草业学报 ›› 2026, Vol. 35 ›› Issue (1): 1-12.DOI: 10.11686/cyxb2025087
• 研究论文 •
王喆1,2,3,4(
), 王镜2,5(
), 颉耀文3,4, 赵慧芳1,2, 校瑞香1,2, 宗萨才文求藏6
收稿日期:2025-03-20
修回日期:2025-04-21
出版日期:2026-01-20
发布日期:2025-11-13
通讯作者:
王镜
作者简介:E-mail: wang_jing1216@126.com基金资助:
Zhe WANG1,2,3,4(
), Jing WANG2,5(
), Yao-wen XIE3,4, Hui-fang ZHAO1,2, Rui-xiang XIAO1,2, Cai-wen-qiu-zang ZONGSA6
Received:2025-03-20
Revised:2025-04-21
Online:2026-01-20
Published:2025-11-13
Contact:
Jing WANG
摘要:
为深入了解三江源地区草地地上生物量的时空变化及其对气候变化的响应,本研究基于2003-2022年青海省15个生态气象监测站的地面观测数据及遥感反演的草地地上生物量数据,系统分析了草地地上生物量的空间分布、年际变化趋势及其对生长季气温和降水变化的响应规律。研究结果表明:1)生态站数据显示,各站点多年平均草地地上生物量为606.4~7545.8 kg·hm-2,东部和南部站点草地地上生物量较高,西北部较低;2003-2022年,大多数站点草地地上生物量呈增加趋势,其中囊谦站增幅最显著。2)遥感结果显示,研究区草地地上生物量整体呈东南高、西北低的空间格局,高生物量区域主要位于东部,低生物量区域集中在北部和西南部;近20年来草地地上生物量整体呈微弱增加趋势,其中超过80%的区域变化不显著,6.84%的区域呈显著增加趋势,主要分布于东部和南部地区。3)偏相关分析结果表明,研究区草地地上生物量与生长季气温、生长季降水均呈正相关关系,与降水的相关性为0.24,与气温的相关性为0.10,生长季降水为研究区草地地上生物量增加的主要因素,且草地地上生物量与气温显著正相关区域主要分布于东部,与降水显著正相关区域集中于西部和北部。研究结果可为三江源地区草地生态保护、资源管理及应对气候变化提供重要科学依据与决策支持。
王喆, 王镜, 颉耀文, 赵慧芳, 校瑞香, 宗萨才文求藏. 三江源地区草地地上生物量时空变化及其对气候变化的响应[J]. 草业学报, 2026, 35(1): 1-12.
Zhe WANG, Jing WANG, Yao-wen XIE, Hui-fang ZHAO, Rui-xiang XIAO, Cai-wen-qiu-zang ZONGSA. Spatio-temporal variation of grassland above-ground biomass and its response to climate change in the Three-River Source region[J]. Acta Prataculturae Sinica, 2026, 35(1): 1-12.
图1 三江源地区覆盖类型分布基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。Based on the standard map No. GS(2019)1822 of the standard map service website of the Ministry of Natural Resources, the base drawing boundary has not been modified.
Fig.1 Distribution of coverage types in the Three-River Source region
草地类型 Grassland type | 生态监测站点 Ecological monitoring stations |
|---|---|
| 高寒草甸Alpine meadow | 称多Chindu |
| 甘德Gande | |
| 曲麻莱Qumarleb | |
| 玛沁Maqin | |
| 河南Henan | |
| 玛多Maduo | |
| 泽库Zeku | |
| 囊谦Nangqên | |
| 杂多Zadoi | |
| 班玛Banma | |
| 久治Jiuzhi | |
| 达日Dari | |
| 高寒草原Alpine steppe | 同德Tongde |
| 沱沱河Tuotuo River | |
| 温性草原Temperate steppe | 兴海Xinghai |
表1 三江源地区生态监测站点的草地类型分类
Table 1 Classification of grassland types at the ecological monitoring stations in the Three-River Source region
草地类型 Grassland type | 生态监测站点 Ecological monitoring stations |
|---|---|
| 高寒草甸Alpine meadow | 称多Chindu |
| 甘德Gande | |
| 曲麻莱Qumarleb | |
| 玛沁Maqin | |
| 河南Henan | |
| 玛多Maduo | |
| 泽库Zeku | |
| 囊谦Nangqên | |
| 杂多Zadoi | |
| 班玛Banma | |
| 久治Jiuzhi | |
| 达日Dari | |
| 高寒草原Alpine steppe | 同德Tongde |
| 沱沱河Tuotuo River | |
| 温性草原Temperate steppe | 兴海Xinghai |
草地类型 Grassland type | 草地地上生物量遥感监测模型 Remote sensing monitoring model for AGB | 相关系数 Correlation coefficient | 显著性 Significance |
|---|---|---|---|
| 高寒草甸Alpine meadow | Y=13.37e4.75X | 0.825** | 0.000 |
| 高寒草原Alpine steppe | Y=28.31e2.71X | 0.778** | 0.000 |
| 温性草原Temperate steppe | Y=7.49e4.61X | 0.763** | 0.000 |
表2 不同草地类型地上生物量遥感监测模型
Table 2 Remote sensing monitoring model for above-ground biomass (AGB) of various grassland types
草地类型 Grassland type | 草地地上生物量遥感监测模型 Remote sensing monitoring model for AGB | 相关系数 Correlation coefficient | 显著性 Significance |
|---|---|---|---|
| 高寒草甸Alpine meadow | Y=13.37e4.75X | 0.825** | 0.000 |
