草业学报 ›› 2025, Vol. 34 ›› Issue (6): 46-58.DOI: 10.11686/cyxb2024276
崔灿(
), 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫(
)
收稿日期:2024-07-16
修回日期:2024-09-18
出版日期:2025-06-20
发布日期:2025-04-03
通讯作者:
严俊鑫
作者简介:Corresponding author. E-mail: yanjunxin@163.com基金资助:
Can CUI(
), Meng-qi WANG, Wan-lu ZHAO, Xin-ying LIU, Jing-jing JIAN, Jun-xin YAN(
)
Received:2024-07-16
Revised:2024-09-18
Online:2025-06-20
Published:2025-04-03
Contact:
Jun-xin YAN
摘要:
紫花苜蓿种子的发芽过程受到多种因素的影响,其中盐分胁迫是一个关键的限制因素。尽管胺鲜酯(DA-6)作为一种新型的植物生长促进剂在农业生产中受到了广泛的关注和应用,但其在盐胁迫条件下对紫花苜蓿种子发芽的具体作用机制尚未有明确的研究报告。因此,本研究探究了150 mmol·L-1NaCl溶液胁迫下2.5、5.0、10.0、15.0 mmol·L-1的DA-6浸种对紫花苜蓿种子萌发及幼苗生长的影响。研究结果揭示,在高浓度NaCl环境中,紫花苜蓿种子的活力受到严重影响,其发芽过程也遭受明显的抑制。然而,通过使用不同浓度的DA-6进行种子浸泡处理,可以有效地提升种子的发芽率、发芽势、发芽指数,以及根长、茎长、鲜重和干重等指标,从而整体上促进种子的萌发过程。特别地,当DA-6的浓度达到2.5 mmol·L-1时,对于提高NaCl胁迫条件下种子的抗氧化酶活性表现出显著效果。DA-6浸种通过提高可溶性蛋白、可溶性糖、游离脯氨酸的含量,从而提高紫花苜蓿对盐的耐受性,促进种子萌发。综合分析表明,2.5、5.0 mmol·L-1 DA-6对正常环境和NaCl胁迫下紫花苜蓿种子萌发及幼苗生长均有积极的影响。
崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58.
Can CUI, Meng-qi WANG, Wan-lu ZHAO, Xin-ying LIU, Jing-jing JIAN, Jun-xin YAN. The effect on seed germination and seedling growth of soaking seeds with diethyl aminoethyl hexanoate in alfalfa under NaCl stress[J]. Acta Prataculturae Sinica, 2025, 34(6): 46-58.
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 发芽率Germination percentage | P | <0.001 | <0.001 | 0.054 |
| F | 7.644 | 651.806 | 2.795 | |
| 发芽势Germination potential | P | <0.001 | <0.001 | <0.001 |
| F | 18.448 | 1336.209 | 9.143 | |
| 发芽指数Germination index | P | <0.001 | <0.001 | <0.001 |
| F | 30.26 | 2218.26 | 16.96 | |
| 平均萌发时间Mean germination time | P | 0.054 | <0.001 | 0.270 |
| F | 2.798 | 72.284 | 1.400 |
表1 胺鲜酯、NaCl及交互作用对紫花苜蓿种子萌发的影响
Table 1 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on seed germination of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 发芽率Germination percentage | P | <0.001 | <0.001 | 0.054 |
| F | 7.644 | 651.806 | 2.795 | |
| 发芽势Germination potential | P | <0.001 | <0.001 | <0.001 |
| F | 18.448 | 1336.209 | 9.143 | |
| 发芽指数Germination index | P | <0.001 | <0.001 | <0.001 |
| F | 30.26 | 2218.26 | 16.96 | |
| 平均萌发时间Mean germination time | P | 0.054 | <0.001 | 0.270 |
| F | 2.798 | 72.284 | 1.400 |
图1 外源胺鲜酯对NaCl胁迫下紫花苜蓿种子萌发的影响CONC0,CONC2.5,CONC5,CONC10,CONC15分别表示DA-6浸种浓度为0、2.5、5.0、10.0、15.0 mmol·L-1。CK、SALT表示NaCl胁迫浓度分别为0、150 mmol·L-1。不同小写字母表示同一NaCl胁迫处理下不同DA-6浸种浓度间差异显著(P<0.05),不同大写字母表示同一DA-6浸种浓度下不同NaCl浓度处理之间差异显著(P<0.05)。下同。The terms CONC0, CONC2.5, CONC5, CONC10, and CONC15 denote the concentrations of DA-6 seed soaking solutions at 0, 2.5, 5.0, 10.0, and 15.0 mmol·L-1, respectively. CK, SALT indicated that the concentration of NaCl stress was 0, 150 mmol·L-1, respectively. Different lowercase letters indicate significant differences among DA-6 immersion concentrations at the same NaCl concentration (P<0.05), different capital letters indicate significant difference between different NaCl concentration at the same DA-6 immersion concentration (P<0.05). The same below.
