Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (9): 28-39.DOI: 10.11686/cyxb2023388
Previous Articles Next Articles
Yang-yi-dan HE1(), Chang-ming CHEN1, Xiao-xia HUANG2, Guo-mei SHI1, Ke-jian HE1()
Received:
2023-10-18
Revised:
2023-12-04
Online:
2024-09-20
Published:
2024-06-20
Contact:
Ke-jian HE
Yang-yi-dan HE, Chang-ming CHEN, Xiao-xia HUANG, Guo-mei SHI, Ke-jian HE. A study of the relationship between plant functional traits and environmental factors in the alpine meadows of western Sichuan[J]. Acta Prataculturae Sinica, 2024, 33(9): 28-39.
项目Item | 类型ⅠType Ⅰ | 类型ⅡType Ⅱ | 类型Ⅲ Type Ⅲ |
---|---|---|---|
海拔Elevation (m) | 3863.80±87.80 | 4054.10±81.40 | 3846.00±280.80 |
坡度Slope (°) | 8.80±2.70 | 11.27±2.35 | 11.75±3.90 |
坡向转换指数Transformation index of aspect | 0.53±0.13 | 0.73±0.08 | 0.43±0.19 |
干扰指数Disturbance index | 39.20±3.70 | 34.40±2.00 | 27.40±6.50 |
降水量Precipitation (mm) | 408.64±16.89 | 319.18±20.49 | 327.69±39.86 |
气温Temperature (℃) | 10.23±0.37 | 10.38±0.38 | 11.40±1.35 |
相对湿度Humidity (%) | 52.94±0.88 | 53.94±1.58 | 55.26±4.67 |
日照时数Sunshine-hour (h) | 860.29±19.56 | 879.19±29.47 | 797.68±83.80 |
优势物种(平均盖度) Dominant species (average coverage) | 线型嵩草K. pygmaea var. filiculmis (6.27%)、西南委陵菜P. fulgens (8.45%)、银莲花A. rockii (9.09%)、嵩草K. myosuroides (8.27%) | 高山嵩草K. pygmaea (15.00%)、高原嵩草K. pusilla (9.67%)、嵩草K. myosuroides (7.27%)、狭叶委陵菜P. stenophylla (7.33%) | 羊茅Festuca spp. (3.50%)、华扁穗草B. sinocompressus (22.00%)、川滇雀儿豆C. polystichoides (5.75%) |
Table 1 Status of sampling sites and dominant species in the meadow community
项目Item | 类型ⅠType Ⅰ | 类型ⅡType Ⅱ | 类型Ⅲ Type Ⅲ |
---|---|---|---|
海拔Elevation (m) | 3863.80±87.80 | 4054.10±81.40 | 3846.00±280.80 |
坡度Slope (°) | 8.80±2.70 | 11.27±2.35 | 11.75±3.90 |
坡向转换指数Transformation index of aspect | 0.53±0.13 | 0.73±0.08 | 0.43±0.19 |
干扰指数Disturbance index | 39.20±3.70 | 34.40±2.00 | 27.40±6.50 |
降水量Precipitation (mm) | 408.64±16.89 | 319.18±20.49 | 327.69±39.86 |
气温Temperature (℃) | 10.23±0.37 | 10.38±0.38 | 11.40±1.35 |
相对湿度Humidity (%) | 52.94±0.88 | 53.94±1.58 | 55.26±4.67 |
日照时数Sunshine-hour (h) | 860.29±19.56 | 879.19±29.47 | 797.68±83.80 |
优势物种(平均盖度) Dominant species (average coverage) | 线型嵩草K. pygmaea var. filiculmis (6.27%)、西南委陵菜P. fulgens (8.45%)、银莲花A. rockii (9.09%)、嵩草K. myosuroides (8.27%) | 高山嵩草K. pygmaea (15.00%)、高原嵩草K. pusilla (9.67%)、嵩草K. myosuroides (7.27%)、狭叶委陵菜P. stenophylla (7.33%) | 羊茅Festuca spp. (3.50%)、华扁穗草B. sinocompressus (22.00%)、川滇雀儿豆C. polystichoides (5.75%) |
状况Status | 干扰类型Disturbance types | 干扰程度Disturbance degree | 赋分Disturbance score |
---|---|---|---|
1 | 仅有旅游或放牧Tourism or grazing | 轻Light | 25 |
2 | 仅有旅游或放牧Tourism or grazing | 强Heavy | 50 |
3 | 同时存在旅游+放牧Tourism and grazing | 轻Light | 75 |
4 | 同时存在旅游+放牧Tourism and grazing | 强Heavy | 100 |
Table 2 The scoring criteria for disturbance status
状况Status | 干扰类型Disturbance types | 干扰程度Disturbance degree | 赋分Disturbance score |
---|---|---|---|
1 | 仅有旅游或放牧Tourism or grazing | 轻Light | 25 |
