草业学报 ›› 2023, Vol. 32 ›› Issue (11): 53-64.DOI: 10.11686/cyxb2023011
朱志昊1,2,3(), 孟晨1,2,3(), 王兴1,2,3, 宋乃平1,2,3, 王丽1,2,3, 徐苗苗4, 杜灵通1,2,3
收稿日期:
2023-01-05
修回日期:
2023-03-27
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
孟晨
作者简介:
E-mail: mengchen@nxu.edu.cn基金资助:
Zhi-hao ZHU1,2,3(), Chen MENG1,2,3(), Xing WANG1,2,3, Nai-ping SONG1,2,3, Li WANG1,2,3, Miao-miao XU4, Ling-tong DU1,2,3
Received:
2023-01-05
Revised:
2023-03-27
Online:
2023-11-20
Published:
2023-09-27
Contact:
Chen MENG
摘要:
为深入理解人工柠条林建植后土壤团聚体分布及拓扑结构演变过程,认识柠条引入及生长中的土壤生态过程与功能,指导柠条林及土壤资源管理策略制定,本研究选取宁夏盐池县荒漠草原区的5种林龄(0、9、14、24、35年生)的柠条林地为研究对象,通过CT扫描、图像处理分析等方法研究不同林龄柠条林地土壤团聚体几何分布及拓扑结果特征。结果表明:随着柠条引入及林龄增加,土壤团聚体数量、长度、体积、表面积和平均等效直径整体上呈增多的趋势,而团聚体平均球度随之减少;土壤团聚体数量随着土壤深度增加而增加,但团聚体平均等效直径、平均球度随着土壤深度增加而减小,可见人工柠条林地表层土壤团聚体稳定性更强。柠条引入及持续恢复有利于表层土壤团聚体(尤其是大团聚体)的形成,但团聚体平均球度呈下降趋势,可见柠条林引入后土壤中形成的团聚体形态及稳定性不同于草地土壤团聚体,今后研究需要关注表征团聚体稳定性的重要形态特征,这对于充分认识土壤团聚体演变过程及其生态功能具有重要意义。
朱志昊, 孟晨, 王兴, 宋乃平, 王丽, 徐苗苗, 杜灵通. 荒漠草原人工柠条引入后土壤团聚体几何分布及拓扑结构演变特征[J]. 草业学报, 2023, 32(11): 53-64.
Zhi-hao ZHU, Chen MENG, Xing WANG, Nai-ping SONG, Li WANG, Miao-miao XU, Ling-tong DU. Geometric distribution, formation, and topological structure of soil aggregates after introduction of Caragana korshinskii on the desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(11): 53-64.
样地 Plot | 柠条引入情况 C. korshinskii introduction situation | 草本情况 Herbaceous condition | 坐标 Coordinate | 海拔 Altitude (m) |
---|---|---|---|---|
M1 | 引入35年Introduced for 35 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.2152′, E 107°30.3382′ | 1519 |
M2 | 引入24年Introduced for 24 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.0330′, E 107°29.7485′ | 1491 |
M3 | 引入14年Introduced for 14 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.1854′, E 107°30.1312′ | 1489 |
M4 | 引入9年Introduced for 9 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.3001′, E 107°29.6180′ | 1497 |
CK | ─ | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.4154′, E 107°29.7912′ | 1511 |
表 1 样地基本信息
Table 1 Plot fundamental information
样地 Plot | 柠条引入情况 C. korshinskii introduction situation | 草本情况 Herbaceous condition | 坐标 Coordinate | 海拔 Altitude (m) |
---|---|---|---|---|
M1 | 引入35年Introduced for 35 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.2152′, E 107°30.3382′ | 1519 |
M2 | 引入24年Introduced for 24 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.0330′, E 107°29.7485′ | 1491 |
M3 | 引入14年Introduced for 14 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.1854′, E 107°30.1312′ | 1489 |
M4 | 引入9年Introduced for 9 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.3001′, E 107°29.6180′ | 1497 |
CK | ─ | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.4154′, E 107°29.7912′ | 1511 |
样地 Plot | 土壤深度 Soil depth (cm) | 孔隙度 Porosity (%) | 土壤密度 Soil bulk density (g·m-3) | 稳渗速率 Stable infiltration rate (mm·min-1) | 土壤含水量 Soil moisture content (%) | 土壤颗粒组成 Soil particle composition (%) | ||
