草业学报 ›› 2024, Vol. 33 ›› Issue (10): 171-182.DOI: 10.11686/cyxb2023439
• 综合评述 • 上一篇
周青平1,2(), 胡晓炜1,2, 汪辉1,2, 陈有军1,2
收稿日期:
2023-11-17
修回日期:
2024-02-01
出版日期:
2024-10-20
发布日期:
2024-07-15
通讯作者:
周青平
作者简介:
Corresponding author. 周青平(1962-),男,甘肃宁县人,教授,博士。 E-mail: qpingzh@aliyun.com基金资助:
Qing-ping ZHOU1,2(), Xiao-wei HU1,2, Hui WANG1,2, You-jun CHEN1,2
Received:
2023-11-17
Revised:
2024-02-01
Online:
2024-10-20
Published:
2024-07-15
Contact:
Qing-ping ZHOU
摘要:
研究了燕麦作为粮饲兼用作物在全方位牢固粮食安全根基中的主要作用,着重分析了燕麦在大食物观、大资源观、大生态观和大市场观视域下,如何实现“藏粮于草”战略,以保障我国食物结构转型、多途径开发食物资源、生态与粮食安全兼顾发展。燕麦作为我国主推的重要粮饲兼用作物,其籽粒可作为主粮和功能性食品在保障粮食安全中发挥重要功能;燕麦草是反刍动物的优质饲草,可提升畜产品品质,缓解饲料粮压力,是构建多元化食物保障体系的重要方式。同时,燕麦由于喜冷凉和耐贫瘠的特性,在低中产田、农闲田以及天然资源环境相对匮乏的草原有巨大的发展潜力待充分挖掘。基于“藏粮于草”战略,将粮食安全与燕麦产业紧密结合,可全方位牢固我国粮食安全根基、增加对全域资源的开发利用,全面推进中国农业现代化的发展。
周青平, 胡晓炜, 汪辉, 陈有军. 燕麦在维护国家粮食安全中的重要作用[J]. 草业学报, 2024, 33(10): 171-182.
Qing-ping ZHOU, Xiao-wei HU, Hui WANG, You-jun CHEN. The important role of oat in reinforcing the foundation of food security[J]. Acta Prataculturae Sinica, 2024, 33(10): 171-182.
图2 中国燕麦主要生产区(a)及2020年各地饲用燕麦种植面积和干草产量(b)图2a依据自然资源部标准底图审图号GS(2016)1569绘制而成,底图无修改;b中饼图表示各地种植面积(万hm2),圆环图表示各地干草总产量(×103 t)。The Figure 2a is drawn according to the map content approval No. GS(2016)1569 of the Ministry of Natural Resources, with no revisions to the base map. b: Pie charts indicating the planting area in each region (×104 ha), circle diagrams showing total hay yield in each region (×103 t).
Fig.2 Major production area of oat in China (a), planting area and hay yield across China in 2020 (b)
1 | Liu Q. Adopt the big food view, big resources view, big ecology view, big market view and big economy view. Beijing Daily, 2023-6-26(10). |
刘奇. 牢固树立大食物观、大资源观、大市场观、大生态观、大节约观. 北京日报, 2023-6-26(10). | |
2 | Xinhua News Agency. Xi Jinping visited social welfare and social security members of the agricultural sector who attended the CPPCC session. http://www.news.cn/politics/leaders/2022-03/06/c_1128443977, 2022-03-06. |
新华社. 习近平看望参加政协会议的农业界社会福利和社会保障界委员. http://www.news.cn/politics/leaders/2022-03/06/c_1128443977, 2022-03-06. | |
3 | The Institute of Party History and Literature of the CPC Central Committee. Excerpts from Xi Jinping’s discussion on the work of agriculture, rural areas and farmers. Beijing: Central Party Literature Press, 2019. |
中共中央党史和文献研究院. 习近平关于“三农”工作论述摘编. 北京: 中央文献出版社, 2019. | |
4 | Ren C Z, Hu Y G. Oat science of China. Beijing: China Agriculture Press, 2013. |
任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013. | |
5 | Feng W H, Tong Y Q, Yang Y D, et al. Spatial-temporal evolution characteristics of global oat production and its enlightment to China. Journal of Triticeae Crops, 2022, 42(7): 902-910. |
冯文豪, 佟越强, 杨亚东, 等. 全球燕麦生产时空演变规律及对中国的启示. 麦类作物学报, 2022, 42(7): 902-910. | |
6 | Paudel D, Dhungana B, Caffe M, et al. A review of health-beneficial properties of oats. Foods, 2021, 10(11): 2591. |
7 | Peng C H, Chang H C, Yang M Y, et al. Oat attenuate non-alcoholic fatty liver and obesity via inhibiting lipogenesis in high fat-fed rat. Journal of Functional Foods, 2013, 5(1): 53-61. |