2 | 仅有旅游或放牧Tourism or grazing | 强Heavy | 50 |
3 | 同时存在旅游+放牧Tourism and grazing | 轻Light | 75 |
4 | 同时存在旅游+放牧Tourism and grazing | 强Heavy | 100 |
属性 Traits | 平均值±标准误 Mean±standard error | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
植株高度Vegetation height (cm) | 4.56±0.528 | 2.89 | 0.67 | 12.34 | 63.25 |
比根长Specific root length (cm·g-1) | 44.94±7.216 | 39.53 | 6.47 | 199.76 | 87.95 |
茎比例Stem mass fraction | 0.02±0.003 | 0.02 | 0.00 | 0.06 | 93.16 |
叶比例Leaf mass fraction | 0.04±0.001 | 0.02 | 0.01 | 0.08 | 48.04 |
繁殖器官比例Reproductive organ mass fraction | 0.01±0.010 | 0.00 | 0.00 | 0.03 | 83.12 |
比叶面积Specific leaf area (cm2·g-1) | 39.90±4.408 | 24.15 | 7.08 | 119.94 | 60.52 |
叶干物质含量 Leaf dry matter content (mg·g-1) | 0.06±0.005 | 0.03 | 0.01 | 0.14 | 56.76 |
茎干物质含量 Stem dry matter content (mg·g-1) | 0.11±0.172 | 0.08 | 0.00 | 0.34 | 75.81 |
繁殖器官干物质含量Reproductive organ dry matter content (mg·g-1) | 0.12±0.048 | 0.08 | 0.03 | 0.28 | 64.46 |
植株个体生物量Individual biomass (g·plant-1) | 1.06±0.136 | 0.94 | 0.11 | 3.55 | 88.56 |
植株个体地上生物量Individual aboveground biomass (g·plant-1) | 0.33±0.022 | 0.27 | 0.04 | 1.13 | 81.28 |
植株个体地下生物量Individual underground biomass (g·plant-1) | 0.74±0.015 | 0.75 | 0.07 | 2.92 | 101.52 |
根干物质含量Root dry matter content (mg·g-1) | 0.23±0.014 | 0.12 | 0.00 | 0.45 | 51.17 |
根冠比Root-shoot ratio | 2.48±0.331 | 1.82 | 0.53 | 7.82 | 73.36 |
Table 3 The characteristics of plant functional traits
属性 Traits | 平均值±标准误 Mean±standard error | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
植株高度Vegetation height (cm) | 4.56±0.528 | 2.89 | 0.67 | 12.34 | 63.25 |
比根长Specific root length (cm·g-1) | 44.94±7.216 | 39.53 | 6.47 | 199.76 | 87.95 |
茎比例Stem mass fraction | 0.02±0.003 | 0.02 | 0.00 | 0.06 | 93.16 |
叶比例Leaf mass fraction | 0.04±0.001 | 0.02 | 0.01 | 0.08 | 48.04 |
繁殖器官比例Reproductive organ mass fraction | 0.01±0.010 | 0.00 | 0.00 | 0.03 | 83.12 |
比叶面积Specific leaf area (cm2·g-1) | 39.90±4.408 | 24.15 | 7.08 | 119.94 | 60.52 |
叶干物质含量 Leaf dry matter content (mg·g-1) | 0.06±0.005 | 0.03 | 0.01 | 0.14 | 56.76 |
茎干物质含量 Stem dry matter content (mg·g-1) | 0.11±0.172 | 0.08 | 0.00 | 0.34 | 75.81 |
繁殖器官干物质含量Reproductive organ dry matter content (mg·g-1) | 0.12±0.048 | 0.08 | 0.03 | 0.28 | 64.46 |
植株个体生物量Individual biomass (g·plant-1) | 1.06±0.136 | 0.94 | 0.11 | 3.55 | 88.56 |
植株个体地上生物量Individual aboveground biomass (g·plant-1) | 0.33±0.022 | 0.27 | 0.04 | 1.13 | 81.28 |
植株个体地下生物量Individual underground biomass (g·plant-1) | 0.74±0.015 | 0.75 | 0.07 | 2.92 | 101.52 |
根干物质含量Root dry matter content (mg·g-1) | 0.23±0.014 | 0.12 | 0.00 | 0.45 | 51.17 |
根冠比Root-shoot ratio | 2.48±0.331 | 1.82 | 0.53 | 7.82 | 73.36 |
环境因子 Environmental factors | 平均值±标准误 Mean±standard error | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
海拔Elevation (m) | 3956.60±63.201 | 346.17 | 3292.00 | 4544.00 | 8.75 |
坡度Slope (°) | 10.43±1.582 | 8.66 | 0.00 | 30.00 | 83.05 |
坡向转换指数Transformation of aspect | 0.62±0.067 | 0.37 | 0.00 | 1.00 | 60.15 |