Fig.1 Effect of diethyl aminoethyl hexanoate immersion on seed germination of alfalfa under salt stress
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 鲜重Fresh weight | P | <0.010 | <0.001 | 0.054 |
| F | 4.822 | 89.294 | 45.451 | |
| 干重Dry weight | P | 0.278 | <0.001 | <0.001 |
| F | 1.375 | 56.563 | 8.707 | |
| 茎长Stem length | P | 0.101 | <0.001 | 0.056 |
| F | 0.240 | 158.889 | 2.756 | |
| 根长Root length | P | <0.001 | <0.001 | <0.001 |
| F | 22.89 | 807.43 | 8.89 |
表2 胺鲜酯、NaCl及交互作用对紫花苜蓿幼苗生长的影响
Table 2 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on seedling growth of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 鲜重Fresh weight | P | <0.010 | <0.001 | 0.054 |
| F | 4.822 | 89.294 | 45.451 | |
| 干重Dry weight | P | 0.278 | <0.001 | <0.001 |
| F | 1.375 | 56.563 | 8.707 | |
| 茎长Stem length | P | 0.101 | <0.001 | 0.056 |
| F | 0.240 | 158.889 | 2.756 | |
| 根长Root length | P | <0.001 | <0.001 | <0.001 |
| F | 22.89 | 807.43 | 8.89 |
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 超氧化物歧化酶Superoxide dismutase (SOD) | P | <0.001 | <0.001 | <0.001 |
| F | 921.2 | 200.8 | 232.8 | |
| 过氧化物酶Peroxidase (POD) | P | <0.001 | <0.001 | <0.001 |
| F | 3948 | 5163 | 2445 | |
| 过氧化氢酶Catalase (CAT) | P | <0.001 | <0.001 | <0.001 |
| F | 2672 | 1793 | 1079 |
表3 胺鲜酯、NaCl及交互作用对紫花苜蓿抗氧化酶活性的影响
Table 3 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on antioxidant enzyme activity of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 超氧化物歧化酶Superoxide dismutase (SOD) | P | <0.001 | <0.001 | <0.001 |
| F | 921.2 | 200.8 | 232.8 | |
| 过氧化物酶Peroxidase (POD) | P | <0.001 | <0.001 | <0.001 |
| F | 3948 | 5163 | 2445 | |
| 过氧化氢酶Catalase (CAT) | P | <0.001 | <0.001 | <0.001 |
| F | 2672 | 1793 | 1079 |
图3 外源胺鲜酯对NaCl胁迫下紫花苜蓿抗氧化酶活性的影响SOD: 超氧化物歧化酶 Superoxide dismutase; POD: 过氧化物酶Peroxidase; CAT: 过氧化氢酶Catalase.
Fig.3 Effect of diethyl aminoethyl hexanoate immersion on antioxidant enzyme activity of alfalfa under salt stress
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 游离脯氨酸Free proline | P | <0.001 | <0.001 | <0.01 |
| F | 22.075 | 78.479 | 5.927 | |
| 叶绿素Chlorophyll | P | <0.001 | <0.001 | <0.001 |
| F | 7.861 | 169.416 | 7.124 | |
| 可溶性糖Soluble sugar | P | <0.001 | <0.001 | <0.001 |
| F | 37.68 | 22.74 | 11.33 | |
| 丙二醛Malondialdehyde (MDA) | P | <0.001 | <0.001 | <0.001 |
| F | 11.95 | 452.53 | 18.46 | |
| 可溶性蛋白Soluble protein | P | <0.001 | <0.001 | <0.001 |
| F | 150.10 | 122.76 | 72.78 |
表4 胺鲜酯、NaCl及交互作用对紫花苜蓿渗透调节物质的影响
Table 4 Effect of diethyl aminoethyl hexanoate, NaCl and their interaction on osmotic regulator of alfalfa
| 指标Index | 项目Item | DA-6 | NaCl | DA-6×NaCl |
|---|---|---|---|---|
| 游离脯氨酸Free proline | P | <0.001 | <0.001 | <0.01 |
| F | 22.075 | 78.479 | 5.927 | |
| 叶绿素Chlorophyll | P | <0.001 | <0.001 | <0.001 |
| F | 7.861 | 169.416 | 7.124 | |
| 可溶性糖Soluble sugar | P | <0.001 | <0.001 | <0.001 |
| F | 37.68 | 22.74 | 11.33 | |
| 丙二醛Malondialdehyde (MDA) | P | <0.001 | <0.001 | <0.001 |
| F | 11.95 | 452.53 | 18.46 | |
