Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (10): 202-212.DOI: 10.11686/cyxb2024485
Qi LU1,2(
), Ji-xiao QIN1,2, Yi-ming BAN1,2, Cheng-cheng GAO1,2, Rong YANG3, Pei-yao LI1,2, Yi-qing XU1,2, Shuang-long XIE1,2, Rui CHEN1,2, Di ZHOU3(
), Xing-zhou TIAN1,2(
)
Received:2024-12-04
Revised:2025-01-23
Online:2025-10-20
Published:2025-07-11
Contact:
Di ZHOU,Xing-zhou TIAN
Qi LU, Ji-xiao QIN, Yi-ming BAN, Cheng-cheng GAO, Rong YANG, Pei-yao LI, Yi-qing XU, Shuang-long XIE, Rui CHEN, Di ZHOU, Xing-zhou TIAN. Effect of different levels of purple maize anthocyanin extract on in vitro gas production and rumen fermentation in beef cattle[J]. Acta Prataculturae Sinica, 2025, 34(10): 202-212.
| 原料Ingredient | 含量Content | 营养水平Nutrient levels2 | 含量Content |
|---|---|---|---|
| 稻草 Rice straw | 17.20 | 干物质 Dry matter | 89.79 |
| 皇竹草 Hybrid giant napier | 42.80 | 粗蛋白质Crude protein | 10.22 |
| 玉米 Corn | 23.70 | 中性洗涤纤维 Neutral detergent fiber | 40.32 |
| 豆粕 Soybean meal | 5.80 | 酸性洗涤纤维 Acid detergent fiber | 24.71 |
| 菜籽饼 Rapeseed meal | 2.20 | 粗灰分 Ash | 8.50 |
| 麸皮 Bran | 5.60 | 钙 Calcium | 0.51 |
| 磷酸氢钙 Dicalcium phosphate | 0.50 | 磷 Phosphorus | 0.37 |
| 食盐 Salt | 0.50 | ||
| 碳酸氢钠 NaHCO3 | 0.50 | ||
| 预混料Premix1 | 1.20 | ||
| 合计 Total | 100.00 |
| 原料Ingredient | 含量Content | 营养水平Nutrient levels2 | 含量Content |
|---|---|---|---|
| 稻草 Rice straw | 17.20 | 干物质 Dry matter | 89.79 |
| 皇竹草 Hybrid giant napier | 42.80 | 粗蛋白质Crude protein | 10.22 |
| 玉米 Corn | 23.70 | 中性洗涤纤维 Neutral detergent fiber | 40.32 |
| 豆粕 Soybean meal | 5.80 | 酸性洗涤纤维 Acid detergent fiber | 24.71 |
| 菜籽饼 Rapeseed meal | 2.20 | 粗灰分 Ash | 8.50 |
| 麸皮 Bran | 5.60 | 钙 Calcium | 0.51 |
| 磷酸氢钙 Dicalcium phosphate | 0.50 | 磷 Phosphorus | 0.37 |
| 食盐 Salt | 0.50 | ||
| 碳酸氢钠 NaHCO3 | 0.50 | ||
| 预混料Premix1 | 1.20 | ||
| 合计 Total | 100.00 |
时间 Time (h) | 紫玉米花青素提取物添加水平Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | 处理Treatment | 线性Linear | 二次Quadratic | ||
| 2 | 9.83 | 10.67 | 9.67 | 9.50 | 8.33 | 0.834 | 0.421 | 0.116 | 0.174 |
| 4 | 21.17a | 17.67b | 15.50bc | 13.17c | 13.67c | 1.019 | <0.001 | <0.001 | <0.001 |
| 6 | 25.83a | 22.50b | 21.33bc | 19.33c | 19.17c | 0.999 | <0.001 | <0.001 | <0.001 |
| 8 | 29.50a | 26.33b | 24.67b | 23.00b | 23.17b | 1.061 | 0.001 | <0.001 | <0.001 |
| 12 | 36.33a | 32.50b | 29.33c | 28.17c | 30.50bc | 0.961 | <0.001 | <0.001 | <0.001 |
| 24 | 57.33a | 51.00b | 43.17c | 40.50c | 43.33c | 2.064 | <0.001 | <0.001 | <0.001 |
| 48 | 73.33a | 69.33ab | 65.50bc | 60.17c | 62.50c | 2.017 | 0.001 | <0.001 | <0.001 |
| 72 | 81.00a | 80.00a | 78.50a | 70.17b | 74.17ab | 2.232 | 0.011 | 0.003 | 0.014 |
Table 2 Effect of different levels of purple maize anthocyanin extract on cumulative gas production at 72 h in vitro fermentation (mL)
时间 Time (h) | 紫玉米花青素提取物添加水平Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | 处理Treatment | 线性Linear | 二次Quadratic | ||
| 2 | 9.83 | 10.67 | 9.67 | 9.50 | 8.33 | 0.834 | 0.421 | 0.116 | 0.174 |
| 4 | 21.17a | 17.67b | 15.50bc | 13.17c | 13.67c | 1.019 | <0.001 | <0.001 | <0.001 |
| 6 | 25.83a | 22.50b | 21.33bc | 19.33c | 19.17c | 0.999 | <0.001 | <0.001 | <0.001 |
| 8 | 29.50a | 26.33b | 24.67b | 23.00b | 23.17b | 1.061 | 0.001 | <0.001 | <0.001 |