干扰指数Disturbance index | 35.23±1.924 | 10.54 | 13.50 | 60.00 | 29.91 |
降水量Precipitation (mm) | 353.12±14.869 | 81.44 | 239.01 | 501.19 | 23.06 |
气温Temperature (℃) | 10.46±0.287 | 1.57 | 8.09 | 15.30 | 15.03 |
相对湿度Humidity (%) | 53.75±1.010 | 5.53 | 48.12 | 69.26 | 10.30 |
日照时数Sunshine-hour (h) | 861.39±19.466 | 106.62 | 564.45 | 999.69 | 12.38 |
Table 4 The characteristics of environmental factors
环境因子 Environmental factors | 平均值±标准误 Mean±standard error | 标准偏差 Standard deviation | 最小值 Minimum | 最大值 Maximum | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
海拔Elevation (m) | 3956.60±63.201 | 346.17 | 3292.00 | 4544.00 | 8.75 |
坡度Slope (°) | 10.43±1.582 | 8.66 | 0.00 | 30.00 | 83.05 |
坡向转换指数Transformation of aspect | 0.62±0.067 | 0.37 | 0.00 | 1.00 | 60.15 |
干扰指数Disturbance index | 35.23±1.924 | 10.54 | 13.50 | 60.00 | 29.91 |
降水量Precipitation (mm) | 353.12±14.869 | 81.44 | 239.01 | 501.19 | 23.06 |
气温Temperature (℃) | 10.46±0.287 | 1.57 | 8.09 | 15.30 | 15.03 |
相对湿度Humidity (%) | 53.75±1.010 | 5.53 | 48.12 | 69.26 | 10.30 |
日照时数Sunshine-hour (h) | 861.39±19.466 | 106.62 | 564.45 | 999.69 | 12.38 |
项目Item | VH | SRL | SMF | LMF | RPMF | SLA | LDMC | IB | IAGB | IUGB | RDMC | SDMC | RPDMC | RSR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VH | 1.000 | 0.474 | 0.028 | 0.000 | 0.000 | 0.188 | 0.019 | 0.041 | 0.012 | 0.223 | 0.014 | 0.002 | 0.012 | 0.454 |
SRL | 0.136 | 1.000 | 0.192 | 0.071 | 0.086 | 0.050 | 0.346 | 0.262 | 0.609 | 0.200 | 0.124 | 0.633 | 0.229 | 0.444 |
SMF | 0.402 | 0.245 | 1.000 | 0.004 | 0.001 | 0.001 | 0.708 | 0.356 | 0.002 | 0.941 | 0.953 | 0.000 | 0.440 | 0.002 |
LMF | 0.664 | 0.335 | 0.508 | 1.000 | 0.002 | 0.007 | 0.000 | 0.034 | 0.001 | 0.253 | 0.116 | 0.065 | 0.124 | 0.130 |
RPMF | 0.674 | 0.319 | 0.584 | 0.542 | 1.000 | 0.240 | 0.836 | 0.611 | 0.045 | 0.564 | 0.816 | 0.000 | 0.000 | 0.004 |
SLA | 0.247 | 0.362 | 0.575 | 0.483 | 0.221 | 1.000 | 0.031 | 0.119 | 0.018 | 0.208 | 0.159 | 0.089 | 0.551 | 0.624 |
LDMC | 0.425 | 0.178 | 0.071 | 0.613 | 0.039 | 0.394 | 1.000 | 0.000 | 0.011 | 0.001 | 0.000 | 0.486 | 0.193 | 0.049 |
IB | 0.376 | -0.212 | 0.175 | 0.388 | 0.097 | 0.291 | 0.606 | 1.000 | 0.000 | 0.000 | 0.003 | 0.099 | 0.051 | 0.038 |
IAGB | 0.453 | -0.097 | 0.538 | 0.576 | 0.368 | 0.428 | 0.458 | 0.830 | 1.000 | 0.000 | 0.068 | 0.003 | 0.024 | 0.409 |
IUGB | 0.229 | -0.241 | 0.014 | 0.216 | -0.110 | 0.236 | 0.588 | 0.956 | 0.693 | 1.000 | 0.001 | 0.419 | 0.167 | 0.001 |
RDMC | 0.445 | 0.287 | -0.011 | 0.293 | 0.044 | 0.264 | 0.755 | 0.526 | 0.338 | 0.572 | 1.000 | 0.244 | 0.017 | 0.007 |
SDMC | 0.533 | 0.091 | 0.737 | 0.342 | 0.607 | 0.316 | 0.132 | 0.307 | 0.517 | 0.153 | 0.220 | 1.000 | 0.123 | 0.085 |
RPDMC | 0.452 | 0.226 | 0.146 | 0.287 | 0.604 | 0.113 | 0.244 | 0.359 | 0.410 | 0.259 | 0.433 | 0.288 | 1.000 | 0.762 |
RSR | -0.142 | -0.145 | -0.534 | -0.283 | -0.513 | -0.093 | 0.363 | 0.381 | -0.156 | 0.590 | 0.480 | -0.319 | -0.058 | 1.000 |
Table 5 The correlation among plant functional traits
