花期 Flowering stage | OD | 8.39a | 12.13g | 1.14ef | 14.16f | 0.44bc |
IC | 8.34a | 14.47ef | 1.24cde | 17.59bc | 0.37e | |
NS | 8.33a | 14.45ef | 1.18def | 16.95bcd | 0.38de | |
PS | 8.40a | 12.61g | 1.16ef | 12.36h | 0.41cd | |
灌浆期 Grain filling stage | OD | 8.42a | 10.54i | 1.45b | 16.21cde | 0.27g |
IC | 8.25a | 18.71bc | 1.85a | 19.53a | 0.22h | |
NS | 8.32a | 17.74cd | 1.94a | 17.61bc | 0.22h | |
PS | 8.42a | 10.48i | 1.51b | 15.97de | 0.27g | |
成熟期 Mature stage | OD | 8.49a | 14.88e | 1.28cd | 14.09f | 0.41cd |
IC | 8.35a | 23.13a | 1.33c | 19.48a | 0.32f | |
NS | 8.39a | 20.20b | 1.16ef | 18.12ab | 0.31f | |
PS | 8.42a | 16.96d | 1.20def | 15.51e | 0.48b |
1 | Tang C Y, Wei Z W, Jiang Z, et al. Effect of row ratio on yield and quality of different intercropping modes. Acta Agrestia Sinica, 2020, 28(1): 214-220. |
唐晨阳, 魏臻武, 江舟, 等. 行比对不同豆禾间作模式产量与品质的影响. 草地学报, 2020, 28(1): 214-220. | |
2 | Wang X, Liu X J, Zhao Y J, et al. Effects of alfalfa/oat intercropping on carbon and nitrogen metabolism and matter accumulation of oat. Acta Agrestia Sinica, 2021, 29(10): 2258-2264. |
汪雪, 刘晓静, 赵雅姣, 等. 紫花苜蓿/燕麦间作对燕麦碳、氮代谢及其物质积累的影响研究. 草地学报, 2021, 29(10): 2258-2264. | |
3 | Cao M J, Wang J Y, Cui Y, et al. Effects of different maize and soybean intercropping ratios on photosynthetic characteristics and yield of soybean. Soybean Science, 2023, 42(1): 48-54. |
曹曼君, 王婧瑜, 崔悦, 等. 不同玉米大豆间作行比对大豆光合特性及产量的影响. 大豆科学, 2023, 42(1): 48-54. | |
4 | Xie H C. The ecological regulation and mechanism of the intercropping of wheat and two fabaceous crops on english grain aphid and its enemies. Beijing: Chinese Academy of Agricultural Sciences, 2011. |
解海翠. 小麦与两种豆科作物间作对麦长管蚜及其天敌的生态调控及机理. 北京: 中国农业科学院, 2011. | |
5 | Wu X Q, Liu B, Zhang W, et al. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity. Acta Agronomica Sinica, 2023, 49(4): 1079-1089. |
吴香奇, 刘博, 张威, 等. 小麦豌豆间作对群体光合特性和生产力的影响. 作物学报, 2023, 49(4): 1079-1089. | |
6 | Jiao N Y, Li Y H, Liu L, et al. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maize//peanut intercropping. Plant Physiology Journal, 2016, 52(6): 886-894. |
焦念元, 李亚辉, 刘领, 等. 隔根对玉米//花生间作光合特性与间作优势的影响. 植物生理学报, 2016, 52(6): 886-894. | |
7 | Liu X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system. Chengdu: Sichuan Agricultural University, 2016. |
刘鑫. 玉豆带状间作系统光能分布、截获与利用研究. 成都: 四川农业大学, 2016. | |
8 | Li S W, Zhu J Q, Evers J B, et al. Estimating the differences of light capture between rows based on functional-structural plant model in simultaneous maize-soybean strip intercropping. Smart Agriculture, 2022, 4(1): 97-109. |
李双伟, 朱俊奇, Evers J B, 等. 基于植物功能-结构模型的玉米-大豆条带间作光截获行间差异研究. 智慧农业, 2022, 4(1): 97-109. | |
9 | Lv Y, Wu P T, Chen X L, et al. Effect of above- and below-ground interactions on maize/soybean intercropping advantage. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 129-136, 142. |
吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1): 129-136, 142. | |
10 | Zhang J E, Gao A X, Xu H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602. |
章家恩, 高爱霞, 徐华勤, 等. 玉米-花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602. | |
11 | Liu J X, Lu Y G, Yuan H W, et al. The roots of the crop usually absorb and utilize studying to nitrogen under the maize/soybean intercropping condition. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 173-175. |
刘均霞, 陆引罡, 远红伟, 等. 玉米-大豆间作条件下作物根系对氮素的吸收利用. 华北农学报, 2008, 23(1): 173-175. | |
