草业学报 ›› 2024, Vol. 33 ›› Issue (1): 89-101.DOI: 10.11686/cyxb2023087
韩金秀1(), 陈斌1, 刘晏廷1, 孟儒1, 金利妍2, 何淼1()
收稿日期:
2023-03-21
修回日期:
2023-04-19
出版日期:
2024-01-20
发布日期:
2023-11-23
通讯作者:
何淼
作者简介:
E-mail: hemiao@nefu.edu.cn基金资助:
Jin-xiu HAN1(), Bin CHEN1, Yan-ting LIU1, Ru MENG1, Li-yan JIN2, Miao HE1()
Received:
2023-03-21
Revised:
2023-04-19
Online:
2024-01-20
Published:
2023-11-23
Contact:
Miao HE
摘要:
bHLH家族是植物中第二大转录因子家族,对植物的生长发育、次生代谢和环境胁迫应答都起着重要的作用。本研究以神农香菊叶片cDNA为模板克隆了CibHLH1的全长序列,该基因全长738 bp,开放阅读框为630 bp。多序列比对分析及系统进化树结果表明,CibHLH1与菊花的CmbHLH1同源性最高。不同组织部位的荧光定量数据显示该基因在花中表达量最高,在根中表达量最低,亚细胞定位结果显示该基因定位在细胞核中。为进一步研究CibHLH1的功能,通过叶盘法将其转化烟草,发现过表达CibHLH1烟草叶片黄化,测定叶绿素含量发现,叶绿素a、叶绿素b及总叶绿素含量均显著降低。测定转基因烟草的光响应曲线及光合生理指标,结果表明过表达CibHLH1降低了烟草的最大净光合速率、表观量子效率、光饱和点和水分利用率,但其蒸腾速率、气孔导度和光补偿点均增加。综上所述,CibHLH1能够通过降低光合色素的含量而影响植物的光合能力。
韩金秀, 陈斌, 刘晏廷, 孟儒, 金利妍, 何淼. 神农香菊CibHLH1的鉴定及对光合特性的影响[J]. 草业学报, 2024, 33(1): 89-101.
Jin-xiu HAN, Bin CHEN, Yan-ting LIU, Ru MENG, Li-yan JIN, Miao HE. Identification of CibHLH1 and its effect on photosynthetic characteristics in Chrysanthemum indicum var. aromaticum[J]. Acta Prataculturae Sinica, 2024, 33(1): 89-101.
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
bHLH-F | ATTTTACCAAACAGCGTCTTACGAGAAC |
bHLH-R | TTAGGCAACCGGAGGGCGA |
bHLH-1-F | AGTGCGGAACAAGATGGCTCA |
bHLH-1-R | GGGCTTCCCAGGTTCAAGG |
CmUBI-F | AGCTGAGCAGACTCCCGATG |
CmUBI-R | AGGCGAATCATCAGTACCAAGT |
CibHLH1-KpnI | |
CibHLH1-SpeI | |
pBI121-T-F | TCATTTCATTTGGAGAGAACAC |
pBI121-T-R | TTGCCAAATGTTTGAACGATC |
表1 引物序列
Table 1 Primer sequence
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
bHLH-F | ATTTTACCAAACAGCGTCTTACGAGAAC |
bHLH-R | TTAGGCAACCGGAGGGCGA |
bHLH-1-F | AGTGCGGAACAAGATGGCTCA |
bHLH-1-R | GGGCTTCCCAGGTTCAAGG |
CmUBI-F | AGCTGAGCAGACTCCCGATG |
CmUBI-R | AGGCGAATCATCAGTACCAAGT |
CibHLH1-KpnI | |
CibHLH1-SpeI | |
pBI121-T-F | TCATTTCATTTGGAGAGAACAC |
pBI121-T-R | TTGCCAAATGTTTGAACGATC |
图4 CibHLH1在神农香菊不同部位的表达量分析*表示花、茎、叶与根中表达量差异显著(P<0.05)。* indicates significant differences in expression level between flower, stem, leaf and root (P<0.05).