8 | The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2021: An updated summery. Chinese Circulation Journal, 2022, 37(6): 553-578. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要. 中国循环杂志, 2022, 37(6): 553-578. | |
9 | Tian S M, Kong X J. Research progress on molecular structure and biological functions of oat β-glucan. China Condiment, 2021, 46(12): 180-183. |
田思萌, 孔祥菊. 燕麦β-葡聚糖的分子结构特点及其生物学功能研究进展. 中国调味品, 2021, 46(12): 180-183. | |
10 | Xiang X S, Sun J Q, Ye M Y, et al. Effects of oat products on blood lipids level among population with marginal high blood cholesterol: A randomized, controlled, and parallel-designed trial. Acta Nutrimenta Sinica, 2019, 41(3): 242-247. |
向雪松, 孙建琴, 叶梦瑶, 等. 燕麦对血胆固醇边缘性升高人群血脂水平的影响: 一项随机对照研究. 营养学报, 2019, 41(3): 242-247. | |
11 | Hätönen K A, Similä M E, Virtamo J R, et al. Methodologic considerations in the measurement of glycemic index: Glycemic response to rye bread, oatmeal porridge, and mashed potato. The American Journal of Clinical Nutrition, 2006, 84(5): 1055-1061. |
12 | Tosh S M. Effects of oats on carbohydrate metabolism//In Oats nutrition and technology. New York, USA: John Wiley & Sons, Inc, 2013: 281-297. |
13 | Liatis S, Tsapogas P, Chala E, et al. The consumption of bread enriched with β-glucan reduces ldl-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes & Metabolism, 2009, 35(2): 115-120. |
14 | Ahmad M, Dar Z, Habib M. A review on oat (Avena sativa L.) as a dual-purpose crop. Scientific Research and Essays, 2014, 9(4): 52-59. |
15 | Decker E A, Rose D J, Stewart D. Processing of oats and the impact of processing operations on nutrition and health benefits. British Journal of Nutrition, 2014, 112: S58-S64. |
16 | Zwer P K. Oats. In Encyclopedia of grain science. Waltham, Massachusetts, USA: Elsevier Academic Press, 2004: 365-375. |
17 | Angelov A, Yaneva-Marinova T, Gotcheva V. Oats as a matrix of choice for developing fermented functional beverages. International Journal of Food Science and Technology, 2018, 55(7): 2351-2360. |
18 | Chen J. Future foods: Tasks and challenges. Food and Nutrition in China, 2022, 28(7): 5-6. |
陈坚. 未来食品: 任务与挑战. 中国食物与营养, 2022, 28(7): 5-6. | |
19 | Prosekov A, Babich O, Kriger O, et al. Functional properties of the enzyme-modified protein from oat bran. Food Bioscience, 2018, 24: 46-49. |
20 | Who, Fao, Unu. Protein and amino acid requirements in human nutrition-pubmed. World Health Organization Technical Report Series, 2007, 935: 1-265. |
21 | Heusala H, Sinkko T, Mogensen L, et al. Carbon footprint and land use of food products containing oat protein concentrate. Journal of Cleaner Production, 2020, 276: 122938. |
22 | Brückner-Gühmann M, Banovic M, Drusch S. Towards an increased plant protein intake: Rheological properties, sensory perception and consumer acceptability of lactic acid fermented, oat-based gels. Food Hydrocolloids, 2019, 96(11): 201-208. |
23 | Brückner-Gühmann M, Vasil’eva E, Culetu A, et al. Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. Journal of the Science of Food and Agriculture, 2019, 99(13): 5852-5857. |
24 | National Bureau of Statistics of China. Statistical communique of the People’s Republic of China on the 2022 national economic and social development. Beijing: China Statistics Press, 2023. |