---|---|---|---|---|---|---|---|---|
<0.05 mm | 0.05~0.25 mm | >0.25 mm | ||||||
M1 | 0~10 | 0.028±0.016 | 1.307±0.067 | 3.533±0.252 | 11.650±1.876 | 9.53 | 76.28 | 14.19 |
10~20 | 0.042±0.058 | 1.317±0.051 | 3.367±0.322 | 10.053±1.962 | 6.30 | 70.12 | 23.58 | |
M2 | 0~10 | 0.022±0.010 | 1.317±0.012 | 2.667±0.153 | 6.600±4.555 | 9.81 | 68.32 | 21.87 |
10~20 | 0.018±0.007 | 1.273±0.032 | 3.000±0.265 | 7.577±1.746 | 6.12 | 63.15 | 30.73 | |
M3 | 0~10 | 0.018±0.006 | 1.290±0.072 | 2.733±0.058 | 8.853±1.365 | 6.58 | 55.35 | 21.87 |
10~20 | 0.014±0.003 | 1.337±0.012 | 3.000±0.100 | 12.230±2.983 | 7.88 | 59.16 | 30.73 | |
M4 | 0~10 | 0.158±0.006 | 1.440±0.017 | 2.233±0.058 | 9.470±0.259 | 5.35 | 58.32 | 36.33 |
10~20 | 0.013±0.002 | 1.477±0.006 | 2.567±0.208 | 8.837±0.652 | 1.85 | 58.24 | 39.91 | |
CK | 0~10 | 0.016±0.002 | 1.310±0.030 | 2.700±0.200 | 7.980±1.112 | 0.98 | 61.67 | 37.35 |
10~20 | 0.013±0.013 | 1.360±0.010 | 3.200±0.300 | 7.803±0.352 | 1.25 | 50.36 | 48.39 |
表 2 样地土壤基本性质
Table 2 Basic properties of the soil in the plot
样地 Plot | 土壤深度 Soil depth (cm) | 孔隙度 Porosity (%) | 土壤密度 Soil bulk density (g·m-3) | 稳渗速率 Stable infiltration rate (mm·min-1) | 土壤含水量 Soil moisture content (%) | 土壤颗粒组成 Soil particle composition (%) | ||
---|---|---|---|---|---|---|---|---|
<0.05 mm | 0.05~0.25 mm | >0.25 mm | ||||||
M1 | 0~10 | 0.028±0.016 | 1.307±0.067 | 3.533±0.252 | 11.650±1.876 | 9.53 | 76.28 | 14.19 |
10~20 | 0.042±0.058 | 1.317±0.051 | 3.367±0.322 | 10.053±1.962 | 6.30 | 70.12 | 23.58 | |
M2 | 0~10 | 0.022±0.010 | 1.317±0.012 | 2.667±0.153 | 6.600±4.555 | 9.81 | 68.32 | 21.87 |
10~20 | 0.018±0.007 | 1.273±0.032 | 3.000±0.265 | 7.577±1.746 | 6.12 | 63.15 | 30.73 | |
M3 | 0~10 | 0.018±0.006 | 1.290±0.072 | 2.733±0.058 | 8.853±1.365 | 6.58 | 55.35 | 21.87 |
10~20 | 0.014±0.003 | 1.337±0.012 | 3.000±0.100 | 12.230±2.983 | 7.88 | 59.16 | 30.73 | |
M4 | 0~10 | 0.158±0.006 | 1.440±0.017 | 2.233±0.058 | 9.470±0.259 | 5.35 | 58.32 | 36.33 |
10~20 | 0.013±0.002 | 1.477±0.006 | 2.567±0.208 | 8.837±0.652 | 1.85 | 58.24 | 39.91 | |
CK | 0~10 | 0.016±0.002 | 1.310±0.030 | 2.700±0.200 | 7.980±1.112 | 0.98 | 61.67 | 37.35 |
10~20 | 0.013±0.013 | 1.360±0.010 | 3.200±0.300 | 7.803±0.352 | 1.25 | 50.36 | 48.39 |
林龄 Years | 土壤深度 Soil depth (cm) | 数量密度 Number density (No.·mm-3) | 长度密度 Length density (mm·mm-3) | 体积密度 Volume density (mm3·mm-3) | 表面积密度 Surface area density (mm2·mm-3) | 平均等效直径 Average equivalent diameter (mm) | 平均球度 Average sphericity |
---|---|---|---|---|---|---|---|
9 | 0~10 | 0.635±0.002a | 0.309±0.001c | 0.008±0.000e | 0.202±0.001d | 0.309±0.003e | 3.214±0.465a |
10~20 | 0.935±0.003a | 0.446±0.001b | 0.016±0.000c | 0.310±0.001b | 0.342±0.005c | 2.649±0.313a | |
14 | 0~10 | 0.359±0.001c | 0.261±0.000d | 0.017±0.000c | 0.265±0.000b | 0.382±0.006b | 2.613±0.183c |