Fig. 4 Analysis of CibHLH1 expression in different parts of C. indicum var. aromaticum
图6 阳性转基因烟草的鉴定M: 分子量标准Marker; 1: 野生型Wild type; 2~6: 转CibHLH1基因阳性烟草CibHLH1 positive tobacco; 5: B1株系B1 strain; 6: B2株系B2 strain; 7: pBI121-GFP::CibHLH1质粒 pBI121-GFP::CibHLH1 plasmid; 8: 野生型Wild type; 9,10: 转pBI121-GFP空载体烟草pBI121-GFP empty carrier tobacco; 11: pBI121-GFP质粒pBI121-GFP plasmid.
Fig.6 Identification of positive transgenic tobacco
图7 不同株系的叶形态对比B1, B2: 转CibHLH1基因阳性烟草CibHLH1 positive tobacco; EV: 转pBI121-GFP空载体烟草pBI121-GFP empty carrier tobacco; WT: 野生型Wild type. 下同The same below.
Fig.7 Comparison of leaf morphology of different strains
图8 不同株系的叶绿素含量*表示B1、B2与WT、EV中叶绿素含量差异显著(P<0.05)。* indicates significant differences in chlorophyll content between B1, B2 and WT and EV (P<0.05).
Fig.8 Chlorophyll content of different strains
株系 Plants | 最大净光合速率 Maximum net photosynthetic rate (μmol·m-2·s-1) | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent photosynthetic quantum yield |
---|---|---|---|---|
WT | 8.28±0.20a | 12.11±6.56b | 392.17±8.11a | 0.0219±0.0014a |
EV | 8.35±0.65a | 9.80±1.11b | 363.50±13.52a | 0.0241±0.0025a |
B1 | 5.13±0.51b | 24.66±7.05a | 325.85±49.52b | 0.0174±0.0011b |
B2 | 4.98±0.88b | 22.38±2.89a | 306.69±25.21b | 0.0176±0.0033b |
表2 不同株系的光合参数
Table 2 Photosynthetic parameters of different strains
株系 Plants | 最大净光合速率 Maximum net photosynthetic rate (μmol·m-2·s-1) | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent photosynthetic quantum yield |
---|---|---|---|---|
WT | 8.28±0.20a | 12.11±6.56b | 392.17±8.11a | 0.0219±0.0014a |
EV | 8.35±0.65a | 9.80±1.11b | 363.50±13.52a | 0.0241±0.0025a |
B1 | 5.13±0.51b | 24.66±7.05a | 325.85±49.52b | 0.0174±0.0011b |
B2 | 4.98±0.88b | 22.38±2.89a | 306.69±25.21b | 0.0176±0.0033b |
1 | Wang Y P, Gao H H, Liu Y S, et al. Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: A review. Chinese Journal of Applied Ecology, 2013, 24(7): 2049-2055. |
王玉萍, 高会会, 刘悦善, 等. 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 2013, 24(7): 2049-2055. | |
2 | Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants. Chinese Journal of Ecology, 2018, 37(1): 245-254. |
蔡金桓, 薛立. 高山植物的光合生理特性研究进展. 生态学杂志, 2018, 37(1): 245-254. | |
3 | Xing H S, Wu J M, Chen J, et al. Research progress on limiting factors of plant photosynthesis and vegetation productivity. Acta Ecologica Sinica. (2023-02-10)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.2031.q.20230210.0905.002.html. |
邢红爽, 乌佳美, 陈健, 等. 植物光合作用限制因素与植被生产力的研究进展. 生态学报. (2023-02-10)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.2031.q.20230210.0905.002.html. | |
4 | Chu R, Zhang Q H, Wei Y Z. Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. Photosynthesis Research, 2022, 153(3): 177-189. |
5 | Shi S B, Zhou D W, Li T C, et al. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2023, 47(3): 361-373. |
师生波, 周党卫, 李天才, 等. 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 2023, 47(3): 361-373. | |