国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报. 北京: 中国统计出版社, 2023. | |
25 | Lei S F. Pork consumption has entered a stable plateau. Farmers’ Daily, 2022-12-15(006). |
雷少斐. 猪肉消费进入稳定平台期. 农民日报, 2022-12-15(006). | |
26 | Yang C. Attaching importance to both grain and grass development pattern, ensure the national food safety strategy. Farmers’ Daily, 2023-02-13(006). |
杨春. 重视粮草兼顾发展格局 保障国家大食物安全战略. 农民日报, 2023-02-13(006). | |
27 | Zhang Y. The strategy of replacing grain feeding with forage feeding needs to be supported by technological innovation. Science and Technology Daily, 2023-03-29(02). |
张晔. “增草节粮”亟待科技创新提供有力支撑. 科技日报, 2023-03-29(02). | |
28 | National Bureau of Statistics of Rural Socio-Economic Survey Division. China rural statistical yearbook (2022). Beijing: China Statistics Press, 2022. |
国家统计局农村社会经济调查. 中国农村统计年鉴(2022). 北京: 中国统计出版社, 2022. | |
29 | Zhou Q P, Gou X L, Tian L H, et al. Performances of early and late maturing oat varieties in cold regions. Chinese Science Bulletin, 2018, 63(17): 1722-1730. |
周青平, 苟小林, 田莉华, 等. 寒冷区早晚熟燕麦品种的生产性能分析. 科学通报, 2018, 63(17): 1722-1730. | |
30 | Liu H H, Guo Y H, Zhang Q E, et al. Research progress of nutritive value assessment method of oat grass. Feed Research, 2019, 42(7): 110-113. |
刘欢欢, 郭雁华, 张巧娥, 等. 燕麦草营养价值评定方法的研究进展. 饲料研究, 2019, 42(7): 110-113. | |
31 | Jia S B, Tang J W, Wang X T. Three kinds of forages feeding test report for fattening sheep. Qinghai Prataculturae, 2019, 28(4): 21-23. |
贾顺斌, 唐俊伟, 王晓彤. 巨菌草等3种牧草育肥绵羊饲喂试验. 青海草业, 2019, 28(4): 21-23. | |
32 | Li Z Q. Application of high proportion of premium forage in dairy cow diet. China Dairy Cattle, 2014(Z2): 41-43. |
李志强. 高比例优质饲草应用于奶牛日粮探讨. 中国奶牛, 2014(Z2): 41-43. | |
33 | Xiao J X, Chen T Y, Alugongo G M, et al. Effect of the length of oat hay on growth performance, health status, behavior parameters and rumen fermentation of Holstein female calves. Metabolites, 2021, 11(12): 890. |
34 | Ma J F, Yu Y, Wang J D, et al. Effects of Oat grass, Sultan grass and Gao Dan grass silage on production performance and meat quality of Tan sheep. Feed Industry, 2018, 39(22): 26-32. |
马吉锋, 于洋, 王建东, 等. 燕麦草, 苏丹草, 高丹草青贮对滩羊生产性能及肉品质影响的研究. 饲料工业, 2018, 39(22): 26-32. | |
35 | Li H P, Guan H, Jia Z F, et al. Freeze-thaw condition limits the fermentation process and accelerates the aerobic deterioration of oat (Avena sativa) silage in the Qinghai-Tibet Plateau. Frontiers in Microbiology, 2022, 13: 944945. |
36 | Xu T W, Hu L Y, Zhao N, et al. Effect of oats hay supplementing on growth performance of yaks and Tibetan sheep during cold season. Southwest China Journal of Agricultural Science, 2017, 30(1): 205-208. |
徐田伟, 胡林勇, 赵娜, 等. 补饲燕麦青干草对牦牛和藏系绵羊冷季生长性能的影响. 西南农业学报, 2017, 30(1): 205-208. | |
37 | Peiretti P G, Miraglia N, Bergero D. Effects of oat or corn on the horse rations digestibility. Journal of Food Agriculture & Environment, 2011, 9(2): 268-270. |
38 | Winkler L R, Murphy K M, Hermes J C. Three hulless oat varieties show economic potential as organic layer feed grain. Renewable Agriculture and Food Systems, 2018, 33(5): 418-431. |