10~20 | 0.336±0.001d | 0.235±0.001d | 0.012±0.000d | 0.213±0.000c | 0.365±0.005a | 2.536±0.122b | |
24 | 0~10 | 0.514±0.001b | 0.359±0.000b | 0.023±0.000a | 0.364±0.001a | 0.389±0.005a | 2.168±0.204d |
10~20 | 0.748±0.002b | 0.345±0.001c | 0.010±0.000e | 0.218±0.000c | 0.314±0.003d | 2.543±0.305b | |
35 | 0~10 | 0.513±0.001b | 0.376±0.000a | 0.021±0.000b | 0.371±0.000a | 0.378±0.004c | 2.743±0.127b |
10~20 | 0.972±0.002a | 0.510±0.001a | 0.024±0.000a | 0.410±0.000a | 0.341±0.003c | 2.064±0.165c | |
CK | 0~10 | 0.323±0.001d | 0.225±0.000e | 0.012±0.000d | 0.222±0.001c | 0.358±0.006d | 2.791±0.313b |
10~20 | 0.667±0.001c | 0.460±0.001b | 0.020±0.000b | 0.400±0.001a | 0.360±0.003b | 2.569±0.134b |
表3 不同林龄柠条林地不同深度土层土壤团聚体拓扑结构特征
Table 3 Topological characteristics of soil aggregates in soil layers at different depths in C. korshinskii shrubland of different years
林龄 Years | 土壤深度 Soil depth (cm) | 数量密度 Number density (No.·mm-3) | 长度密度 Length density (mm·mm-3) | 体积密度 Volume density (mm3·mm-3) | 表面积密度 Surface area density (mm2·mm-3) | 平均等效直径 Average equivalent diameter (mm) | 平均球度 Average sphericity |
---|---|---|---|---|---|---|---|
9 | 0~10 | 0.635±0.002a | 0.309±0.001c | 0.008±0.000e | 0.202±0.001d | 0.309±0.003e | 3.214±0.465a |
10~20 | 0.935±0.003a | 0.446±0.001b | 0.016±0.000c | 0.310±0.001b | 0.342±0.005c | 2.649±0.313a | |
14 | 0~10 | 0.359±0.001c | 0.261±0.000d | 0.017±0.000c | 0.265±0.000b | 0.382±0.006b | 2.613±0.183c |
10~20 | 0.336±0.001d | 0.235±0.001d | 0.012±0.000d | 0.213±0.000c | 0.365±0.005a | 2.536±0.122b | |
24 | 0~10 | 0.514±0.001b | 0.359±0.000b | 0.023±0.000a | 0.364±0.001a | 0.389±0.005a | 2.168±0.204d |
10~20 | 0.748±0.002b | 0.345±0.001c | 0.010±0.000e | 0.218±0.000c | 0.314±0.003d | 2.543±0.305b | |
35 | 0~10 | 0.513±0.001b | 0.376±0.000a | 0.021±0.000b | 0.371±0.000a | 0.378±0.004c | 2.743±0.127b |
10~20 | 0.972±0.002a | 0.510±0.001a | 0.024±0.000a | 0.410±0.000a | 0.341±0.003c | 2.064±0.165c | |
CK | 0~10 | 0.323±0.001d | 0.225±0.000e | 0.012±0.000d | 0.222±0.001c | 0.358±0.006d | 2.791±0.313b |
10~20 | 0.667±0.001c | 0.460±0.001b | 0.020±0.000b | 0.400±0.001a | 0.360±0.003b | 2.569±0.134b |
图4 柠条林龄与土壤团聚体拓扑结构特征相关关系***P<0.001, **P<0.01, *P<0.05. Age: 林龄Years; Number: 数量密度Number density; Length: 长度密度Length density; Volume: 体积密度Volume density; Area:表面积密度Surface area density; EqDiameter: 平均等效直径Average equivalent diameter; Sphericity: 平均球度Average sphericity. 下同The same below.
Fig.4 Correlation between different years of C. korshinskii and topological characteristics of soil aggregates
图5 不同林龄柠条林地土壤团聚体拓扑结构特征随土壤深度变化情况
Fig.5 Topological characteristics of soil aggregates in C. korshinskii shrubland of different years vary with soil depth
图6 柠条林龄与土壤团聚体拓扑结构特征主成分分析第一主成分解释率为52.01%,第二主成分解释率为25.78%。The first principal component proportion explained is 52.01%, the second principal component proportion explained is 25.78%.
