Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 91-100.DOI: 10.11686/cyxb2022173
Previous Articles Next Articles
Jia-cheng ZHENG1(), Jie YU1(), Fan LI1, Xiao-yi HUANG1, Jie-qin LI1, Hai-zhou CHEN3, Xin WANG1, Qiu-wen ZHAN1(), Zhao-shi XU2()
Received:
2022-04-19
Revised:
2022-07-27
Online:
2023-04-20
Published:
2023-01-29
Contact:
Qiu-wen ZHAN,Zhao-shi XU
Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage[J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100.
株系Line | 生长素IAA | 脱落酸ABA | 赤霉素GA3 |
---|---|---|---|
WT | 3.49±0.14a | 3.16±0.07b | 0.24±0.01b |
SbERex 5 | 3.26±0.08a | 2.38±0.08c | 0.39±0.00a |
SbERin 6 | 3.58±0.20a | 10.95±0.08a | 0.18±0.00c |
Table 1 Endogenous hormone content of transgenic sorghum stem (n=6, ng·g-1)
株系Line | 生长素IAA | 脱落酸ABA | 赤霉素GA3 |
---|---|---|---|
WT | 3.49±0.14a | 3.16±0.07b | 0.24±0.01b |
SbERex 5 | 3.26±0.08a | 2.38±0.08c | 0.39±0.00a |
SbERin 6 | 3.58±0.20a | 10.95±0.08a | 0.18±0.00c |
指标 Index | 株系 Lines | 年份 Year | 变异系数 Coefficient of variation | |
---|---|---|---|---|
2020 | 2021 | |||
株高 Plant height (cm) | WT | 131.37±3.51b | 132.13±2.65b | 0.41 |
SbERex 5 | 156.31±3.14a | 154.54±1.53a | 0.81 | |
SbERin 6 | 120.16±2.08c | 116.73±3.51c | 3.21 | |
叶面积 Leaf area (cm2) | WT | 212.52±7.00b | 207.63±15.40b | 1.65 |
SbERex 5 | 232.79±10.70a | 231.94±18.15a | 0.26 | |
SbERin 6 | 195.46±12.06b | 197.71±10.90b | 0.85 | |
分蘖数 Tiller number | WT | 4.60±1.00b | 4.80±1.00b | 2.63 |
SbERex 5 | 7.60±1.15a | 8.00±0.58a | 3.63 | |
SbERin 6 | 4.40±0.58b | 4.30±0.58b | 1.63 | |
主茎粗 Main stem diameter (mm) | WT | 28.91±2.12a | 27.89±1.65a | 2.54 |
SbERex 5 | 30.95±1.34a | 30.71±2.00a | 0.55 | |
SbERin 6 | 28.33±3.82a | 28.97±4.99a | 1.58 | |
主茎穗长 Main stem spike length (cm) | WT | 32.17±1.53a | 32.32±0.58a | 0.33 |
SbERex 5 | 33.42±2.08a | 32.67±1.53a | 1.60 | |
SbERin 6 | 31.11±1.15a | 30.38±1.16a | 1.68 | |
单株产量 Yield per plant (g·plant-1) | WT | 31.36±3.84b | 31.27±3.80b | 0.20 |
SbERex 5 | 39.02±3.48a | 39.30±3.50a | 0.51 | |
SbERin 6 | 29.52±1.14b | 29.53±1.15b | 0.02 | |
单株生物量 Biomass per plant (g·plant-1) | WT | 386.35±20.40b | 382.45±35.90b | 0.72 |
SbERex 5 | 576.38±5.93a | 574.74±7.07a | 0.20 | |
SbERin 6 | 373.19±13.47b | 372.99±13.55b | 0.04 |
Table 2 Biomass-related traits of transgenic sorghum lines (n=10)
指标 Index | 株系 Lines | 年份 Year | 变异系数 Coefficient of variation | |
---|---|---|---|---|
2020 | 2021 | |||
株高 Plant height (cm) | WT | 131.37±3.51b | 132.13±2.65b | 0.41 |
SbERex 5 | 156.31±3.14a | 154.54±1.53a | 0.81 | |
SbERin 6 | 120.16±2.08c | 116.73±3.51c | 3.21 | |
叶面积 Leaf area (cm2) | WT | 212.52±7.00b | 207.63±15.40b | 1.65 |
SbERex 5 | 232.79±10.70a | 231.94±18.15a | 0.26 | |
SbERin 6 | 195.46±12.06b | 197.71±10.90b | 0.85 | |
分蘖数 Tiller number | WT | 4.60±1.00b | 4.80±1.00b | 2.63 |
SbERex 5 | 7.60±1.15a | 8.00±0.58a | 3.63 | |
SbERin 6 | 4.40±0.58b | 4.30±0.58b | 1.63 | |
主茎粗 Main stem diameter (mm) | WT | 28.91±2.12a | 27.89±1.65a | 2.54 |
SbERex 5 | 30.95±1.34a | 30.71±2.00a | 0.55 | |
SbERin 6 | 28.33±3.82a | 28.97±4.99a | 1.58 | |
主茎穗长 Main stem spike length (cm) | WT | 32.17±1.53a | 32.32±0.58a | 0.33 |
SbERex 5 | 33.42±2.08a | 32.67±1.53a | 1.60 | |
SbERin 6 | 31.11±1.15a | 30.38±1.16a | 1.68 | |
单株产量 Yield per plant (g·plant-1) | WT | 31.36±3.84b | 31.27±3.80b | 0.20 |
SbERex 5 | 39.02±3.48a | 39.30±3.50a | 0.51 | |
SbERin 6 | 29.52±1.14b | 29.53±1.15b | 0.02 | |
单株生物量 Biomass per plant (g·plant-1) | WT | 386.35±20.40b | 382.45±35.90b | 0.72 |
SbERex 5 | 576.38±5.93a | 574.74±7.07a | 0.20 | |
SbERin 6 | 373.19±13.47b | 372.99±13.55b | 0.04 |