| 高寒草原Alpine steppe | Y=28.31e2.71X | 0.778** | 0.000 |
| 温性草原Temperate steppe | Y=7.49e4.61X | 0.763** | 0.000 |
图2 2003-2022年生长季三江源地区生态监测站草地地上生物量分布特征
Fig.2 Spatial distribution of grassland above-ground biomass at ecological monitoring stations in the Three-River Source region during the growing seasons from 2003 to 2022
图3 基于遥感反演的2003-2022年三江源地区草地地上生物量分布
Fig.3 Spatial distribution of grassland above-ground biomass in the Three-River Source region from 2003 to 2022 drived from remote sensing
图4 2020-2022年监测站点实测草地地上生物量与模型估算地上生物量的关系MRE: 平均相对误差Mean relative error; RMSE: 均方根误差Root mean squared error.
Fig.4 Relationship between the measured above-ground biomass and the model estimated above-ground biomass at ecological monitoring stations from 2020 to 2022
图5 2003-2022年生长季三江源地区生态监测站草地地上生物量年际变化分布特征
Fig.5 Interannual variation of grassland above-ground biomass at ecological monitoring stations in the Three-River Source region during the growing seasons from 2003 to 2022
图6 基于遥感反演的2003-2022年三江源地区草地地上生物量变化率及变化类型
Fig.6 Rate and pattern of change in grassland above-ground biomass in the Three-River Source region from 2003 to 2022 drived from remote sensing
图7 2003-2022年生长季三江源地区生态监测站草地地上生物量与同期气温和降水的相关系数
Fig.7 Correlation coefficients between grassland above-ground biomass and concurrent temperature and precipitation at ecological monitoring stations in the Three-River Source region during the growing seasons from 2003 to 2022
图8 2003-2022年三江源地区草地AGB与生长季气温(a、b)、降水量(c、d)的偏相关系数及显著性分布
Fig.8 Partial correlation coefficients and significance levels between grassland above-ground biomass and growing season temperature (a, b) and precipitation (c, d) in the Three-River Source region from 2003 to 2022
| [1] | Adams J M, Faure H, Faure-Denard L, et al. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348(6303): 711-714. |
| [2] | Zhou W, Gang C C, Li J L, et al. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010. Acta Geographica Sinica, 2014, 69(1): 15-30. |
| 周伟, 刚成诚, 李建龙, 等. 1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应. 地理学报, 2014, 69(1): 15-30. | |
| [3] | Scurlock J M O, Asner G P, Gower S T. Worldwide historical estimates of leaf area index, 1932-2000. Office of Scientific & Technical Information Technical Reports, 2002, 77(4): 554-556. |
| [4] | Yang S X, Feng Q S, Meng B P, et al. Temporal and spatial dynamics of alpine grassland biomass in the Three-River Headwater region. Pratacultural Science, 2018, 35(5): 956-968. |
| 杨淑霞, 冯琦胜, 孟宝平, 等. 三江源地区高寒草地地上生物量时空动态变化. 草业科学, 2018, 35(5): 956-968. | |
| [5] | Akiyama T, Kawamura K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassland Science, 2007, 53(1): 1-17. |
| [6] | Zhao F, Xu B, Yang X C, et al. Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingol grassland of Northern China. Remote Sensing, 2014, 6(6): 5368-5386. |
| [7] | Xu D, Guo X L. Some insights on grassland health assessment based on remote sensing. Sensors, 2015, 15(2): 3070-3089. |
| [8] | Xu B, Yang X C, Tao W G, et al. MODIS-based remote-sensing monitoring of the spatiotemporal patterns of China’s grassland vegetation growth. International Journal of Remote Sensing, 2013, 34(11): 3867-3878. |