| 12 | 36.33a | 32.50b | 29.33c | 28.17c | 30.50bc | 0.961 | <0.001 | <0.001 | <0.001 |
| 24 | 57.33a | 51.00b | 43.17c | 40.50c | 43.33c | 2.064 | <0.001 | <0.001 | <0.001 |
| 48 | 73.33a | 69.33ab | 65.50bc | 60.17c | 62.50c | 2.017 | 0.001 | <0.001 | <0.001 |
| 72 | 81.00a | 80.00a | 78.50a | 70.17b | 74.17ab | 2.232 | 0.011 | 0.003 | 0.014 |
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 快速发酵部分的产气量Gas production from the immediately soluble fraction (a, mL) | 2.99b | 3.83ab | 4.84a | 3.90ab | 3.50ab | 0.542 | 0.046 | 0.549 | 0.086 |
| 慢速发酵部分的产气量Gas production from the insoluble fraction (b, mL) | 78.79ab | 79.36ab | 83.24a | 74.04b | 75.42b | 2.315 | 0.034 | 0.134 | 0.156 |
| 潜在产气量Potential extent of gas production (a+b, mL) | 81.78ab | 83.20ab | 88.08a | 77.95b | 78.92b | 2.434 | 0.043 | 0.205 | 0.127 |
| 产气速率Gas production rate (c, %·h-1) | 0.050a | 0.039b | 0.029c | 0.033bc | 0.035bc | 0.002 | <0.001 | <0.001 | <0.001 |
Table 3 Effect of different levels of purple maize anthocyanin extract on gas production kinetic parameters in vitro fermentation
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 快速发酵部分的产气量Gas production from the immediately soluble fraction (a, mL) | 2.99b | 3.83ab | 4.84a | 3.90ab | 3.50ab | 0.542 | 0.046 | 0.549 | 0.086 |
| 慢速发酵部分的产气量Gas production from the insoluble fraction (b, mL) | 78.79ab | 79.36ab | 83.24a | 74.04b | 75.42b | 2.315 | 0.034 | 0.134 | 0.156 |
| 潜在产气量Potential extent of gas production (a+b, mL) | 81.78ab | 83.20ab | 88.08a | 77.95b | 78.92b | 2.434 | 0.043 | 0.205 | 0.127 |
| 产气速率Gas production rate (c, %·h-1) | 0.050a | 0.039b | 0.029c | 0.033bc | 0.035bc | 0.002 | <0.001 | <0.001 | <0.001 |
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值 P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| pH | 12 | 6.76 | 6.86 | 6.81 | 6.89 | 6.81 | 0.032 | 0.070 | 0.212 | 0.090 |
| 24 | 6.64 | 6.75 | 6.73 | 6.69 | 6.68 | 0.054 | 0.654 | 0.858 | 0.433 | |
氨态氮Ammonia nitrogen (mg·dL-1) | 12 | 8.83bc | 10.10a | 10.34a | 9.68ab | 8.25c | 0.414 | 0.007 | 0.331 | 0.001 |
| 24 | 6.39c | 7.47b | 8.38a | 8.02ab | 8.40a | 0.248 | <0.001 | <0.001 | <0.001 | |
| 乙酸Acetate (mmol·L-1) | 12 | 39.55a | 38.98ab | 37.32bc | 37.25bc | 36.78c | 0.596 | 0.011 | 0.002 | 0.007 |
| 24 | 56.18a | 53.90b | 53.50b | 48.67c | 47.55c | 0.675 | <0.001 | <0.001 | <0.001 | |
| 丙酸Propionate (mmol·L-1) | 12 | 16.80d | 22.13c | 24.15b | 26.05a | 25.58a | 0.437 | <0.001 | <0.001 | <0.001 |
| 24 | 22.67d | 25.17c | 29.52b | 34.35a | 33.03a | 0.550 | <0.001 | <0.001 | <0.001 | |
| 丁酸Butyrate (mmol·L-1) | 12 | 6.78a | 5.58b | 5.58b | 5.48b | 5.48b | 0.116 | <0.001 | <0.001 | <0.001 |
| 24 | 11.02a | 9.70b | 8.45c | 7.33d | 7.15d | 0.220 | <0.001 | <0.001 | <0.001 | |
| 异丁酸Isobutyrate (mmol·L-1) | 12 | 2.13 | 2.10 | 2.04 | 2.06 | 2.15 | 0.073 | 0.807 | 0.971 | 0.483 |
| 24 | 3.06 | 3.08 | 3.29 | 3.37 | 3.10 | 0.138 | 0.414 | 0.405 | 0.277 | |
| 戊酸Valerate (mmol·L-1) | 12 | 1.59 | 1.48 | 1.45 | 1.47 | 1.45 | 0.070 | 0.634 | 0.204 | 0.311 |
| 24 | 2.14 | 2.23 | 2.09 | 2.11 | 2.04 | 0.090 | 0.630 | 0.236 | 0.440 | |
| 异戊酸Isovalerate (mmol·L-1) | 12 | 2.10 | 2.11 | 2.13 | 2.08 | 2.05 | 0.051 | 0.779 | 0.345 | 0.455 |