项目Item | VH | SRL | SMF | LMF | RPMF | SLA | LDMC | IB | IAGB | IUGB | RDMC | SDMC | RPDMC | RSR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VH | 1.000 | 0.474 | 0.028 | 0.000 | 0.000 | 0.188 | 0.019 | 0.041 | 0.012 | 0.223 | 0.014 | 0.002 | 0.012 | 0.454 |
SRL | 0.136 | 1.000 | 0.192 | 0.071 | 0.086 | 0.050 | 0.346 | 0.262 | 0.609 | 0.200 | 0.124 | 0.633 | 0.229 | 0.444 |
SMF | 0.402 | 0.245 | 1.000 | 0.004 | 0.001 | 0.001 | 0.708 | 0.356 | 0.002 | 0.941 | 0.953 | 0.000 | 0.440 | 0.002 |
LMF | 0.664 | 0.335 | 0.508 | 1.000 | 0.002 | 0.007 | 0.000 | 0.034 | 0.001 | 0.253 | 0.116 | 0.065 | 0.124 | 0.130 |
RPMF | 0.674 | 0.319 | 0.584 | 0.542 | 1.000 | 0.240 | 0.836 | 0.611 | 0.045 | 0.564 | 0.816 | 0.000 | 0.000 | 0.004 |
SLA | 0.247 | 0.362 | 0.575 | 0.483 | 0.221 | 1.000 | 0.031 | 0.119 | 0.018 | 0.208 | 0.159 | 0.089 | 0.551 | 0.624 |
LDMC | 0.425 | 0.178 | 0.071 | 0.613 | 0.039 | 0.394 | 1.000 | 0.000 | 0.011 | 0.001 | 0.000 | 0.486 | 0.193 | 0.049 |
IB | 0.376 | -0.212 | 0.175 | 0.388 | 0.097 | 0.291 | 0.606 | 1.000 | 0.000 | 0.000 | 0.003 | 0.099 | 0.051 | 0.038 |
IAGB | 0.453 | -0.097 | 0.538 | 0.576 | 0.368 | 0.428 | 0.458 | 0.830 | 1.000 | 0.000 | 0.068 | 0.003 | 0.024 | 0.409 |
IUGB | 0.229 | -0.241 | 0.014 | 0.216 | -0.110 | 0.236 | 0.588 | 0.956 | 0.693 | 1.000 | 0.001 | 0.419 | 0.167 | 0.001 |
RDMC | 0.445 | 0.287 | -0.011 | 0.293 | 0.044 | 0.264 | 0.755 | 0.526 | 0.338 | 0.572 | 1.000 | 0.244 | 0.017 | 0.007 |
SDMC | 0.533 | 0.091 | 0.737 | 0.342 | 0.607 | 0.316 | 0.132 | 0.307 | 0.517 | 0.153 | 0.220 | 1.000 | 0.123 | 0.085 |
RPDMC | 0.452 | 0.226 | 0.146 | 0.287 | 0.604 | 0.113 | 0.244 | 0.359 | 0.410 | 0.259 | 0.433 | 0.288 | 1.000 | 0.762 |
RSR | -0.142 | -0.145 | -0.534 | -0.283 | -0.513 | -0.093 | 0.363 | 0.381 | -0.156 | 0.590 | 0.480 | -0.319 | -0.058 | 1.000 |
1 | Liu X J, Ma K P. Plant functional traits-concepts, applications and future directions. Scientia Sinica Vitae, 2015, 45(4): 325-339. |
刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339. | |
2 | Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology, 2007, 31(1): 150-165. |
孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2007, 31(1): 150-165. | |
3 | Huang Y M, Chen H Y, Zhang J H, et al. Advances and prospects of plant trait biogeography. Progress in Geography, 2018, 37(1): 93-101. |
黄永梅, 陈慧颖, 张景慧, 等. 植物属性地理的研究进展与展望. 地理科学进展, 2018, 37(1): 93-101. | |
4 | Zhou J J, Liu Y F, Wang J L, et al. Effect of short-term nutrient addition on aboveground biomass, plant diversity and functional traits of swampy alpine meadow in Tibet. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
周娟娟, 刘云飞, 王敬龙, 等. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响. 草业学报, 2023, 32(11): 17-29. | |
5 | Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 2016, 24(8): 922-931. |
雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 2016, 24(8): 922-931. | |
6 | Zhang H W, Ma J Y, Sun W, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China. Acta Ecologica Sinica, 2010, 30(21): 5747-5758. |