Fig.6 Principal component analysis of topological characteristics of different years of C. korshinskii and soil aggregates
1 | Zhang Y H, Weng B S, Yan D H. Research progress of soil aggregates based on literature visualization analysis. Advances in Earth Science, 2022, 37(4): 429-438. |
张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展. 地球科学进展, 2022, 37(4): 429-438. | |
2 | Zhang X R, Zhang W Q. Research progress of soil aggregates. Northern Horticulture, 2020, 468(21): 131-137. |
张旭冉, 张卫青. 土壤团聚体研究进展. 北方园艺, 2020, 468(21): 131-137. | |
3 | Li Z H, Zhang Q H, Tian H W, et al. Study on the structure of topsoil aggregates for Mu Us sandy land in China. Institute of Physics Conference Series: Earth and Environmental Science, 2016, 41(1): 012021. |
4 | Liang A, McLaughlin N B, Zhang X, et al. Short-term effects of tillage practices on soil aggregate fractions in a Chinese Mollisol. Acta Agriculturae Scandinavia, Section B-Soil & Plant Science, 2011, 61(6): 535-542. |
5 | Huang Y, Zhang F B, Gao J X, et al. Progress in research on structural stability of soil aggregates based on high energy moisture characteristic method. Research of Soil and Water Conservation, 2022, 29(6): 431-437, 443. |
黄悦, 张风宝, 高晶霞, 等. 基于高能水分特性法的土壤团聚体结构稳定性研究进展. 水土保持研究, 2022, 29(6): 431-437, 443. | |
6 | Li N, Han X Z, You M Y, et al. Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 2013, 22(9): 1625-1632. |
李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632. | |
7 | Rong H, Fang H, Zhang Z B, et al. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization. Acta Pedologica Sinica, 2022, 59(2): 476-485. |
荣慧, 房焕, 张中彬, 等. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响. 土壤学报, 2022, 59(2): 476-485. | |
8 | Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. |
9 | Nadian H, Hashemi M, Herbert S J. Soil aggregate size and mycorrhizal colonization effect on root growth and phosphorus accumulation by berseem clover. Communications in Soil Science and Plant Analysis, 2009, 40(15/16): 2413-2425. |
10 | Mawodza T, Menon M, Brooks H, et al. Preferential wheat (Triticum aestivum. L. cv. Fielder) root growth in different sized aggregates. Soil and Tillage Research, 2021, 212: 105054. |
11 | Wang X, Whalley W R, Miller A J, et al. Sustainable cropping requires adaptation to a heterogeneous rhizosphere. Trends in Plant Science, 2020, 25(12): 1194-1202. |
12 | Rabot E, Wiesmeier M, Schlüter S, et al. Soil structure as an indicator of soil functions: A review. Geoderma, 2018, 314: 122-137. |
13 | Garcia L, Damour G, Gary C, et al. Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 2019, 435(1): 1-14. |
14 | Le Bissonnais Y, Prieto I, Roumet C, et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant and Soil, 2018, 424(1): 303-317. |
15 | Song R, Liu L, Ma L Y, et al. Effect of crop root exudates on the size and stability of soil aggregate. Journal of Nanjing Agricultural University, 2009, 32(3): 93-97. |