| 24 | 2.77 | 3.01 | 2.88 | 3.00 | 2.91 | 0.099 | 0.432 | 0.414 | 0.382 | |
| 总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 12 | 68.95b | 72.38a | 72.67a | 74.39a | 73.49a | 0.610 | <0.001 | <0.001 | <0.001 |
| 24 | 97.83 | 97.09 | 99.73 | 98.82 | 95.78 | 0.979 | 0.074 | 0.491 | 0.096 | |
| 乙酸/丙酸Acetate/propionate | 12 | 2.33a | 1.79b | 1.55c | 1.43c | 1.44c | 0.056 | <0.001 | <0.001 | <0.001 |
| 24 | 2.48a | 2.15b | 1.82c | 1.42d | 1.44d | 0.039 | <0.001 | <0.001 | <0.001 | |
| 甲烷产量Methane production (mmol·L-1) | 12 | 15.64a | 13.94b | 12.38c | 11.79c | 11.71c | 0.312 | <0.001 | <0.001 | <0.001 |
| 24 | 23.46a | 21.21b | 19.34c | 15.39d | 15.17d | 0.319 | <0.001 | <0.001 | <0.001 | |
Table 4 Effect of different levels of purple maize anthocyanin extract on rumen fermentation parameters and methane production in vitro fermentation
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值 P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| pH | 12 | 6.76 | 6.86 | 6.81 | 6.89 | 6.81 | 0.032 | 0.070 | 0.212 | 0.090 |
| 24 | 6.64 | 6.75 | 6.73 | 6.69 | 6.68 | 0.054 | 0.654 | 0.858 | 0.433 | |
氨态氮Ammonia nitrogen (mg·dL-1) | 12 | 8.83bc | 10.10a | 10.34a | 9.68ab | 8.25c | 0.414 | 0.007 | 0.331 | 0.001 |
| 24 | 6.39c | 7.47b | 8.38a | 8.02ab | 8.40a | 0.248 | <0.001 | <0.001 | <0.001 | |
| 乙酸Acetate (mmol·L-1) | 12 | 39.55a | 38.98ab | 37.32bc | 37.25bc | 36.78c | 0.596 | 0.011 | 0.002 | 0.007 |
| 24 | 56.18a | 53.90b | 53.50b | 48.67c | 47.55c | 0.675 | <0.001 | <0.001 | <0.001 | |
| 丙酸Propionate (mmol·L-1) | 12 | 16.80d | 22.13c | 24.15b | 26.05a | 25.58a | 0.437 | <0.001 | <0.001 | <0.001 |
| 24 | 22.67d | 25.17c | 29.52b | 34.35a | 33.03a | 0.550 | <0.001 | <0.001 | <0.001 | |
| 丁酸Butyrate (mmol·L-1) | 12 | 6.78a | 5.58b | 5.58b | 5.48b | 5.48b | 0.116 | <0.001 | <0.001 | <0.001 |
| 24 | 11.02a | 9.70b | 8.45c | 7.33d | 7.15d | 0.220 | <0.001 | <0.001 | <0.001 | |
| 异丁酸Isobutyrate (mmol·L-1) | 12 | 2.13 | 2.10 | 2.04 | 2.06 | 2.15 | 0.073 | 0.807 | 0.971 | 0.483 |
| 24 | 3.06 | 3.08 | 3.29 | 3.37 | 3.10 | 0.138 | 0.414 | 0.405 | 0.277 | |
| 戊酸Valerate (mmol·L-1) | 12 | 1.59 | 1.48 | 1.45 | 1.47 | 1.45 | 0.070 | 0.634 | 0.204 | 0.311 |
| 24 | 2.14 | 2.23 | 2.09 | 2.11 | 2.04 | 0.090 | 0.630 | 0.236 | 0.440 | |
| 异戊酸Isovalerate (mmol·L-1) | 12 | 2.10 | 2.11 | 2.13 | 2.08 | 2.05 | 0.051 | 0.779 | 0.345 | 0.455 |
| 24 | 2.77 | 3.01 | 2.88 | 3.00 | 2.91 | 0.099 | 0.432 | 0.414 | 0.382 | |
| 总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 12 | 68.95b | 72.38a | 72.67a | 74.39a | 73.49a | 0.610 | <0.001 | <0.001 | <0.001 |
| 24 | 97.83 | 97.09 | 99.73 | 98.82 | 95.78 | 0.979 | 0.074 | 0.491 | 0.096 | |
| 乙酸/丙酸Acetate/propionate | 12 | 2.33a | 1.79b | 1.55c | 1.43c | 1.44c | 0.056 | <0.001 | <0.001 | <0.001 |
| 24 | 2.48a | 2.15b | 1.82c | 1.42d | 1.44d | 0.039 | <0.001 | <0.001 | <0.001 | |
| 甲烷产量Methane production (mmol·L-1) | 12 | 15.64a | 13.94b | 12.38c | 11.79c | 11.71c | 0.312 | <0.001 | <0.001 | <0.001 |
| 24 | 23.46a | 21.21b | 19.34c | 15.39d | 15.17d | 0.319 | <0.001 | <0.001 | <0.001 | |