6 | Zhong X R, Zhang L, Pan X H, et al. Response and adaptation of leaf functional traits to different altitudes in evergreen broad-leaved forest of Castanopsis carlesii. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(6): 1438-1447. |
仲小茹, 张露, 潘昕昊, 等. 常绿阔叶林米槠叶片功能性状对不同海拔梯度的响应与适应. 江西农业大学学报, 2022, 44(6): 1438-1447. | |
7 | Wang F. Study on physiological and biochemical characteristics and genetic diversity of wild ancient tea tree leaves at different altitudes in Qianjiazhai. Kunming: Southwest Forestry University, 2021. |
王菲. 千家寨不同海拔野生古茶树叶片生理生态特性及遗传多样性研究. 昆明: 西南林业大学, 2021. | |
8 | Tang L Y, Chen Z Y, Dai Z, et al. Chlorophyll content and photosynthetic efficiency of Thuidium kanedae at different altitudes. Subtropical Plant Science, 2021, 50(4): 251-256. |
唐录艳, 陈泽宇, 戴尊, 等. 不同海拔短肋羽藓叶绿素含量与光合效率研究. 亚热带植物科学, 2021, 50(4): 251-256. | |
9 | Shi S B, Shang Y X, Shi R, et al. Response of PSⅡ photochemical efficiency and photosynthetic pigments of Sauaaurea superba to short-term UV-B-supplementation. Chinese Journal of Plant Ecology, 2012, 36(5): 420-430. |
师生波, 尚艳霞, 师瑞, 等. 高山植物美丽风毛菊PSⅡ光化学效率和光合色素对短期增补UV-B辐射的响应. 植物生态学报, 2012, 36(5): 420-430. | |
10 | Liu Q H, Zhang H Q, Jia W J, et al. The investigation on geographical distribution, ecological habit and storage quantity on a new resource plant of Hubei, Dendranthema indicum (L.) Des Monl. var. aromaticum. Plant Science Journal, 1983, 1(2): 239-245, 338. |
刘启宏, 张红旗, 贾卫疆, 等. 湖北新资源植物-神农香菊的地理分布、生态习性与蕴藏量的调查研究. 植物科学学报, 1983, 1(2): 239-245, 338. | |
11 | Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology, 2000, 20(2): 429-440. |
12 | Li F, Liu W. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos taurus. Mammalian Genome, 2017, 28(5/6): 176-197. |
13 | Zhang J, Guo M Z, Wu H H, et al. GhPAS1, a bHLH transcription factor in upland cotton (Gossypium hirsutum), positively regulates Verticillium dahlia resistance. Industrial Crops & Products, 2023, 192: 116077. |
14 | Guo X J, Fu Y X, Lee Y J, et al. The PGS1 basic helix-loop-helix (bHLH) protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20(7): 1311-1326. |
15 | Jin J, Chu C C. Regulation of dormancy of rice seed by two antagonistic bHLH transcription factors. Hereditas, 2023, 45(1): 3-5. |
金晶, 储成才. 两个拮抗的bHLH转录因子对水稻种子休眠的调控. 遗传, 2023, 45(1): 3-5. | |
16 | Nan G L, Teng C, Fernandes J, et al. A cascade of bHLH-regulated pathways programs maize anther development. The Plant Cell, 2022, 34(4): 1207-1225. |
17 | Deguchi A, Tatsuzawa F, Ishii K, et al. Localized repression of two bHLH genes is involved in the formation of white margins and white abaxial surfaces in carnation petals by inducing the absence of anthocyanin synthesis. The Horticulture Journal, 2022, 91(1): 68-84. |
18 | Yang Y Y, Zhang Y F, He J H, et al. Transcription factor GlbHLH regulates hyphal growth, stress resistance, and polysaccharide biosynthesis in Ganoderma lucidum. Journal of Basic Microbiology, 2021, 62(1): 82-91. |
19 | Wu H H, Ren Z Y, Zheng L, et al. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton. The Crop Journal, 2021, 9(5): 1049-1059. |