宋日, 刘利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响. 南京农业大学学报, 2009, 32(3): 93-97. | |
16 | Zhang Z, Huang Y Z, Zhang C, et al. Distribution of soil phosphorus fractions in aggregates in Chinese fir plantations with different stand ages. Chinese Journal of Applied Ecology, 2022, 33(4): 939-948. |
张喆, 黄永珍, 张超, 等. 不同林龄杉木人工林土壤团聚体磷素分布特征. 应用生态学报, 2022, 33(4): 939-948. | |
17 | Zhang H O, Shi C D, Li J. Changes of aggregates in soft rock improved sandy soil after years of corn plantation. Journal of Arid Land Resources and Environment, 2022, 36(2): 110-115. |
张海欧, 师晨迪, 李娟. 砒砂岩改良风沙土后玉米不同种植年限下土壤团聚体变化特征. 干旱区资源与环境, 2022, 36(2): 110-115. | |
18 | Zhuang Z, Zhang Y, Zhang Y, et al. Study on distribution characteristics and stability of soil aggregate in Chinese fir plantation at different developmental stages. Journal of Soil and Water Conservation, 2017, 31(6): 183-188. |
庄正, 张芸, 张颖, 等. 不同发育阶段杉木人工林土壤团聚体分布特征及其稳定性研究. 水土保持学报, 2017, 31(6): 183-188. | |
19 | Gao R, Zhao Y G, Liu X F, et al. Effects of stand age and slope position of Caragana korshinskii plantations on soil aggregate stability in the loess hilly region. Acta Ecologica Sinica, 2020, 40(9): 2964-2974. |
高冉, 赵勇钢, 刘小芳, 等. 黄土丘陵区人工柠条种植年限和坡位对土壤团聚体稳定性的影响. 生态学报, 2020, 40(9): 2964-2974. | |
20 | Zhang F, Chen Y M, Wang Y F, et al. Effects of Caragana korshinskii plantation on soil physical properties and organic matter in semi-arid loess hilly region. Research of Soil and Water Conservation, 2010, 17(3): 105-109. |
张飞, 陈云明, 王耀凤, 等. 黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响. 水土保持研究, 2010, 17(3): 105-109. | |
21 | Zhu Q L, Cheng M, An S S, et al. Effects of re-vegetation on characteristics of soil aggregates and humus in soil aggregate in loess hilly region of southern Ningxia. Journal of Soil and Water Conservation, 2013, 27(4): 247-251, 257. |
朱秋莲, 程曼, 安韶山, 等. 宁南山区植被恢复对土壤团聚体特征及腐殖质分布的影响. 水土保持学报, 2013, 27(4): 247-251, 257. | |
22 | Xue S, Liu G B, Zhang C, et al. Change of soil-erodibility of artificial shrubs in loess hilly area. Scientia Agricultura Sinica, 2010, 43(15): 3143-3150. |
薛萐, 刘国彬, 张超, 等. 黄土丘陵区人工灌木林土壤抗蚀性演变特征. 中国农业科学, 2010, 43(15): 3143-3150. | |
23 | Shi Y, Chen X, Shen S M. Stable mechanisms of soil aggregate and effects of human activities. Chinese Journal of Applied Ecology, 2002, 13(11): 1491-1494. |
史奕, 陈欣, 沈善敏. 土壤团聚体的稳定机制及人类活动的影响. 应用生态学报, 2002,13(11): 1491-1494. | |
24 | Liu J Y, Zhou Z C, Su X M. A review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273, 298. |
刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273, 298. | |
25 | Liu D H, Li Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil and Water Conservation, 2003, 17(3): 34-37, 117. |
刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究. 水土保持学报, 2003, 17(3): 34-37, 117. | |