39 | Lopez-Bote C J, Sanz M, Rey A, et al. Lower lipid oxidation in the muscle of rabbits fed diets containing oats. Animal Feed Science and Technology, 1998, 70(1/2): 1-9. |
40 | Jiao H, Yang R X. Land and ocean agricultural: the new trend of agricultural modernization in China. Farmers’ Daily, 2022-03-24(008). |
焦宏, 杨瑞雪. 陆海农业:中国农业现代化的新趋向. 农民日报, 2022-03-24(008). | |
41 | Gao S Q, Wang H S, Duan R, et al. How to develop grass-based livestock husbandry in areas of low- and middle-yield fields. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 166-174. |
高树琴, 王竑晟, 段瑞, 等. 关于加大在中低产田发展草牧业的思考. 中国科学院院刊, 2020, 35(2): 166-174. | |
42 | Zhang L, Zhang F R, Jiang G H, et al. Potential improvement of medium low yielded farmland and guarantee of food safety in China. Research of Agricultural Modernization, 2005, 26(1): 22-25. |
张琳, 张凤荣, 姜广辉, 等. 我国中低产田改造的粮食增产潜力与食物安全保障. 农业现代化研究, 2005, 26(1): 22-25. | |
43 | Wu Y, Zhang W H, Chen M H, et al. Productive performance comparison of different oat varieties in Yangzhou region. Pratacultural Science, 2018, 35(7): 1728-1733. |
吴亚, 张卫红, 陈鸣晖, 等. 不同品种燕麦在扬州地区的生产性能. 草业科学, 2018, 35(7): 1728-1733. | |
44 | Zhou Y X, Yue X P, Wei Z W, et al. Development prospect of mixed planting of legume and gramineae forage in winter fallow field in the Yangtze-Huaihe region. Pratacultural Science, 2021, 38(2): 304-315. |
周雅欣, 乐祥鹏, 魏臻武, 等. 江淮地区冬闲田豆禾牧草混播生产模式的发展前景. 草业科学, 2021, 38(2): 304-315. | |
45 | Hou D L, Liu J N, Shi Y H, et al. Yield and economic benefit analysis of different grain-grass rotation patterns in northern Shanxi. Journal of Shanxi Agricultural Sciences, 2022, 50(12): 1662-1667. |
侯东来, 刘建宁, 石永红, 等. 晋北地区不同粮草轮作模式的产量及经济效益分析. 山西农业科学, 2022, 50(12): 1662-1667. | |
46 | Wang X X, Zhu D J, Li Y, et al. Screening of oat varieties in winter fallow field in south. Seed, 2016, 35(5): 112-114. |
王霞霞, 朱德建, 李岩, 等. 南方冬闲田饲用燕麦品种筛选的研究. 种子, 2016, 35(5): 112-114. | |
47 | Gao Y, Lin H L. The developmental status and potential of grass-based agriculture in the national economy. Acta Prataculturae Sinica, 2015, 24(1): 141-157. |
高雅, 林慧龙. 草业经济在国民经济中的地位、现状及其发展建议. 草业学报, 2015, 24(1): 141-157. | |
48 | Dong S K. Develop grassland resources in multiple ways to adapt to the changes of food structure. Beijing: Farmers’ Daily, 2022. |
董世魁. 顺应食物结构变化 多途径开发草原资源. 北京: 农民日报社, 2022. | |
49 | Ji W Q, Yang Z, Wang H, et al. Response of oat to drought stress at different growth stages. Chinese Journal of Grassland, 2021, 43(1): 58-67. |
姬文琴, 杨智, 汪辉, 等. 不同生育阶段燕麦对干旱胁迫的响应. 中国草地学报, 2021, 43(1): 58-67. | |
50 | Yang X, Jia P F, Hou Q Q, et al. Investigating the impacts of climate change on the production of crop and forage rotational fields in the agro-pastoral interlaced zone in Northern-China. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(1): 77-89. |
杨轩, 贾鹏飞, 侯青青, 等. 北方农牧交错带气候变化对粮草轮作生产的影响. 山西农业大学学报(自然科学版), 2022, 42(1): 77-89. | |
51 | Wang K W, He F, Yu Y, et al. Repairing effect of oat on saline-alkali land and its promotion suggestions in western of Jilin Province. Modern Agricultural Science and Technology, 2015(1): 214. |
王开伟, 何峰, 于勇, 等. 燕麦对吉林省西部盐碱地的修复作用及推广建议. 现代农业科技, 2015(1): 214. | |