20 | Wang J P, Li C N, Mao X G, et al. The wheat basic helix-loop-helix (bHLH) gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. Journal of Experimental Botany, 2023, 74(8): 2542-2555. |
21 | Tan C, Qiao H L, Ma M, et al. Genome-wide identification and characterization of melon bHLH transcription factors in regulation of fruit development. Plants, 2021, 10(12): 2721. |
22 | Zhang L, Xiang Z P, Li J F, et al. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant, Cell & Environment, 2022, 46(4): 1402-1418. |
23 | Pablo L, Elena M, Yoshito O, et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Current Biology, 2008, 18(23): 1815-1823. |
24 | Zhang Y Q, Liu Z J, Chen Y D, et al. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Science, 2015, 237: 57-68. |
25 | Guo P Y. Cloning and functional study of tomato bHLH transcription factor SlPRE3. Chongqing: Chongqing University, 2021. |
郭鹏宇. 番茄bHLH转录因子SlPRE3的克隆与功能研究. 重庆: 重庆大学, 2021. | |
26 | Yu J Q. The apple bHLH transcription factor MdbHLH3 functions in regulating the fruit sugar and malate metabolism. Tai’an: Shandong Agricultural University, 2022. |
于建强. 苹果bHLH转录因子MdbHLH3在调控果实糖酸代谢中的功能研究. 泰安: 山东农业大学, 2022. | |
27 | Wei Y, Jiang C, Han R, et al. Plasma membrane proteomic analysis by TMT-PRM provides insight into mechanisms of aluminum resistance in tamba black soybean roots tips. PeerJ, 2020, 8: e9312. |
28 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔ CT method. Methods, 2001, 25(4): 402-408. |
29 | Liu Y Z. Research on DiaMYB gene expression characteristic and stress tolerance in Dendranthema indicum var. aromaticum. Harbin: Northeast Forestry University, 2016. |
刘颖竹. 神农香菊DiaMYB基因的表达特性及抗逆功能研究. 哈尔滨: 东北林业大学, 2016. | |
30 | Wang L. Cloning and primary characterization of CiMYB61 in Chrysanthemum indicum var. aromaticum. Harbin: Northeast Forestry University, 2018. |
王蕾. 神农香菊CiMYB61基因的克隆及其功能的初步研究. 哈尔滨: 东北林业大学, 2018. | |
31 | Zhang J L, Li Y X, Luo H X, et al. Effects of molybdenum application on chlorophyll contents, photosynthetic rates, yield and quality of tobacco leaves. Chinese Tobacco Science, 2011, 32(2): 24-28. |
张纪利, 李余湘, 罗红香, 等. 施钼对烟草叶绿素含量、光合速率、产量及品质的影响. 中国烟草科学, 2011, 32(2): 24-28. | |
32 | Carretero-Paulet L, Galstyan A, Roig-Villanova I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology, 2010, 153(3): 1398-1412. |
33 | Ludwig S R, Habera L F, Dellaporta S L, et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 7092-7096. |
34 | Jiang Y Q, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics & Genomics, 2009, 282(5): 503-516. |
35 | Rushton P J, Bokowiec M T, Han S C, et al. Tobacco transcription factors: Novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 2008, 147(1): 280-295. |
36 | Xiong Y Q, Liu T Y, Tian C G, et al. Transcription factors in rice: A genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology, 2005, 59(1): 191-203. |
37 | Zhao W, Liu Y H, Li L, et al. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.). Frontiers in Genetics, 2021, 12: 632509. |