张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系. 生态学报, 2010, 30(21): 5747-5758. | |
7 | Ding J, Wu Q, Yan H, et al. Effects of topographic variations and soil characteristics on plant function traits in a subtropical evergreen broad-leaved forest. Biodiversity Science, 2011, 19(2): 158-167. |
丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 2011, 19(2): 158-167. | |
8 | Liu M X, Ma J Z. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of South Gansu, Northwest China. Chinese Journal of Applied Ecology, 2012, 23(12): 3295-3300. |
刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应. 应用生态学报, 2012, 23(12): 3295-3300. | |
9 | Wang H, Zhao F X, Zhang R, et al. Effects of the functional traits on soil nitrogen and water content of mountain meadow in Huo Mountain. Journal of Shanxi Normal University (Natural Science Edition), 2019, 33(3): 68-72. |
王虎, 赵峰侠, 张瑞, 等. 霍山山地草甸优势种功能性状对土壤水解氮和水分含量的影响. 山西师范大学学报(自然科学版), 2019, 33(3): 68-72. | |
10 | Zhang J, Sun L. Response of plant functional traits to climate change. South China Agriculture, 2019, 13(14): 150-151. |
张静, 孙路. 浅谈植物功能性状对气候变化的响应. 南方农业, 2019, 13(14): 150-151. | |
11 | Zhang J H, Huang Y M, Chen H Y, et al. Effect of disturbance removal on leaf functional traits of plants in the Inner Mongolia steppe. Acta Ecologica Sinica, 2016, 36(18): 5902-5911. |
张景慧, 黄永梅, 陈慧颖, 等. 去除干扰对内蒙古典型草原植物叶片功能属性的影响. 生态学报, 2016, 36(18): 5902-5911. | |
12 | Henn J J, Yelenik S, Damschen E I. Environmental gradients influence differences in leaf functional traits between native and non-native plants. Oecologia, 2019, 191(2): 397-409. |
13 | Yang J, Zhang Q, Fang Q H, et al. Comparison of leaf functional traits of common dominant species in alpine meadow under different grazing management modes. Grassland and Turf, 2021, 41(6): 15-22. |
杨晶, 张倩, 方青慧, 等. 不同放牧管理模式下高寒草甸共有优势种叶片功能性状比较. 草原与草坪, 2021, 41(6): 15-22. | |
14 | Jia L X, Yang Y, Zhang F, et al. Response of functional traits of Stipa breviflora population to stocking rates. Chinese Journal of Grassland, 2019, 41(4): 94-100. |
贾丽欣, 杨阳, 张峰, 等. 短花针茅种群功能性状对载畜率的响应. 中国草地学报, 2019, 41(4): 94-100. | |
15 | Jiao L, Guan X, Liu X R, et al. Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland. Arid Zone Research, 2020, 37(1): 202-211. |
焦亮, 关雪, 刘雪蕊, 等. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应. 干旱区研究, 2020, 37(1): 202-211. | |
16 | Dong Z L, Xie H Q, Chen Q, et al. The present situation of grassland ecological degradation and its control countermeasures in Ganzi prefecture. Prataculture Animal Husbandry, 2013(5): 58-60. |
董昭林, 谢红旗, 陈琴, 等. 甘孜州草地生态退化现状及治理对策. 草业与畜牧, 2013(5): 58-60. | |
17 | Zhu L F, Li T Q. Countermeasures and measures of natural grassland ecological degradation in Ganzi Prefecture. Prataculture Animal Husbandry, 2009(8): 32-33. |
朱连发, 李太强. 甘孜州天然草地生态退化的治理对策及措施. 草业与畜牧, 2009(8): 32-33. | |
18 | Guo J. Causes and countermeasures of grassland ecological environment degradation in Ganzi Prefecture. Technical Advisor for Animal Husbandry, 2012(9): 248-249. |
