Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (12): 39-48.DOI: 10.11686/cyxb2021243

Previous Articles     Next Articles

Effects of different mixed planting ratios on vegetation and soil characteristics of sown pasture in the Sanjiangyuan region

Wen LI1,2(), Ting-hu WEI3, Yongcuobazhan3, Cairentaci3, Yu-hai ZHOU3, Yan-ping ZHANG1(), Wen-hao LI1, Wei-xing GUO1   

  1. 1.Qinghai Academy of Animal and Veterinary Sciences,Academy of Animal and Veterinary Sciences,Qinghai University,Xining 810016,China
    2.Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau,Xining 810016,China
    3.Yushu Livestock and Veterinary Workstation,Yushu 815000,China
  • Received:2021-06-17 Revised:2021-08-31 Online:2021-11-11 Published:2021-11-11
  • Contact: Yan-ping ZHANG

Abstract:

Establishing pastures by cultivation and sowing a mixture of perennial grass species is an effective measure to restore degraded grassland in the black soil zone of the Sanjiangyuan region. However, the changes in vegetation and soil nutrient characteristics under different mixed planting ratios are still unclear. Therefore, in the current study, Elymus nutansFestuca sinensis and Poa pratensis cv. Qinghai were used to establish mixed swards at the rates of 1∶1∶1 (M4), 2∶1∶1 (M5), 1∶2∶1 (M6), 1∶1∶2 (M7), 2∶2∶1 (M8), 2∶1∶2 (M9) and 1∶2∶2 (M10) (the seed mixture ratios were calculated by weight of seed). A monoculture of each component species was used as the control. The monoculture seeding rates of E. nutansF. sinensis and P. pratensis cv. Qinghai were 30, 20 and 10 kg·ha-1, respectively. We measured the differences in productivity, species diversity, the transgressive overyielding effect, net effect of biodiversity (composed of a complementarity effect and a selection effect) and soil nutrients in the different mixed planting ratios. The multi-criteria decision model TOPSIS was used for multivariate data evaluation to identify the best performing mixed planting ratio. It was found that aboveground biomass in the all seven mixed planting treatments were significantly higher than in the F. sinensis and P. pratensis cv. Qinghai monoculture treatments, but significantly lower than in the monoculture of E. nutans. The highest aboveground biomass among the mixed swards was found in the M5, M8, M9 and M10 treatments. However, there was no significant difference in underground biomass among the seven mixed species swards sown. In the mixed treatments, only M5, M8, M9 and M10 treatments had over yielding, which ranged from 40.4-71.1 g·m–2. The net effect of biodiversity of M4 and M6 treatments were all less than 0, indicating that species competition in the community led to a decrease of community yield. However, the net effect of biodiversity of M7-M10 treatments were all greater than 0, indicating that the niche complementarity of species led to an increase of community yield. In the M8 and M9 treatments, the complementary and selection effects jointly contributed to the over yielding, while in M5 and M10 treatments, only the complementary effect was important and dominated the over yielding. The highest values of the content of organic matter, total nitrogen, total phosphorus, available phosphorus and available potassium in the topsoil were found in the M6, M7 and M10 treatments. The multivariate data evaluation with the TOPSIS model showed that the M10 treatment not only maintained high productivity and transgressive over yielding, but also significantly improved the soil nutrient status. This mixture is therefore recommended for the establishment of sown pasture in the Sanjiangyuan region.

Key words: artificial grassland, mixed planting ratio, productivity, transgressive overyielding effect, soil nutrients, Sanjiangyuan region