38 | Kumar S V, Lucyshyn D, Jaeger K, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484(7393): 242-245. |
39 | Liu W W, Tai H H, Li S S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist, 2014, 201(4): 1192-1204. |
40 | Wang K N, Liu H Y, Mei Q L, et al. Characteristics of bHLH transcription factors and their roles in the abiotic stress responses of horticultural crops. Scientia Horticulturae, 2023, 310: 111710. |
41 | Hao Y Q, Zong X M, Ren P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 2021, 22(13): 7152. |
42 | Dong Y, Wang C P, Han X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 450(1): 453-458. |
43 | Wang T L. Function analysis of soybean bHLH-like transcription factors GmbHLH3 and GmPIF1. Changchun: Jilin University, 2020. |
王天亮. 大豆bHLH类转因子GmbHLH3和GmPIF1的功能分析. 长春: 吉林大学, 2020. | |
44 | Chen W. Map-based cloning and functional analysis of YGL3 gene controlling chloroplast development. Nanchang: Jiangxi Agricultural University, 2022. |
陈炜. 调控水稻叶绿体发育基因YGL3的图位克隆及功能研究. 南昌: 江西农业大学, 2022. | |
45 | Chen Y D, Song Y H, Li G, et al. Heterologous expression of strawberry FaFIT promotes iron uptakes by roots in Arabidopsis thaliana. Journal of Fruit Science, 2022, 39(9): 1562-1572. |
陈亚铎, 宋艳红, 李刚, 等. 草莓FaFIT在拟南芥中异源表达促进根系铁吸收. 果树学报, 2022, 39(9): 1562-1572. | |
46 | Tian Q. Functional characterization of BpbHLH112 gene in modulating salt and drought tolerance in Betula platyphylla. Harbin: Northeast Forestry University, 2022. |
田晴. 白桦BpbHLH112基因调控白桦抗旱耐盐功能研究. 哈尔滨: 东北林业大学, 2022. | |
47 | Lu C F, Jian L C, Ben G Y. Photosynthesis in alpine plant Lagotis brevituba and its response to freezing stress. Chinese Bulletin of Botany, 2000, 17(6): 559-564. |
卢存福, 简令成, 贲桂英. 高山植物短管兔儿草光合作用特性及其对冰冻胁迫的反应. 植物学通报, 2000, 17(6): 559-564. | |
48 | Yang Z X, Li Y, Wang Z H, et al. Tissue structure and plastid pigment characteristics of tobacco leaves at different altitudes. Jiangsu Agricultural Sciences, 2016, 44(11): 133-136. |
杨志晓, 李雨, 王志红, 等. 不同海拔高度烟草叶片组织结构和质体色素特性研究. 江苏农业科学, 2016, 44(11): 133-136. | |
49 | Wang Y P, He W L, Cheng L X, et al. Changes of pigment contents and photosynthetic electron transport activities of thylakoid membranes of Polygonum viviparum grown at different altitudes. Acta Prataculturae Sinica, 2011, 20(1): 75-81. |
王玉萍, 何文亮, 程李香, 等. 不同海拔珠芽蓼叶片类囊体膜色素含量及光系统功能变化. 草业学报, 2011, 20(1): 75-81. | |
50 | Li H, Tian K, Liu G D, et al. Impacts of change in altitude on chlorophyll fluorescence characteristics of dominant plants in plateau wetland. Acta Ecologica Sinica, 2018, 38(20): 7421-7434. |
李晖, 田昆, 刘国栋, 等. 海拔变化对高原湿地优势植物叶绿素荧光特性的影响. 生态学报, 2018, 38(20): 7421-7434. | |
51 | Carmen D, Neculai D, Corina C, et al. Study of the photosynthetic ability of perennial legume species in the floristic structure of permanent high altitude pastures. Scientific Papers Animal Science and Biotechnologies, 2012, 45(1): 394-396. |
52 | Lu C F, Ben G Y. Photosynthetic characteristics of plants at high altitudes. Chinese Bulletin of Botany, 1995(2): 38-42, 56. |
卢存福, 贲桂英. 高海拔地区植物的光合特性. 植物学通报, 1995(2): 38-42, 56. | |