26 | Yang Q, Zhu D Y, Chen J, et al. Effects of vegetation restoration models on soil aggregate and organic carbon stock. Journal of Forest and Environment, 2022, 42(6): 631-639. |
杨倩, 朱大运, 陈静, 等. 植被恢复模式对土壤团聚体和有机碳储量的影响. 森林与环境学报, 2022, 42(6): 631-639. | |
27 | Xiao T Q, Liu Y Q, Liu X J, et al. Effects of six vegetation restoration models on the physicochemical properties and aggregate stability of degraded red soil in Jiangxi Province. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(5): 1292-1304. |
肖廷琦, 刘苑秋, 刘晓君, 等. 六种植被恢复模式对江西退化红壤理化性质及团聚体稳定性的影响. 江西农业大学学报, 2022, 44(5): 1292-1304. | |
28 | Fang X, Li J, Xiong Y, et al. Responses of Caragana korshinskii Kom. to shoot removal: mechanisms underlying regrowth. Ecological Research, 2008, 23(5): 863-871. |
29 | Wang S, Li L, Zhou D W. Root morphological responses to population density vary with soil conditions and growth stages: The complexity of density effects. Ecology and Evolution, 2021, 11(15): 10590-10599. |
30 | Liang H B, Shi J W, Li Z S, et al. Evaluation of soil desiccation intensity in different ages of Caragana korshinskii Kom. in loess hilly region, northwestern Shanxi. Research of Soil and Water Conservation, 2018, 25(2): 87-93. |
梁海斌, 史建伟, 李宗善, 等. 晋西北黄土丘陵区不同林龄柠条林地土壤干燥化效应. 水土保持研究, 2018, 25(2): 87-93. | |
31 | Wang W, Kravchenko A N, Smucker A J M, et al. Comparison of image segmentation methods in simulated 2D and 3D microtomographic images of soil aggregates. Geoderma, 2011, 162(3/4): 231-241. |
32 | Kravchenko A N, Wang A N W, Smucker A J M, et al. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity. Soil Science Society of America Journal, 2011, 75(5): 1658-1666. |
33 | Wang W, Kravchenko A N, Smucker A J M, et al. Intra-aggregate pore characteristics: X-ray computed microtomography analysis. Soil Science Society of America Journal, 2012, 76(4): 1159-1171. |
34 | Zhou H, Peng X, Peth S, et al. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography. Soil and Tillage Research, 2012, 124: 17-23. |
35 | Cho G C, Dodds J, Santamarina J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. |
36 | Li Z K, Li X Y, Zhou S, et al. A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Science China Earth Sciences, 2022, 52(11): 2105-2138. |
李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展. 中国科学: 地球科学, 2022, 52(11): 2105-2138. | |
37 | Xiao L, Yao K, Li P, et al. Increased soil aggregate stability is strongly correlated with root and soil properties along a gradient of secondary succession on the Loess Plateau. Ecological Engineering, 2020, 143: 105671. |
38 | Tan X J, Mu X M, Gao P, et al. Effects of vegetation restoration on changes to soil physical properties on the Loess Plateau. China Environmental Science, 2019, 39(2): 713-722. |
谭学进, 穆兴民, 高鹏, 等. 黄土区植被恢复对土壤物理性质的影响. 中国环境科学, 2019, 39(2): 713-722. | |