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| 羧甲基纤维素酶Carboxymethyl cellulose (U·mL-1) | 12 | 3.28b | 3.67b | 4.21b | 4.06b | 5.39a | 0.397 | 0.015 | 0.001 | 0.004 |
| 24 | 5.87 | 4.04 | 3.42 | 4.92 | 3.92 | 0.772 | 0.223 | 0.246 | 0.235 | |
纤维二糖酶 Cellobiase (U·mL-1) | 12 | 3.87b | 4.39b | 4.31b | 4.18b | 6.36a | 0.424 | 0.004 | 0.005 | 0.003 |
| 24 | 4.03 | 4.77 | 2.98 | 2.81 | 3.29 | 0.670 | 0.248 | 0.120 | 0.281 | |
木聚糖酶 Xylanase (U·mL-1) | 12 | 15.86 | 14.97 | 12.96 | 14.70 | 14.51 | 1.674 | 0.810 | 0.567 | 0.597 |
| 24 | 26.43b | 53.07a | 55.57a | 53.22a | 31.18b | 5.328 | 0.001 | 0.692 | <0.001 | |
滤纸纤维素酶 Filter paper cellulose (U·mL-1) | 12 | 3.80 | 3.90 | 3.51 | 4.43 | 4.27 | 0.479 | 0.677 | 0.330 | 0.568 |
| 24 | 5.34 | 3.30 | 3.80 | 4.23 | 4.56 | 0.529 | 0.116 | 0.736 | 0.087 | |
Table 5 Effect of different levels of purple maize anthocyanin extract on cellulose activity in vitro fermentation
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| 羧甲基纤维素酶Carboxymethyl cellulose (U·mL-1) | 12 | 3.28b | 3.67b | 4.21b | 4.06b | 5.39a | 0.397 | 0.015 | 0.001 | 0.004 |
| 24 | 5.87 | 4.04 | 3.42 | 4.92 | 3.92 | 0.772 | 0.223 | 0.246 | 0.235 | |
纤维二糖酶 Cellobiase (U·mL-1) | 12 | 3.87b | 4.39b | 4.31b | 4.18b | 6.36a | 0.424 | 0.004 | 0.005 | 0.003 |
| 24 | 4.03 | 4.77 | 2.98 | 2.81 | 3.29 | 0.670 | 0.248 | 0.120 | 0.281 | |
木聚糖酶 Xylanase (U·mL-1) | 12 | 15.86 | 14.97 | 12.96 | 14.70 | 14.51 | 1.674 | 0.810 | 0.567 | 0.597 |
| 24 | 26.43b | 53.07a | 55.57a | 53.22a | 31.18b | 5.328 | 0.001 | 0.692 | <0.001 | |
滤纸纤维素酶 Filter paper cellulose (U·mL-1) | 12 | 3.80 | 3.90 | 3.51 | 4.43 | 4.27 | 0.479 | 0.677 | 0.330 | 0.568 |
| 24 | 5.34 | 3.30 | 3.80 | 4.23 | 4.56 | 0.529 | 0.116 | 0.736 | 0.087 | |
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 干物质降解率Dry matter degradation rate | 30.27 | 30.04 | 30.04 | 30.17 | 30.46 | 0.354 | 0.913 | 0.640 | 0.602 |
| 粗蛋白降解率Crude protein degradation rate | 48.96b | 56.66a | 56.34a | 59.37a | 60.56a | 2.315 | 0.034 | 0.003 | 0.008 |
| 中性洗涤纤维降解率Neutral detergent fiber degradation rate | 15.18 | 15.12 | 14.92 | 16.04 | 15.41 | 1.046 | 0.950 | 0.658 | 0.908 |
| 酸性洗涤纤维降解率Acid detergent fiber degradation rate | 8.63c | 8.98bc | 10.65abc | 12.73a | 11.94ab | 0.962 | 0.041 | 0.004 | 0.016 |
Table 6 Effect of different levels of purple maize anthocyanin extract on nutrient degradation rate in vitro fermentation (%)
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 干物质降解率Dry matter degradation rate | 30.27 | 30.04 | 30.04 | 30.17 | 30.46 | 0.354 | 0.913 | 0.640 | 0.602 |
| 粗蛋白降解率Crude protein degradation rate | 48.96b | 56.66a | 56.34a | 59.37a | 60.56a | 2.315 | 0.034 | 0.003 | 0.008 |
| 中性洗涤纤维降解率Neutral detergent fiber degradation rate | 15.18 | 15.12 | 14.92 | 16.04 | 15.41 | 1.046 | 0.950 | 0.658 | 0.908 |
| 酸性洗涤纤维降解率Acid detergent fiber degradation rate | 8.63c | 8.98bc | 10.65abc | 12.73a | 11.94ab | 0.962 | 0.041 | 0.004 | 0.016 |
| [1] | Bai Q C, Hao X Y, Xiang B W, et al. Effects of sea buckthorn flavone on gas production, rumen fermentation parameters and microflora population of sheep in vitro. Chinese Journal of Animal Nutrition, 2020, 32(3): 1405-1414. |
| 白齐昌, 郝小燕, 项斌伟, 等. 沙棘黄酮对绵羊体外产气量、瘤胃发酵参数和微生物菌群的影响. 动物营养学报, 2020, 32(3): 1405-1414. | |