52 | Zhang T T, Li L J, A L, et al. Intercropping patterns affecting soil enzyme activities in saline land and chernozem. Chinese Agricultural Science Bulletin, 2016, 32(24): 153-161. |
张婷婷, 李立军, 阿磊, 等. 牧草间作模式对盐碱化农田和黑土地土壤酶活性的影响. 中国农学通报, 2016, 32(24): 153-161. | |
53 | Xu S Y, He T, Wang X L, et al. Life cycle assessment of carbon footprint for oats. Journal of Triticeae Crops, 2019, 39(12): 1459-1467. |
徐淑娅, 贺婷, 王晓龙, 等. 基于生命周期评价法对燕麦碳足迹的研究. 麦类作物学报, 2019, 39(12): 1459-1467. | |
54 | Ma H Y, Wang S, Yang Y D, et al. Intercropping of oat with mung bean, peanut, and soybean: Yield advantages, economic benefits and carbon footprints. Journal of China Agricultural University, 2021, 26(8): 23-32. |
马怀英, 王上, 杨亚东, 等. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8): 23-32. | |
55 | Yang C, Hou F, Sun Y, et al. Oats hay supplementation to yak grazing alpine meadow improves carbon return to the soil of grassland ecosystem on the Qinghai-Tibet Plateau, China. Global Ecology and Conservation, 2020, 23: e01158. |
56 | National Animal Husbandry Services. Statistics of forage industry in China 2022. Beijing: China Agriculture Press, 2022. |
全国畜牧总站. 中国草业统计2022. 北京: 中国农业出版社, 2022. | |
57 | Ye X L, Gan Z, Wan Y, et al. Advances and perspectives in forage oat breeding. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
叶雪玲, 甘圳, 万燕, 等. 饲用燕麦育种研究进展与展望. 草业学报, 2023, 32(2): 160-177. | |
58 | Han Z L, Zhou Q P, Yan H B. Construction and seed production of oat seed breeding base in Qinghai Province. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2006, 36(6): 32-34. |
韩志林, 周青平, 颜红波. 青海省燕麦良种繁育基地建设及种子生产. 青海畜牧兽医杂志, 2006, 36(6): 32-34. | |
59 | Zhang Z R. Characteristics of the U.S. grass industry and alfalfa production//Proceedings of The Fifth China Alfalfa Industry Development Conference. Inner Mongolia: Chinese Grassland Society, 2013: 54-58. |
张自如. 美国草业的特点与苜蓿生产//第五届中国苜蓿发展大会论文集. 内蒙古: 中国草学会, 2013: 54-58. |
[1] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
[2] | 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究[J]. 草业学报, 2024, 33(9): 185-198. |
[3] | 米春娇, 洪流, 马馼, 毛培胜. 谷胱甘肽引发对老化燕麦种胚线粒体抗氧化特性的影响[J]. 草业学报, 2024, 33(9): 51-59. |
[4] | 马圆, 刘欢, 赵桂琴, 王敬龙, 张然, 姚瑞瑞. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 2024, 33(8): 145-158. |
[5] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
[6] | 桑瑞娟, 崔超杰, 何云, 张晓霞, 姚晋, 董春阳, 孙浩, 史莹华, 朱晓艳, 李德锋. 豫北地区18个秋播饲用燕麦品种抗倒伏特性及生产性能评价[J]. 草业学报, 2024, 33(8): 74-85. |
[7] | 张昭, 伏莹莹, 孙浩文, 孙逢雪, 闫慧芳. 不同品种燕麦种子活力鉴定与耐贮藏性评价[J]. 草业学报, 2024, 33(6): 165-174. |
[8] | 李鸿飞, 周帮伟, 张淼, 施树楠, 李志坚. 不同燕麦品种在呼伦贝尔地区的引种适应性评价[J]. 草业学报, 2024, 33(4): 60-72. |
[9] | 慕平, 柴继宽, 苏玮娟, 章海龙, 赵桂琴. 燕麦不同组合正、反交杂种后代的表型及遗传参数分析[J]. 草业学报, 2024, 33(4): 73-86. |
[10] | 冯琴, 何小莉, 王斌, 王腾飞, 倪旺, 马霞, 明雪花, 邓建强, 兰剑. 宁夏引黄灌区燕麦与箭筈豌豆的混播效果研究[J]. 草业学报, 2024, 33(3): 107-119. |
[11] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
[12] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[13] | 罗颖, 李聪, 王沛, 田莉华, 汪辉, 周青平, 雷映霞. 低氮胁迫下不同皮燕麦品种早期的响应研究及耐低氮性综合评价[J]. 草业学报, 2024, 33(2): 164-184. |
[14] | 王正, 李新, 张建贵, 柴继宽, 赵桂琴, 牛奎举. 外源褪黑素介导抗氧化和苯丙烷代谢提高燕麦叶斑病抗性的研究[J]. 草业学报, 2024, 33(10): 135-146. |
[15] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||