1 | Zou J Q. New research progress on sorghum breeding and cultivation techniques. Scientia Agricultura Science, 2020, 53(14): 2769-2773. |
邹剑秋. 高粱育种与栽培技术研究新进展. 中国农业科学, 2020, 53(14): 2769-2773. | |
2 | Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556. |
3 | Liu Q S, Liang D, Duan B, et al. Infection characteristic and control measure for sorghum dwarf mosaic disease in China. Journal of Shanxi Agricultural Sciences, 2009, 37(3): 75-77. |
柳青山, 梁笃, 段冰, 等. 我国高粱红条病发生特点及防治措施. 山西农业科学, 2009, 37(3): 75-77. | |
4 | Huang M J. Research progress of Fusarium stalk rot in sorghum. Chinese Agricultural Science Bulletin, 2016, 32(14): 90-95. |
黄敏佳. 高粱镰孢菌茎腐病研究进展. 中国农学通报, 2016, 32(14): 90-95. | |
5 | Sun J, Tie B Q, Qian Z, et al. The effect of compound heavy metal on seedling growth of Zea mays and Sorghum vulgare. Journal of Mountain Agriculture and Biology, 2005(6): 514-521. |
孙健, 铁柏清, 钱湛, 等. 复合重金属胁迫对玉米和高粱成苗过程的影响. 山地农业生物学报, 2005(6): 514-521. | |
6 | Li A J, Zhang G X, Zhou F P, et al. Response of sorghum seedlings to exogenous proline under low temperature stress. Seed, 2019, 38(5): 44-47. |
李爱军, 张桂香, 周福平, 等. 低温胁迫下高粱幼苗对外源脯氨酸的响应. 种子, 2019, 38(5): 44-47. | |
7 | Wang Z H, Wei Y Q, Zhao Y R, et al. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
王志恒, 魏玉清, 赵延蓉, 等. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84. | |
8 | Zheng J C, Zhou L, Qian Y C, et al. Research progress of ERECTA regulation on cell growth of plant. Molecular Plant Breeding, 2020, 18(9): 2922-2929. |
郑甲成, 周磊, 钱宇宸, 等. ERECTA调控植物细胞生长功能的研究进展. 分子植物育种, 2020, 18(9): 2922-2929. | |
9 | Zheng J C, Yu J, Liu T, et al. Identification and expression characterisation of SbERECTA family genes in Sorghum bicolor. Crop and Pasture Science, 2021, 72(2): 125-135. |
10 | Zhang X X, Wang L, Shou L L. A rapid modified CTAB method of extracting genomic DNA from wheat leaf. Chinese Agricultural Science Bulletin, 2012, 28(36): 46-49. |
张晓祥, 王玲, 寿路路. 一种快速提取小麦基因组DNA的改良CTAB方法. 中国农学通报, 2012, 28(36): 46-49. | |
11 | Zheng J C, Hu Y G. TaERECTA responses to phyto-hormones, Mg2+ stress and dehydration and its correlation with stomatal density in bread wheat. Cereal Research Communications, 2016, 44(2): 206-216. |
12 | Hou S, Jiang Z, Ding M, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Talanta, 2008, 76(4): 798-802. |
13 | Woodward C. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiology, 2005, 139(1): 192-203. |
14 | Cai Y P, Li L, Lin Y, et al. Effects of content of endogenersis hormones on stem growth of Dendrobium in Huoshan. Acta Laser Biology Sinica, 2004(5): 345-348. |
蔡永萍, 李玲, 林毅, 等. 霍山三种石斛的内源GA、ABA含量对茎高生长的影响. 激光生物学报, 2004(5): 345-348. | |
15 | Wu Q, Su N N, Cui J. Effect of LED light treatments on growth and endogenous GA and IAA contents of tomato seedling. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(6): 1171-1176. |
邬奇, 苏娜娜, 崔瑾. LED光质对番茄幼苗生长及内源性GA和IAA含量的影响. 西北植物学报, 2013, 33(6): 1171-1176. | |
16 | Chang M M, Liang L Y, Yang S, et al. Genotypic differences in Mn-induced chlorosis of sugarcane seedlings. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 1980-1985. |
常敏敏, 梁莉燕, 杨曙, 等. 高锰诱导甘蔗幼苗黄化的基因型差异研究. 西南农业学报, 2019, 32(9): 1980-1985. | |
17 | Han X D. The clone of ERECTA family gene from sorghum and relative expression levels analysis of drought stress. Nanchang: Jiangxi Agricultural University, 2015. |
韩小东. 高粱ERECTA家族基因的克隆及其干旱胁迫相对表达水平的分析. 南昌: 江西农业大学, 2015. | |
18 | Swain S M, Tseng T, Olszewski N E. Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiology, 2001, 126 (3): 1174-1185. |
19 | Fridborg I, Kuusk S, Robertson M, et al. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiology, 2001, 127(3): 937-948. |