39 | Wang Y, Liu S, Guo J L, et al. Influence of different vegetation types on soil nutrients, enzyme activities and microbial diversities in loess plateau. Bulletin of Soil and Water Conservation, 2018, 38(1): 62-68. |
王雅, 刘爽, 郭晋丽, 等. 黄土高原不同植被类型对土壤养分、酶活性及微生物的影响. 水土保持通报, 2018, 38(1): 62-68. | |
40 | Liu M Y, Chang Q R, An S S, et al. Features of soil aggregate and tiny aggregate under different land use. Chinese Agricultural Science Bulletin, 2005(11): 247-250. |
刘梦云, 常庆瑞, 安韶山, 等. 土地利用方式对土壤团聚体及微团聚体的影响. 中国农学通报, 2005(11): 247-250. | |
41 | Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskii shrubland in different years of desert grassland in Ningxia. Acta Ecologica Sinica, 2022, 42(3): 895-903. |
马昀, 孟晨, 岳健敏, 等. 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究. 生态学报, 2022, 42(3): 895-903. | |
42 | Zhao F W, Wang N, Su X M, et al. Effects of main plant roots on soil organic matter and aggregates in loess hilly region. Journal of Soil and Water Conservation, 2019, 33(5): 105-113. |
赵富王, 王宁, 苏雪萌, 等. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响. 水土保持学报, 2019, 33(5): 105-113. | |
43 | Cui X R, Zhang J L, Wang Y Q, et al. Effect of different forests on the soil aggregate stability in Xiaolongshan forest region of Gansu Province. Journal of Soil and Water Conservation, 2021, 35(4): 275-281. |
崔芯蕊, 张嘉良, 王云琦, 等. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报, 2021, 35(4): 275-281. | |
44 | Jiang C X, Wang B, Wang Y J, et al. Soil aggregate stability of typical forest stands in the Jinyun Mountain based on Le Bissonnais method. Science of Soil and Water Conservation, 2020, 18(2): 52-61. |
蒋春晓, 王彬, 王玉杰, 等. 基于LB法的缙云山典型林分土壤团聚体的稳定性. 中国水土保持科学, 2020, 18(2): 52-61. |
[1] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[2] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[3] | 曲文杰, 赵文智, 王磊, 屈建军, 杨新国. 两种旱生灌木种子萌发与幼苗复活对模拟干湿处理的响应[J]. 草业学报, 2023, 32(11): 179-187. |
[4] | 李鸿, 谌芸, 刘枭宏, 刘有斌, 都艺芝. 紫色土坡耕地地埂草篱根系土壤抗蚀与抗冲性能特征研究[J]. 草业学报, 2023, 32(11): 40-52. |
[5] | 张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88. |
[6] | 田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50. |
[7] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[8] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[9] | 畅志鹏, 孙莹莹, 李佳阳, 龚春梅. 柠条CkCAD基因的克隆转化及其抗旱功能分析[J]. 草业学报, 2021, 30(3): 68-80. |
[10] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[11] | 马晓静, 郭艳菊, 张嘉玉, 许爱云, 刘金龙, 许冬梅. 宁夏盐池县沙化草地土壤团聚体分异特征[J]. 草业学报, 2020, 29(3): 27-37. |
[12] | 常海涛, 刘任涛, 陈蔚, 张安宁, 左小安. 内蒙古乌拉特荒漠草原红砂灌丛林引入柠条后地面节肢动物群落结构分布特征[J]. 草业学报, 2020, 29(12): 188-197. |
[13] | 周涛, 谌芸, 王润泽, 李铁, 唐菡, 翟婷婷, 刘枭宏. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究[J]. 草业学报, 2019, 28(3): 62-73. |
[14] | 李明, 秦洁, 红雨, 杨殿林, 周广帆, 王宇, 王丽娟. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019, 28(12): 29-40. |
[15] | 李铁, 王润泽, 谌芸, 何丙辉, 周涛, 吴晨, 刘枭宏. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响[J]. 草业学报, 2018, 27(2): 69-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||