| [9] | Claverie M, Demarez V, Duchemin B, et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 2012, 124: 844-857. |
| [10] | Lai Z M, Lai R W, Xue X, et al. Estimation of aboveground biomass of different degraded alpine grassland based on vegetation coverage and height. Journal of Desert Research, 2019, 39(5): 127-134. |
| 赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算. 中国沙漠, 2019, 39(5): 127-134. | |
| [11] | Liu Y H, Cai Z L, Bao N S, et al. Research of grassland vegetation coverage and biomass estimation method based on major quadrat from UAV photogrammetry. Ecology and Environmental Sciences, 2018, 27(11): 2023-2032. |
| 刘艳慧, 蔡宗磊, 包妮沙, 等. 基于无人机大样方草地植被覆盖度及生物量估算方法研究. 生态环境学报, 2018, 27(11): 2023-2032. | |
| [12] | He H L, Ge R, Ren X L, et al. Reference carbon cycle dataset for typical Chinese forests via collocated observations and data assimilation. Scientific Data, 2021, 8: 42. |
| [13] | Zhao H F, Li X D, Zhang D, et al. Aboveground biomass in grasslands in Qinghai Province estimated from MODIS data and its influencing factors. Acta Prataculturae Sinica, 2020, 29(12): 5-16. |
| 赵慧芳, 李晓东, 张东, 等. 基于MODIS数据的青海省草地地上生物量估算及影响因素研究. 草业学报, 2020, 29(12): 5-16. | |
| [14] | Yao T D, Liu X D, Wang N L. The magnitude of climate change in the Tibetan Plateau region.Science Bulletin, 2000(1): 98-106. |
| 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题. 科学通报, 2000(1): 98-106. | |
| [15] | Liu J Y, Xu X L, Shao Q Q. The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters Region in Qinghai Province. Acta Geographica Sinica, 2008, 63(4): 364-376. |
| 刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376. | |
| [16] | Zhou W, Yang H, Huang L, et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 2017, 83: 303-313. |
| [17] | Rao P Z, Wang Y C, Wang F. Analysis on the NDVI change and influence factors of vegetation cover in the Three-River Headwaters region. Acta Agrestia Sinica, 2021, 29(3): 572-582. |
| 饶品增, 王义成, 王芳. 三江源植被覆盖区NDVI变化及影响因素分析. 草地学报, 2021, 29(3): 572-582. | |
| [18] | Ning X C, Yang M X, Cao W Q, et al. Spatio-temporal pattern of vegetation coverage and its climate driving mechanism in the Three Rivers Headwaters region from 2000-2022. Bulletin of Surveying and Mapping, 2024(12): 70-76. |
| 宁晓春, 杨明新, 曹文强, 等. 2000-2022年三江源植被覆盖度时空变化格局及其气候驱动机制. 测绘通报, 2024(12): 70-76. | |
| [19] | Zuo C, Wang J B, Zhang X J, et al. Changes and influencing factors of vegetation net primary productivity in the Sanjiangyuan National Park. Acta Ecologica Sinica, 2022, 42(14): 5559-5573. |
| 左婵, 王军邦, 张秀娟, 等. 三江源国家公园植被净初级生产力变化趋势及影响因素. 生态学报, 2022, 42(14): 5559-5573. | |
| [20] | Zhao H F, Cao X Y. Vegetation cover changes and its climate driving in Three-River-Source National Park. Plateau Meteorology, 2022, 41(2): 328-337. |
| 赵慧芳, 曹晓云. 三江源国家公园植被覆盖时空变化及其气候驱动因素. 高原气象, 2022, 41(2): 328-337. | |
| [21] | Han B H, Zhou B R, Zhao H H, et al. Analysis of spatiotemporal variation of grassland vegetation and its impact factors over Three-River Resource region. Chinese Journal of Grassland, 2020, 42(3): 77-85. |