| [2] | Alexander G, Singh B, Sahoo A, et al. In vitro screening of plant extracts to enhance the efficiency of utilization of energy and nitrogen in ruminant diets. Animal Feed Science and Technology, 2008, 145(1/2/3/4): 229-244. |
| [3] | Busquet M, Calsamiglia S, Ferret A, et al. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 2006, 89(2): 761-771. |
| [4] | Purba R A P, Suong N T M, Paengkoum S, et al. Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats. Animal Bioscience, 2023, 36(2): 218-228. |
| [5] | Tian Y Y, Qin T, Zhang X L, et al. Effect of purple corn stover silage on energy utilization, plasma metabolites and antioxidant capacity parameters of heat-stressed dairy goats. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 60-65. |
| 田亚原, 覃谭, 张旭林, 等. 紫玉米秸秆青贮饲料对热应激奶山羊能量利用、血浆代谢和抗氧化参数的影响. 中国粮油学报, 2021, 36(8): 60-65. | |
| [6] | Tian X Z, Xin H L, Paengkoum P, et al. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. Journal of Animal Science, 2019, 97(3): 1384-1397. |
| [7] | Suong N T M, Paengkoum S, Schonewille J T, et al. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage. Frontiers in Veterinary Science, 2022, 9: 880838. |
| [8] | Zhou D, Wang Y C, Tian X Z, et al. Study of the mechanism of anthocyanins enhancing antioxidant capacity in ruminants. Acta Veterinaria et Zootechnica Sinica, 2019, 50(8): 1536-1544. |
| 周迪, 王胤晨, 田兴舟, 等. 花青素增强反刍动物抗氧化性能作用机制的研究. 畜牧兽医学报, 2019, 50(8): 1536-1544. | |
| [9] | Jing P. Purple corn anthocyanins: Chemical structure, chemoprotective activity and structure/function relationships. USA: Ohio State University, 2006. |
| [10] | Zhou D, Zhao Z H, Wang F, et al. Screening and validation of the key genes for muscle growth and development in Guanling cattle based on transcriptome sequencing. Journal of Southern Agriculture, 2024, 55(3): 611-622. |
| 周迪, 赵忠海, 王府, 等. 基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定. 南方农业学报, 2024, 55(3): 611-622. | |
| [11] | Tian X Z, Li J, Luo Q, et al. Effects of purple corn anthocyanin on growth performance, meat quality, muscle antioxidant status, and fatty acid profiles in goats. Foods, 2022, 11: 1255. |
| [12] | General Administration of Quality Supervision, Spection and Quarantine of the People’s Republic of China, China National Standardization Administration. Determination of moisture in feedstuffs: GB/T 6435-2014. Beijing: Standards Press of China, 2014. |
| 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料中水分的测定: GB/T 6435-2014. 北京: 中国标准出版社, 2014. | |
| [13] | State Administration for Market Regulation, China National Standardization Administration. Determination of crude protein in feeds-Kjeldahl method: GB/T 6432-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中粗蛋白的测定 凯氏定氮法: GB/T 6432-2018.北京: 中国标准出版社, 2018. | |
| [14] | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
| [15] | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Animal feeding stuffs-determination of crude ash: GB/T 6438-2007. Beijing: Standards Press of China, 2007. |
| 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料中粗灰分的测定: GB/T 6438-2007. 北京: 中国标准出版社, 2007. | |