20 | Masle J, Gilmore S, Farquhar G. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 2005, 436: 866-870. |
21 | Hai T X, Peng G, Xin L X, et al. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta, 2011, 234(2): 229-241. |
22 | Doheny A T, Hunt L, Franks P J, et al. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions Royal Society B-biological Sciences, 2012, 367: 547-555. |
23 | Pillitteri L J, Torii K U. Mechanisms of stomatal development. Annual Review of Plant Biology, 2012, 63(1): 591-614. |
24 | Guo M, Rupe M, Simmons C, et al. The maize ERECTA genes for improving plant growth, transpiration, efficiency and drought tolerance in crop plants. United States Patent: US12910922, 2011-02-10. |
25 | Liu M, Li W P, Min Z, et al. Identification and expression analysis of ERECTA family genes in grape (Vitis vinifera L.). Genes & genomics, 2019, 41(6): 723-735. |
26 | Hou X Y. Spinach ERECTA(ER) gene cloning and function analysis of high temperature response. Shanghai: Shanghai Normal University, 2021. |
侯笑颜. 菠菜ERECTA(ER)基因克隆及其高温应答功能分析. 上海: 上海师范大学, 2021. | |
27 | Zheng J C. Functional characterization of TaER, a candidate gene for transpiration efficiency in bread wheat. Xianyang: Northwest A&F University, 2015. |
郑甲成. 普通小麦蒸腾效率候选基因TaER的功能分析. 咸阳: 西北农林科技大学, 2015. |
[1] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[2] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[3] | Teng-fei WANG, Bin WANG, Jian-qiang DENG, Man-you LI, Wang NI, Qin FENG, Yun-yun TUO, Jian LAN. Effect of sowing rate on yield and forage quality of a Dolichos lablab-Sorghum bicolor mixture under drip irrigation in arid areas of Ningxia [J]. Acta Prataculturae Sinica, 2023, 32(3): 30-40. |
[4] | Le-le SU, Yan QIN, Zhao-min WANG, Yong-chao ZHANG, Wen-hui LIU. Soil nutrient and microbial activity responses to nitrogen and phosphorus addition in oats and arrowhead peas in monocrop and mixed sowings [J]. Acta Prataculturae Sinica, 2023, 32(3): 56-66. |
[5] | Li-zhu GUO, Hui-zhen MENG, Xi-feng FAN, Ke TENG, Wen-jun TENG, Hai-feng WEN, Yue-sen YUE, Hui ZHANG, Ju-ying WU. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms [J]. Acta Prataculturae Sinica, 2023, 32(2): 65-74. |
[6] | Xiao-jin ZHOU, Hai-xia HUANG, Jun-xia ZHANG, Bu-dong MA, Gang LU, Jian-wei QI, Ting ZHANG, Zhu ZHU. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings [J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
[7] | Rong RONG, Bin SUN, Zhi-tao WU, Zhi-hai GAO, Zi-qiang DU, Si-han TENG. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
[8] | Wei GAO, Na SHOU, Cong-ze JIANG, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. Effect of nitrogen application rate on dry matter accumulation, allocation and water use efficiency of forage sorghum [J]. Acta Prataculturae Sinica, 2022, 31(9): 26-35. |
[9] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[10] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[11] | Yi-han ZHAO, Meng-jing HOU, Qi-sheng FENG, Hong-yuan GAO, Tian-gang LIANG, Jin-sheng HE, Da-wen QIAN. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach [J]. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
[12] | Lu-hua YAO, Cai QI, Jian-feng YANG, Yan-jun GUO. Effects of seed priming on cuticular wax and resistance of sweet sorghum [J]. Acta Prataculturae Sinica, 2022, 31(7): 185-196. |
[13] | Yong-liang YOU, Hai-ming ZHAO, Yuan LI, Rui-xin WU, Gui-bo LIU, Jian-dong ZHOU, Jun-feng CHEN. Dynamic changes in biomass accumulation and nutritional quality of triticeae forages [J]. Acta Prataculturae Sinica, 2022, 31(6): 189-201. |
[14] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[15] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||