| 韩炳宏, 周秉荣, 赵恒和, 等. 三江源区草地植被时空变化及其影响因子分析. 中国草地学报, 2020, 42(3): 77-85. | |
| [22] | Liang T G, Yang S X, Feng Q S, et al. Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters region, China. Remote Sensing of Environment, 2016, 186: 164-172. |
| [23] | Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 2001, 45(4): 184-190. |
| [24] | Wang J B, Wang J W, Ye H, et al. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000-2012). China Scientific Data, 2017, 2(1): 73-80, 205-212. |
| 王军邦, 王居午, 叶辉, 等. 2000-2012年全国气温和降水1 km网格空间插值数据集. 中国科学数据, 2017, 2(1): 73-80, 205-212. | |
| [25] | Dong T F, Liu J G, Shang J L, et al. Assessing the impact of climate variability on cropland productivity in the Canadian Prairies using time series MODIS FAPAR. Remote Sensing, 2016, 8(4): 281. |
| [26] | Li X, Liu X M, Sun B, et al. Machine learning-based assessment of grassland aboveground biomass in Gansu Province. Pratacultural Science, 2024, 41(2): 297-307. |
| 李霞, 刘兴明, 孙斌, 等. 基于机器学习算法的甘肃省草原地上生物量. 草业科学, 2024, 41(2): 297-307. | |
| [27] | Cao X Y, Zhu C X, Chen G Q, et al. Surface greenness change and topographic differentiation over Qaidam Basin from 2000 to 2021. Ecology and Environmental Sciences, 2022, 31(6): 1080-1090. |
| 曹晓云, 祝存兄, 陈国茜, 等. 2000-2021年柴达木盆地地表绿度变化及地形分异研究. 生态环境学报, 2022, 31(6): 1080-1090. | |
| [28] | Xu J H. Mathematical methods in contemporary geography (third edition). Beijing: Higher Education Press, 2017: 133-138. |
| 徐建华. 现代地理学中的数学方法(第3版). 北京: 高等教育出版社, 2017: 133-138. | |
| [29] | Liu J, Ji Y H, Zhou G S, et al. Temporal and spatial variations of net primary productivity (NPP) and its climate driving effect in the Qinghai-Tibet Plateau, China from 2000 to 2020. Chinese Journal of Applied Ecology, 2022, 33(6): 1533-1538. |
| 刘杰, 汲玉河, 周广胜, 等. 2000-2020年青藏高原植被净初级生产力时空变化及其气候驱动作用. 应用生态学报, 2022, 33(6): 1533-1538. | |
| [30] | Shao Q Q, Fan J W, Liu J Y, et al. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region. Acta Geographica Sinica, 2016, 71(1): 3-20. |
| 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估. 地理学报, 2016, 71(1): 3-20. | |
| [31] | Zhang Y X, Fan J W, Cao W, et al. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three River Headwater region from 2006 to 2013. Acta Prataculturae Sinica, 2017, 26(10): 10-19. |
| 张雅娴, 樊江文, 曹巍, 等. 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应. 草业学报, 2017, 26(10): 10-19. | |
| [32] | Liang D L, Tang H P. Analysis of vegetation changes and water temperature driving factors in two alpine grasslands on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2022, 42(1): 287-300. |
| 梁大林, 唐海萍. 青藏高原两种高寒草地植被变化及其水温驱动因素分析. 生态学报, 2022, 42(1): 287-300. | |
| [33] | Gao X X, Dong S K, Li S, et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecological Indicators, 2020, 112: 106114. |
| [34] | Zeng N, Ren X L, He H L, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecological Indicators, 2019, 102: 479-487. |
| [35] | Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological Indicators, 2021, 131: 108223. |
| [36] | Chen F H, Xie T T, Yang Y J, et al. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming. Scientia Sinica Terrae, 2023, 53(6): 1246-1262. |