| [16] | State Administration for Market Regulation, China National Standardization Administration. Determination of calcium in feeds: GB/T 6436-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中钙的测定: GB/T 6436-2018. 北京: 中国标准出版社, 2018. | |
| [17] | State Administration for Market Regulation, China National Standardization Administration. Determination of phosphorus in feeds-spectrophotometry: GB/T 6437-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中总磷的测定 分光光度法: GB/T 6437-2018. 北京: 中国标准出版社, 2018. | |
| [18] | Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28: 7-55. |
| [19] | Ørskov E R, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 1979, 92(2): 499-503. |
| [20] | Feng Z C, Gao M. Improvement of the method for measuring ammonia nitrogen content in rumen fluid by colorimetry. Animal Husbandry and Feed Science, 2010, 6: 37. |
| 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 6: 37. | |
| [21] | Wang J Q. Methods in ruminant nutrition research. Beijing: Modern Education Press, 2011: 145-148. |
| 王加启. 反刍动物营养学研究方法. 北京:现代教育出版社, 2011: 145-148. | |
| [22] | Moss A R, Jouany J P, Newbold J. Methane production by ruminants: Its contribution to global warming. Annales De Zootech, 2000, 49(3):231-253. |
| [23] | Wu W C, Ma T, Li W J, et al. Effects of resveratrol on in vitro gas production and fermentation parameters of different types of substrates and its metabolites research. Chinese Journal of Animal Nutrition, 2020, 32(1): 321-333. |
| 吴万成, 马涛, 李文娟, 等. 白藜芦醇对不同类型底物体外产气和发酵参数的影响及其代谢产物的研究. 动物营养学报, 2020, 32(1): 321-333. | |
| [24] | Wu W C, Ma T, Liu N, et al. Effect of resveratrol on methane production, nutrient degradation and microbial community under different substrates. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1281-1294. |
| 吴万成, 马涛, 刘娜, 等. 白藜芦醇对不同类型底物甲烷产生、养分降解及微生物区系的影响. 畜牧兽医学报, 2020, 51(6): 1281-1294. | |
| [25] | Tian X Z, Paengkoum P, Paengkoum S, et al. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. Journal of Integrative Agriculture, 2018, 17(9): 2082-2095. |
| [26] | Qi S, Jiao T, Li X X, et al. Effect of varying levels of stevioside supplementation on in vitro gas production and rumen fermentation in sheep. Pratacultural Science, 2024, 41(6): 1429-1440. |
| 齐帅, 焦婷, 李雄雄, 等. 不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响. 草业科学, 2024, 41(6): 1429-1440. | |
| [27] | An J, Yang Y, Wu W X, et al. Feasibility evaluation on replacing dietary alfalfa protein with slow-release urea using in vitro gas production technique for goats. Chinese Journal of Animal Nutrition, 2023, 35(10): 6516-6525. |
| 安靖, 杨艺, 吴文旋, 等. 体外产气法评价缓释尿素替代山羊饲粮中苜蓿蛋白的可行性. 动物营养学报, 2023, 35(10): 6516-6525. | |
| [28] | Tang Y C, Hu G H, Jiang H, et al. The effect of adding different concentrations of sodium caproate on rumen gas production and fermentation parameters in cows in vitro. Shangdong Journal of Animal Science and Veterinary Medicine, 2023, 44(6): 28-33. |
| 唐煜淳, 胡光辉, 蒋慧, 等. 添加不同浓度己酸钠对奶牛瘤胃体外产气及发酵参数的影响. 山东畜牧兽医, 2023, 44(6): 28-33. | |
| [29] | Gao J, Cheng B B, Liu Y F, et al. Effects of red cabbage extract rich in anthocyanins on rumen fermentation, rumen bacterial community, nutrient digestion, and plasma indices in beef bulls. Animal, 2022, 16(5): 100510. |