53 | Deng X H, Wang J J. Effects of simulated elevated atmospheric CO2 concentration on the physiological characteristics and medicinal quality of Saxifraga stolonifera. Ecological Science, 2023, 42(2): 9-16. |
邓小红, 王健健. 模拟大气CO2浓度升高对虎耳草生理特性和药用品质的影响. 生态科学, 2023, 42(2): 9-16. | |
54 | Yang Z X, Wang Y, Xie S D, et al. Differences of photosynthetic physiological response in two resistant and susceptible tobacco cultivars to brown spot stress. Plant Physiology Journal, 2022, 58(3): 565-576. |
杨志晓, 王轶, 谢升东, 等. 二个抗、感病烟草品种对赤星病胁迫的光合生理响应差异. 植物生理学报, 2022, 58(3): 565-576. | |
55 | Zhang J Y, Cun Z, Shuang S P, et al. Steady-state and dynamic photosynthetic characteristics of shade-tolerant species Panax notoginseng in response to nitrogen levels. Chinese Journal of Plant Ecology. (2023-02-15)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.3397.Q.20230214.1446.002.html. |
张金燕, 寸竹, 双升普, 等. 阴生植物三七稳态和动态光合特性对氮水平的响应. 植物生态学报. (2023-02-15)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.3397.Q.20230214.1446.002.html. | |
56 | Tan J H, Yu Y H, Luo X T, et al. Effect of different light environment on photosynthetic characteristics and biomass allocation of Aspidistra elatior Blume using wild imitated-cultivation. Journal of Northeast Forestry University, 2022, 50(11): 1-9. |
谭锦豪, 于耀泓, 罗晓茼, 等. 应用仿生模式分析光环境对蜘蛛抱蛋光合特性及生物量分配的影响. 东北林业大学学报, 2022, 50(11): 1-9. | |
57 | Yang Y E, Zhang X Y, Feng R, et al. Shading effects on the photosynthetic characteristics of Granny Smith leaves. Chinese Journal of Ecology. (2023-02-14)[2023-05-15]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230213.1754.006.html. |
杨永娥, 张晓煜, 冯蕊, 等. 遮光对澳洲青苹叶片光合特性的影响. 生态学杂志. (2023-02-14)[2023-05-15]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230213.1754.006.html. |
[1] | 周建玲, 梁巧兰, 魏列新, 周其宇, 田龙, 陈应娥, 王存颖, 张国印. 不同症状类型苜蓿病毒病AMV病原检测及其寄主范围测定[J]. 草业学报, 2024, 33(1): 126-137. |
[2] | 柳文蔚, 刘鑫, 雷映霞, 周青平, 刘志峰, 王沛. 老芒麦种质资源抗寒性综合评价及冷胁迫下的生理反应[J]. 草业学报, 2023, 32(8): 152-163. |
[3] | 于晓东, 余浩洋, 杨旭, 赵东旭, 张林刚. 内蒙古两种生态型羊草叶绿体基因组序列差异分析[J]. 草业学报, 2023, 32(7): 72-84. |
[4] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
[5] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[6] | 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83. |
[7] | 钱文武, 郭鹏, 朱慧森, 张士敏, 李德颖. 草地早熟禾叶片表皮特征、解剖结构及光合特性对不同施氮量的响应[J]. 草业学报, 2023, 32(1): 131-143. |
[8] | 周泽东, 马晖玲, 韩煦, 李元恒, 李西良, 李坤娜. 温性典型草原羊草光合特性对模拟放牧因素分解的响应[J]. 草业学报, 2022, 31(8): 81-89. |
[9] | 董梦宇, 王金鑫, 吴萌, 周子瑶, 程顺, 李彦慧. 两种香花芥属植物叶片结构及光合特性研究[J]. 草业学报, 2022, 31(7): 172-184. |
[10] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[11] | 刘丽英, 贾玉山, 范文强, 尹强, 成启明, 王志军. 影响苜蓿自然干燥的主要环境因子研究[J]. 草业学报, 2022, 31(2): 121-132. |
[12] | 张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J]. 草业学报, 2022, 31(1): 229-237. |
[13] | 吴路遥, 张建国, 常闻谦, 张少磊, 常青. 三种荒漠植物叶绿素荧光参数日变化特征[J]. 草业学报, 2021, 30(9): 203-213. |
[14] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
[15] | 单立文, 张强, 朱瑞芬, 孔晓蕾, 陈积山. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响[J]. 草业学报, 2020, 29(8): 46-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||