12 | Chen Y X, Zhou D W. The ecological effect of maize intercropping with alfalfa in the ecotone between agriculture and animal husbandry in northeast China. Ecology and Environment, 2003, 12(4): 467-468. |
陈玉香, 周道玮. 玉米—苜蓿间作的生态效应. 生态环境, 2003, 12(4): 467-468. | |
13 | Sun B R, Gao Y Z, Yang H J, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distrbution in a light chernozemic soil. Plant and Soil, 2019, 439(1/2): 145-161. |
14 | Li Q Z, Yu C B, Hu H S, et al. Difference of nitrogen utilization and distribution of mineral nitrogen in soil profile by competitive abilities of intercropping systems. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 777-785. |
李秋祝, 余常兵, 胡汉升, 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异. 植物营养与肥料学报, 2010, 16(4): 777-785. | |
15 | Li Y Y, Pang F H, Sun J H, et al. Effects of root barrier between intercropped maize and faba bean and nitrogen(N) application on the spatial distributions and morphology of crops’ roots. Journal of China Agricultural University, 2010, 15(4): 13-19. |
李玉英, 庞发虎, 孙建好, 等. 根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响. 中国农业大学学报, 2010, 15(4): 13-19. | |
16 | Qu J W, Gao J L, Wang Z G, et al. Genotype differences in root characteristics by maize and its relations to nitrogen uptake efficiency. Journal of Maize Sciences, 2016, 24(2): 72-78. |
屈佳伟, 高聚林, 王志刚, 等. 玉米根系特征的基因型差异及与氮吸收效率的关系. 玉米科学, 2016, 24(2): 72-78. | |
17 | Chai J K, Zhao G Q, Zhang L R, et al. Effects of nitrogen application and intercropping on dry matter accumulation, distribution and nitrogen absorption and utilization of oat. Chinese Journal of Grassland, 2023, 45(1): 88-98. |
柴继宽, 赵桂琴, 张丽睿, 等. 施氮及间作对燕麦干物质积累、分配和氮素吸收利用的影响. 中国草地学报, 2023, 45(1): 88-98. | |
18 | Feng X M, Gao X, Zang H D, et al. Intercropping effect and nitrogen transfer characteristics of oat-mungbean intercrop. Chinese Bulletin of Botany, 2023, 58(1): 122-131. |
冯晓敏, 高翔, 臧华栋, 等. 燕麦-绿豆间作效应及氮素转移特性. 植物学报, 2023, 58(1): 122-131. | |
19 | Yang H, Zhao Y J, Liu X J. Effects on photosynthesis characteristics and yield regulations in the alfalfa/oat intercropping. Acta Agrestia Sinica, 2023, 31(1): 187-195. |
杨航, 赵雅姣, 刘晓静. 紫花苜蓿/燕麦间作的光合特征及其对产量的调控效应. 草地学报, 2023, 31(1): 187-195. | |
20 | He J T, Ma X, Ju Z L, et al. Effects of intercropping between oat and broad bean on crop growth and yield in alpine region. Acta Agrestia Sinica, 2022, 30(9): 2514-2521. |
何纪桐, 马祥, 琚泽亮, 等. 高寒地区燕麦与蚕豆间作对作物生长发育及产量的影响. 草地学报, 2022, 30(9): 2514-2521. | |
21 | Ma H Y, Wang S, Yang Y D, et al. Intercropping of oat with mung bean, peanut, and soybean: Yield advantages, economic benefits and carbon footprints. Journal of China Agricultural University, 2021, 26(8): 23-32. |
马怀英, 王上, 杨亚东, 等. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8): 23-32. | |
22 | Hamdollah E, Ahmad G. Intercropping of maize (Zea mays) and cowpea (Vigna sinensis) as whole-crop forage: effect of different planting pattern on total dry matter production and maize forage quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2009, 37(2): 152-155. |
23 | Li D L. Nitrogen uptake and rhizosphere soil nutrient and microbial characteristies in corn/soybean intercropping system. Yinchuan: Ningxia University, 2022. |
李东利. 玉米/大豆间作体系氮素吸收及根际土壤养分和微生物特征的研究. 银川: 宁夏大学, 2022. | |
24 | Lv Y, Wu P T, Chen X L, et al. Resource competition in maize/soybean intercropping system. Chinese Journal of Applied Ecology, 2014, 25(1): 139-146. |
吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25(1): 139-146. | |
25 | Zhang X L. Effects of intercropping pattern of maize and adzuki bean on growth and yield of adzuki bean. Baoding: Hebei Agricultural University, 2019. |
张西亮. 玉米-小豆间作模式对小豆生长发育及产量的影响. 保定: 河北农业大学, 2019. | |
26 | Guo C Y, Wang W, De K J, et al. Effects of sowing methods on yield and quality of oats and forage peas. Acta Agrestia Sinica, 2022, 30(7): 1882-1890. |
郭常英, 王伟, 德科加, 等. 播种方式对燕麦和饲用豌豆饲草产量及品质的影响. 草地学报, 2022, 30(7): 1882-1890. | |
27 | Zhang L R, Chai J K, Zhao G Q, et al. Effect of nitrogen application on interspecific competition and yield of oat-pea intercropping system. Grassland and Turf, 2022, 42(4): 106-114. |
张丽睿, 柴继宽, 赵桂琴, 等. 施氮制度对燕麦/豌豆间作体系产量及种间竞争力的影响. 草原与草坪, 2022, 42(4): 106-114. | |
28 | Wang L L, Zhu Y Y, Yin W, et al. Competitiveness and yield response to belowground interaction and density in barley-pea intercropping system. Chinese Journal of Eco-Agriculture, 2016, 24(3): 265-273. |
王利立, 朱永永, 殷文, 等. 大麦/豌豆间作系统种间竞争力及产量对地下作用和密度互作的响应. 中国生态农业学报, 2016, 24(3): 265-273. | |
29 | Peng L B, Zhou J, Ma H Y, et al. Yield advantage and land utilization of oat and potato strip intercropping system. Journal of China Agricultural University, 2023, 28(3): 38-49. |
彭良斌, 周杰, 马怀英, 等. 燕麦与马铃薯带状间作产量优势及土地利用率. 中国农业大学学报, 2023, 28(3): 38-49. | |
30 | Niu Y N, Liu D M, Luo Z Z, et al. Characteristics of crop water consumption under maize/pea intercropping systems with different irrigation levels. Agricultural Research in the Arid Areas, 2018, 36(1): 83-88, 101. |
牛伊宁, 刘冬梅, 罗珠珠, 等. 不同供水水平对玉米/豌豆间作系统作物耗水特征的影响. 干旱地区农业研究, 2018, 36(1): 83-88, 101. | |
31 | Li Q S, Li J J, Ye J H, et al. Crop-yields of maize and legume under intercropping cultivation. Fujian Journal of Agricultural Sciences, 2020, 35(6): 582-590. |
李奇松, 李家俊, 叶江华, 等. 玉米/豆科作物间作系统中不同互作因子对群体产量的影响. 福建农业学报, 2020, 35(6): 582-590. | |
32 | Li W X, Li L, Sun J H, et al. Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Agriculture Ecosystems and Environment, 2005, 105(3): 483-491. |
33 | Pan X W, Tang C X, Wang G H, et al. Progress of study on adaptation mechanism of crop tolerance to low phosphorus. Journal of Jilin Agricultural University, 2005, 27(4): 434-441. |
潘相文, 唐才贤, 王光华, 等. 作物耐低磷适应机制研究进展. 吉林农业大学学报, 2005, 27(4): 434-441. | |
34 | Wang X Y, Gao Y Z. Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation. Chinese Science Bulletin, 2020, 65(Z1): 142-149. |
王新宇, 高英志. 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 2020, 65(Z1): 142-149. | |
35 | Qiu H. Effects of straw returning combined with phosphorus fertilizer on nutrient accumulation of maize and soil nitrogen and phosphorus fractions. Harbin: Northeast Agricultural University, 2023. |
邱鹤. 秸秆还田配施磷肥对玉米养分积累与土壤氮磷组分的影响. 哈尔滨: 东北农业大学, 2023. | |
36 | Wang A P, Jiang Y C, Feng Y, et al. Effects of nitrogen application and planting patterns on soil enzyme activity and nutrient content of dryland in Northern China. Acta Agriculturae Boreali-Sinica, 2023, 38(3): 130-138. |
王爱萍, 姜彧宸, 冯月, 等. 施氮与种植方式对北方旱作农田土壤酶活力及养分含量的影响. 华北农学报, 2023, 38(3): 130-138. | |
37 | Zhou L, Su L Z, Wang S R, et al. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867-1878. |
周龙, 苏丽珍, 王思睿, 等. 间作对红壤磷素吸附解吸平衡效应的影响. 中国生态农业学报, 2021, 29(11): 1867-1878. | |