| [30] | Taethaisong N, Paengkoum S, Nakharuthai C, et al. Effect of purple neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Animals, 2022, 12: 2985. |
| [31] | Tian X Z, Paengkoum P, Paengkoum S, et al. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 2019, 102(1): 413-418. |
| [32] | Zu H C, Xu J, Cong Y Y. Reducing rumen methane emission through regulating rumen microorganisms by adding hydrogen-consuming compounds. Chinese Journal of Animal Nutrition, 2019, 31(11): 4968-4973. |
| 俎昊辰, 许静, 丛玉艳. 通过添加耗氢化合物调节瘤胃微生物实现甲烷减排. 动物营养学报, 2019, 31(11): 4968-4973. | |
| [33] | Lazalde-Cruz R, Miranda-Romero L A, Tirado-González D N, et al. Potential effects of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside of Hibiscus sabdariffa L. on ruminant meat and milk quality. Animals, 2021, 11: 2827. |
| [34] | Lu Q, Luo Q, Li J, et al. Evaluation of the chemical composition, bioactive substance, gas production, and rumen fermentation parameters of four types of distiller’s grains. Molecules, 2022, 27(18): 6134. |
| [35] | Garcia E H C. Methane production in dairy cows. Uppsala, Sweden: Swedish University of Agricultural Sciences, 2017. |
| [36] | Sinz S, Marquardt S, Soliva C R, et al. Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-Australasian Journal of Animal Sciences, 2019, 32(7): 966-976. |
| [37] | Varga G A, Kolver E S. Microbial and animal limitations to fiber digestion and utilization. The Journal of Nutrition, 1997, 127: 819-823. |
| [38] | Banakar P S, Kumar S, Varada V V, et al. Dietary supplementation of Aloe vera extract modulates rumen microbes and improves the functional food value of milk by altering phenolic content, antioxidant capacity, and fatty acid profile in lactating goats. Animal Biotechnology, 2023, 34: 3027-3038. |
| [39] | Suong N T M, Paengkoum S, Purba R A P, et al. Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative. Fermentation, 2022, 8: 248. |
| [40] | Ma T, Chen D D, Tu Y, et al. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. Journal of Animal Physiology and Animal Nutrition, 2015, 99: 676-683. |
| [41] | Sun H, Zhang Y Z, Jiang F. Comparison of synergistic effects between cellulase and xylanases from different sources//Proceedings of the 3rd National Symposium on the Application of Enzyme Preparations in the Feed Industry. Beijing: China Agricultural Science and Technology Press, 2009: 403-407. |
| 孙赫, 张玉枝, 姜飞. 纤维素酶与不同来源的木聚糖酶之间协同效果的比较//第三届全国酶制剂在饲料工业中的应用学术研讨会论文集. 北京: 中国农业科学技术出版社, 2009: 403-407. | |
| [42] | Hosoda K, Matsuo M, Miyaji M, et al. Fermentative quality of purple rice (Oryza sativa L.) silage and its effects on digestibility, ruminal fermentation and oxidative status markers in sheep: A preliminary study. Grassland Science, 2012, 58: 161-169. |
| [43] | Klyosov A A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29(47): 10577-10585. |
| [1] | Jiu YUAN. A study of the feed associative effects of mung bean, garlic and eggplant peels when combined with maize straw silage and feed concentrate [J]. Acta Prataculturae Sinica, 2025, 34(9): 173-184. |