郭键. 甘孜州草原生态环境退化的原因及对策. 养殖技术顾问, 2012(9): 248-249. | |
19 | Rong X, Yi G H, Zhang T B, et al. Change of vegetation EVI with altitude gradient and its response to climate change in the western Sichuan plateau from 2000 to 2015. Resources and Environment in the Yangtze Basin, 2019, 28(12): 3014-3028. |
荣欣, 易桂花, 张廷斌, 等. 2000~2015年川西高原植被EVI海拔梯度变化及其对气候变化的响应. 长江流域资源与环境, 2019, 28(12): 3014-3028. | |
20 | Zhang Y K, Wang H B, Zhang D C. Analysis on the differences of soil physicochemical properties between two habitats in alpine meadow, western Sichuan plateau. Acta Agrestia Sinica, 2020, 28(1): 207-213. |
张煜坤, 王洪斌, 张大才. 川西高原高寒草甸两种生境土壤理化性质差异的分析. 草地学报, 2020, 28(1): 207-213. | |
21 | Garnier E, Cortez J, Billes G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85(9): 2630-2637. |
22 | Mason N W H, Mouillot D, Lee W G, et al. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 2005, 111(1): 112-118. |
23 | Mason N, Macgillivray K, Steel J B, et al. An index of functional diversity. Journal of Vegetation Science, 2003, 14(4): 571-578. |
24 | Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. |
25 | Wu A B, Qin Y J, Zhao Y X. Terrain composite index and its application in terrain gradient effect analysis of land use change: A case study of Taihang hilly areas. Geography and Geo-Information Science, 2018, 34(6): 93-99. |
武爱彬, 秦彦杰, 赵艳霞. 地形综合指数及其在土地利用地形梯度效应分析中的应用——以太行山浅山丘陵区为例. 地理与地理信息科学, 2018, 34(6): 93-99. | |
26 | Suding K N, Goldberg D E, Hartman K M. Relationships among species traits: Separating levels of response and identifying linkages to abundance. Ecology, 2003, 84(1): 1-16. |
27 | Violle C, Navas M, Vile D, et al. Let the concept of trait be functional! Oikos, 2007, 116(5): 882-892. |
28 | Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 2006, 87(3): 535-541. |
29 | Chen X Y, Zhang S T, Niu K C. Scaling-up trait covariation: Coordination and trade-offs within and among plant species in alpine meadow communities. Chinese Science Bulletin, 2022, 67(10): 986-996. |
陈馨悦, 张世挺, 牛克昌. 性状关联跨尺度推演: 高寒草甸植物种内及种间性状的协同与权衡. 科学通报, 2022, 67(10): 986-996. | |
30 | Xing X Q, Hao B T, Qi L X, et al. Effect of grazing on functional traits of Stipa krylovii. Ecology and Environmental Sciences, 2019, 28(1): 57-64. |
邢小青, 郝匕台, 齐丽雪, 等. 放牧对克氏针茅功能性状的影响. 生态环境学报, 2019, 28(1): 57-64. | |
31 | Cruz P, De Quadros F L F, Theau J P, et al. Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of Brazil. Rangeland Ecology & Management, 2010, 63(3): 350-358. |
32 | Shi M M, Niu D C, Wang Y, et al. Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan plateau. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1216-1225. |
石明明, 牛得草, 王莹, 等. 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 2017, 37(6): 1216-1225. | |
33 | Niu K, Messier J, He J, et al. The effects of grazing on foliar trait diversity and niche differentiation in Tibetan alpine meadows. Ecosphere, 2015, 6(9): 150. |