| 陈发虎, 谢亭亭, 杨钰杰, 等. 我国西北干旱区“暖湿化”问题及其未来趋势讨论. 中国科学: 地球科学, 2023, 53(6): 1246-1262. | |
| [37] | Xu X L, Wang L, Li J, et al. Analysis of the grassland restoration trend and degradation situation in the “Three-River Headwaters” region since the implementation of the ecological project. Journal of Geo-information Science, 2017, 19(1): 50-58. |
| 徐新良, 王靓, 李静, 等. 三江源生态工程实施以来草地恢复态势及现状分析. 地球信息科学学报, 2017, 19(1): 50-58. | |
| [38] | Xie Q L, Yang X, Hao L N. Spatio-temporal variation of vegetation cover and its driving factors in Three-River Headwaters region during 2001-2020. Bulletin of Soil and Water Conservation, 2022, 42(5): 202-212. |
| 谢绮丽, 杨鑫, 郝利娜. 2001-2020年三江源区植被覆盖时空变化特征及其影响因素. 水土保持通报, 2022, 42(5): 202-212. | |
| [39] | Gao S Q, Dong G T, Jiang X H, et al. Analysis of vegetation coverage changes and natural driving factors in the Three-River Headwaters region based on geographical detector. Research of Soil and Water Conservation, 2022, 29(4): 336-343. |
| 高思琦, 董国涛, 蒋晓辉, 等. 基于地理探测器的三江源植被变化及自然驱动因子分析. 水土保持研究, 2022, 29(4): 336-343. | |
| [40] | Dong G Y, Fan L, Fensholt R, et al. Asymmetric response of primary productivity to precipitation anomalies in Southwest China. Agricultural and Forest Meteorology, 2023, 331: 109350. |
| [41] | Zeng N, Ren X L, He H L, et al. Spatial-temporal dynamics of the grassland aboveground biomass and its association with climate changes in the Three River Source National Park. Acta Ecologica Sinica, 2023, 43(3): 1175-1184. |
| 曾纳, 任小丽, 何洪林, 等. 三江源国家公园草地地上生物量时空动态及其气候影响. 生态学报, 2023, 43(3): 1175-1184. | |
| [42] | Cong N, Shen M G, Yang W, et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 2017, 61(8): 1433-1444. |
| [1] | 张宁, 王金牛, 罗栋梁, 张林, 徐波, 吴彦. 季节性雪被厚度对高山草甸4种优势晚花植物生物量分配的影响[J]. 草业学报, 2025, 34(2): 67-80. |
| [2] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
| [3] | 王鹏, 金正, 余婷, 秦康强, 桑新亚, 陶建平, 罗唯学. 预测姜黄属植物在中国当前和未来气候情景下的潜在分布区变化[J]. 草业学报, 2024, 33(10): 14-27. |
| [4] | 杨志贵, 张建国, 李锦荣, 于红妍, 常丽, 宜树华, 吕燕燕, 张玉琢, 孟宝平. 内蒙古温性草原草地类型近20年时空动态变化研究[J]. 草业学报, 2023, 32(9): 1-16. |
| [5] | 张慧龙, 杨秀春, 杨东, 陈昂, 张敏. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023, 32(8): 1-13. |
| [6] | 李芳, 王广军, 杜海波, 李萌, 梁四海, 彭红明. 融合MODIS和Landsat数据的青海湖流域典型区NDVI重构与年内最大值变化分析[J]. 草业学报, 2023, 32(8): 28-39. |
| [7] | 李紫晶, 高翠萍, 王忠武, 韩国栋. 中国草地固碳减排研究现状及其建议[J]. 草业学报, 2023, 32(2): 191-200. |
| [8] | 李佳慧, 黄麟, 樊江文. 中国草原生态价值及时空动态格局[J]. 草业学报, 2023, 32(12): 1-13. |
| [9] | 修炀景, 侯蒙京, 田骄阳, 梁天刚, 冯琦胜. 基于土地利用/覆盖的甘肃省景观生态风险时空变化特征[J]. 草业学报, 2023, 32(1): 1-15. |
| [10] | 赵翊含, 侯蒙京, 冯琦胜, 高宏元, 梁天刚, 贺金生, 钱大文. 基于Landsat 8和随机森林的青海门源天然草地地上生物量遥感估算[J]. 草业学报, 2022, 31(7): 1-14. |
| [11] | 范晓敏, 井新, 肖博文, 马小亮, 贺金生. 气候和土地利用变化共同驱动青海海南、海北州生态系统服务的时空变化[J]. 草业学报, 2022, 31(12): 17-30. |
| [12] | 李颖, 吴静, 李纯斌, 秦格霞. 2003-2018年青藏高原草地的地表层土壤热通量时空变化[J]. 草业学报, 2022, 31(11): 1-14. |
| [13] | 金哲人, 冯琦胜, 王瑞泾, 梁天刚. 基于MODIS数据与机器学习的青藏高原草地地上生物量研究[J]. 草业学报, 2022, 31(10): 1-17. |
| [14] | 张仁平, 郭靖, 马晓芳, 郭伟勇. 基于MODIS数据的新疆草地物候提取方法及变化趋势分析[J]. 草业学报, 2022, 31(1): 1-12. |
| [15] | 郭文慧, 顾润源, 丁锋. 蒲公英和车前草在山东境内的春季物候特征及对气候变化的响应[J]. 草业学报, 2021, 30(12): 27-38. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||