| [2] | Nan GUO, Wu-chen DU, Shou-kun JI, Jian LIU, Su-qian CUI, Hui YUAN, Xu HAN, Ji-shuang LIU, Li-jie GAO. Effects of different fertilization and reseeding rates on the nutrient content of forage in a mountain meadow and its rumen fermentation parameters [J]. Acta Prataculturae Sinica, 2025, 34(4): 150-163. |
| [3] | Li-ping HONG, Xiao-dong LI, Er-ru YU, Cheng-jiang PEI, Yi-shun SHANG, Jin-hong LUO, Guang SUN, Yun-hao ZHOU, Shi-ge LI, Hang YANG, Feng-dan LIU. Effects of different perilla (Perilla frutescens) materials on serum antioxidant enzyme activity, rumen fermentation parameters and microflora of Guizhou black goats [J]. Acta Prataculturae Sinica, 2024, 33(9): 214-226. |
| [4] | De-yu YANG, Wen-zhi HUANG, Yu-zhe FENG, Bin XUE, Xiao-wei ZHANG, Zhan-hong CUI. Effects of mineral salt brick supplementation in the warm season on growth performance, rumen fermentation, blood, and hair mineral content of grazing yaks [J]. Acta Prataculturae Sinica, 2024, 33(7): 105-118. |
| [5] | Hao-qian DANG, Juan-qing QIN, Yu-kang GUO, Fu ZHANG, Ying-gang WANG, Qing-hua LIU. Effects of different additives on fermentation quality of bamboo shoot shell and growth performance and rumen fermentation function of Hu Sheep [J]. Acta Prataculturae Sinica, 2023, 32(7): 135-148. |
| [6] | Dao zhi cai rang WU, Cheng-fang PEI, Zhi-yuan MA, Hong-shan LIU, Xu-liang CAO, Hu LIU, Jian-wei ZHOU. Effect of feed level of oat hay on average daily gain, blood physiological and biochemical indexes, and rumen fermentation parameters in yaks [J]. Acta Prataculturae Sinica, 2023, 32(11): 119-129. |
| [7] | Yin-jie YOU, Hao-zhen ZHOU, Yao LIU, Chen-xi WANG, Zhong-li PENG. Comparison of nutritional value of oat hay, oat silage and Sichuan pasture for yaks [J]. Acta Prataculturae Sinica, 2022, 31(8): 99-110. |
| [8] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
| [9] | Yu-jie FAN, Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG. Effects of arginine level on rumen flora population structure and fermentation in weaning sika deer [J]. Acta Prataculturae Sinica, 2022, 31(10): 154-166. |
| [10] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
| [11] | Dan-dan ZHANG, Yuan-qing ZHANG, Jing CHENG, Guang JIN, Bo LI, Dong-cai WANG, Fang XU, Rui-feng SUN. Effects of different roughage combinations on in vitro rumen fermentation characteristics of Jinnan cattle [J]. Acta Prataculturae Sinica, 2021, 30(7): 93-100. |
| [12] | Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso [J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169. |
| [13] | Xiong-xiong LI, Ting JIAO, Sheng-guo ZHAO, Wei-na QIN, Xue-mei GAO, Zheng-wen WANG, Jian-ping WU, Zhao-min LEI. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep [J]. Acta Prataculturae Sinica, 2021, 30(11): 191-202. |
| [14] | ZHAN Jin-shun, YANG Qun, HU Yao, WU Yan-ping, HUO Jun-hong. Effects of dietary concentration:roughage ratio on rumen fermentation and flora population structure in Hu sheep [J]. Acta Prataculturae Sinica, 2020, 29(7): 122-130. |
| [15] | GAO Zi-qi, WANG Jia, TANG Yu-chen, WANG Ying-chun. Cloning and functional analysis of the gene NtUFGT in Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2020, 29(5): 159-170. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||