34 | Wang W, Liang C Z, Liu Z L, et al. Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Chinese Journal of Plant Ecology, 2000(3): 268-274. |
王炜, 梁存柱, 刘钟龄, 等. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000(3): 268-274. | |
35 | Li Y L, Cui J Y, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 2005(2): 304-311. |
李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 2005(2): 304-311. | |
36 | Zhao N, Zhao X Q, Zhao L, et al. Progress in researches of the response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 2016, 35(7): 1916-1926. |
赵娜, 赵新全, 赵亮, 等. 植物功能性状对放牧干扰的响应. 生态学杂志, 2016, 35(7): 1916-1926. | |
37 | Wang Y L, Zhu W Y, Hou J J, et al. Effects of grazing on leaf traits of four degraded indicator plants in Guinan. Pratacultural Science, 2020, 37(3): 423-431. |
王娅琳, 朱文琰, 侯将将, 等. 放牧对贵南县4种退化指示植物叶片性状的影响. 草业科学, 2020, 37(3): 423-431. | |
38 | Li X L, Hou X Y, Wu X H, et al. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 2014, 38(5): 440-451. |
李西良, 侯向阳, 吴新宏, 等. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 2014, 38(5): 440-451. | |
39 | Zhao X G, Zhang S T, Niu K C. Association of soil bacterial diversity with plant community functional attributes in alpine meadows. Scientia Sinica Vitae, 2020, 50(1): 70-80. |
赵兴鸽, 张世挺, 牛克昌. 高寒草甸植物群落功能属性与土壤细菌多样性关系. 中国科学: 生命科学, 2020, 50(1): 70-80. |
[1] | Xiang-jiao TAN, Kui-cai DONG, Hua ZHANG, Chuan-chuan TANG, Yan YANG. Effects of snow addition on soil phosphorus availability in an alpine meadow of the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(7): 205-214. |
[2] | Rui-min QIN, Si-jia CHENG, Li MA, Zhong-hua ZHANG, Jing-jing WEI, Hong-ye SU, Zheng-chen SHI, Tao CHANG, Xue HU, De-ha-ze A, Fang YUAN, Shan LI, Hua-kun ZHOU. Effects of grazing exclusion and fertilization on alpine meadow community characteristics and vegetation carbon and nitrogen pools [J]. Acta Prataculturae Sinica, 2024, 33(4): 1-11. |
[3] | Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12. |
[4] | Yuan MA, Xiao-li WANG, Yu-shou MA, De-gang ZHANG. Effects of the degree of alpine meadow degradation on the rhizosphere soil fungal community and the ecological network of dominant species [J]. Acta Prataculturae Sinica, 2024, 33(2): 125-137. |
[5] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[6] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[7] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[8] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[9] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[10] | Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê [J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46. |
[11] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[12] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[13] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[14] | Yuan-yuan LI, Ting-ting XU, Zhe AI, Zhao-na ZHOU, Fei MA. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species [J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49. |
[15] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||