38 | Yin Y P, Zhang Y Q, Shen Y H, et al. Characteristics of maize/soybean intercropping system about root traits and absorption of nitrogen and phosphorus nutrient. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2305-2310. |
尹元萍, 张雅琼, 申毓晗, 等. 玉米/大豆间作中大豆根系生长及氮磷养分吸收的特点. 西南农业学报, 2014, 27(6): 2305-2310. | |
39 | Yin F, Wang Q, Fu G Z, et al. Spatial distribution characteristics of soil phosphorus in a jujube-crop intercropping ecosystem. Journal of Henan Agricultural University, 2009, 43(4): 441-444. |
尹飞, 王群, 付国占, 等. 枣粮间作生态系统土壤磷的空间分布特性. 河南农业大学学报, 2009, 43(4): 441-444. | |
40 | Zhang L C, Tang L, Dong Y, et al. Effects of root interaction on nitrogen and phosphorus uptake and utilization in maize and soybean intercropping. Journal of Nanjing Agricultural University, 2016, 39(4): 611-618. |
张雷昌, 汤利, 董艳, 等. 根系互作对间作玉米大豆氮和磷吸收利用的影响. 南京农业大学学报, 2016, 39(4): 611-618. | |
41 | Xiao J X, Tang L, Zheng Y. Effects of N fertilization on yield and nutrient absorption in rape and faba bean intercropping system. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1468-1473. |
肖靖秀, 汤利, 郑毅. 氮肥用量对油菜//蚕豆间作系统作物产量及养分吸收的影响. 植物营养与肥料学报, 2011, 17(6): 1468-1473. | |
42 | Shi X W. Effects of Lycium barbarum L. and legume forages intercropping on water-saving and yield-increasing in the Yellow River irrigated region. Lanzhou: Gansu Agricultural University, 2018. |
史晓巍. 甘肃引黄灌区枸杞豆科牧草间作节水增产效应研究. 兰州: 甘肃农业大学, 2018. | |
43 | Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96(2): 314-322. |
44 | Zhao Y J, Liu X J, Wu Y, et al. Rhizosphere soil nutrients, enzyme activities and microbia community characteristics in legume-cereal intercropping system in Northwest China. Journal of Desert Research, 2020, 40(3): 219-228. |
赵雅姣, 刘晓静, 吴勇, 等. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征. 中国沙漠, 2020, 40(3): 219-228. | |
45 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
46 | Zhao Y J. Study on advantage of alfalfa/gramineae forage intercropping and mechanism of nitrogen efficiency and effect of soil microecological. Lanzhou: Gansu Agricultural University, 2020. |
赵雅姣. 紫花苜蓿/禾本科牧草间作优势及其氮高效机理和土壤微生态效应研究. 兰州: 甘肃农业大学, 2020. |
[1] | 马圆, 刘欢, 赵桂琴, 王敬龙, 张然, 姚瑞瑞. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 2024, 33(8): 145-158. |
[2] | 张昭, 伏莹莹, 孙浩文, 孙逢雪, 闫慧芳. 不同品种燕麦种子活力鉴定与耐贮藏性评价[J]. 草业学报, 2024, 33(6): 165-174. |
[3] | 李鸿飞, 周帮伟, 张淼, 施树楠, 李志坚. 不同燕麦品种在呼伦贝尔地区的引种适应性评价[J]. 草业学报, 2024, 33(4): 60-72. |
[4] | 慕平, 柴继宽, 苏玮娟, 章海龙, 赵桂琴. 燕麦不同组合正、反交杂种后代的表型及遗传参数分析[J]. 草业学报, 2024, 33(4): 73-86. |
[5] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[6] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
[7] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[8] | 罗颖, 李聪, 王沛, 田莉华, 汪辉, 周青平, 雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价[J]. 草业学报, 2024, 33(2): 164-184. |
[9] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
[10] | 张珈敏, 关皓, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 陈仕勇, 蒋永梅, 甘丽, 周青平, 杨丽雪. 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响[J]. 草业学报, 2024, 33(1): 169-181. |
[11] | 任春燕, 梁国玲, 刘文辉, 刘凯强, 段嘉蕾. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价[J]. 草业学报, 2023, 32(9): 116-129. |
[12] | 石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析[J]. 草业学报, 2023, 32(9): 130-142. |
[13] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
[14] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[15] | 王梓凡, 张晓庆, 钟志明, 权欣. 燕麦草捆和草块对彭波半细毛羊采食行为及生产性能的影响[J]. 草业学报, 2023, 32(5): 171-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||