| 可溶性蛋白Soluble protein | P | <0.001 | <0.001 | <0.001 |
| F | 150.10 | 122.76 | 72.78 |
| 项目Item | 发芽率 Germination percentage | 发芽势 Germination potential | 发芽 指数 Germination index | 平均萌发时间 Mean germination time | 鲜重 Fresh weight | 干重 Dry weight | 根长 Root length | 茎长 Stem length | 游离脯氨酸 Free proline | 叶绿素 Chlorophyll | 可溶 性糖 Soluble sugar | 丙二醛 Malondialdehyde (MDA) | 可溶性蛋白 Soluble protein | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶 Superoxide dismutase (SOD) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 发芽势Germination potential | 0.981** | ||||||||||||||
| 发芽指数Germination index | 0.984** | 0.995** | |||||||||||||
| 平均萌发时间Mean germination time | -0.883** | -0.952** | -0.947** | ||||||||||||
| 鲜重Fresh weight | 0.629 | 0.662* | 0.608 | -0.547 | |||||||||||
| 干重Dry weight | 0.767** | 0.845** | 0.819** | -0.851** | 0.735* | ||||||||||
| 根长Root length | 0.968** | 0.962** | 0.980** | -0.911** | 0.508 | 0.710* | |||||||||
| 茎长Stem length | 0.907** | 0.901** | 0.902** | -0.858** | 0.418 | 0.613 | 0.896** | ||||||||
| 游离脯氨酸Free proline | -0.593 | -0.626 | -0.626 | 0.637* | -0.204 | -0.547 | -0.549 | -0.667* | |||||||
| 叶绿素Chlorophyll | 0.865** | 0.898** | 0.918** | -0.908** | 0.494 | 0.743* | 0.890** | 0.843** | -0.663* | ||||||
| 可溶性糖Soluble sugar | 0.270 | 0.200 | 0.204 | -0.143 | 0.077 | -0.014 | 0.216 | 0.326 | 0.128 | 0.183 | |||||
| 丙二醛Malondialdehyde (MDA) | -0.862** | -0.873** | -0.845** | 0.813** | -0.748* | -0.701* | -0.795** | -0.839** | 0.403 | -0.768** | -0.481 | ||||
| 可溶性蛋白Soluble protein | -0.268 | -0.231 | -0.258 | 0.197 | 0.020 | -0.333 | -0.178 | -0.184 | 0.617 | -0.310 | 0.099 | 0.060 | |||
| 过氧化物酶Peroxidase (POD) | 0.371 | 0.449 | 0.396 | -0.438 | 0.535 | 0.656* | 0.247 | 0.367 | -0.690* | 0.356 | -0.448 | -0.338 | -0.412 | ||
| 超氧化物歧化酶Superoxide dismutase (SOD) | -0.370 | -0.324 | -0.299 | 0.120 | -0.602 | -0.374 | -0.296 | -0.097 | -0.128 | -0.029 | 0.223 | 0.199 | -0.170 | -0.259 | |
| 过氧化氢酶Catalase (CAT) | 0.387 | 0.470 | 0.422 | -0.455 | 0.515 | 0.597 | 0.361 | 0.354 | -0.359 | 0.262 | -0.510 | -0.266 | 0.145 | 0.730* | -0.619 |
表5 不同浓度胺鲜酯溶液浸种对紫花苜蓿种子萌发理化性质相关性分析
Table 5 Correlation analysis of physicochemical properties of alfalfa seed germination after soaking in different concentrations of diethyl aminoethyl hexanoate solution
| 项目Item | 发芽率 Germination percentage | 发芽势 Germination potential | 发芽 指数 Germination index | 平均萌发时间 Mean germination time | 鲜重 Fresh weight | 干重 Dry weight | 根长 Root length | 茎长 Stem length | 游离脯氨酸 Free proline | 叶绿素 Chlorophyll | 可溶 性糖 Soluble sugar | 丙二醛 Malondialdehyde (MDA) | 可溶性蛋白 Soluble protein | 过氧化物酶 Peroxidase (POD) | 超氧化物歧化酶 Superoxide dismutase (SOD) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 发芽势Germination potential | 0.981** | ||||||||||||||
| 发芽指数Germination index | 0.984** | 0.995** | |||||||||||||
| 平均萌发时间Mean germination time | -0.883** | -0.952** | -0.947** | ||||||||||||
| 鲜重Fresh weight | 0.629 | 0.662* | 0.608 | -0.547 | |||||||||||
| 干重Dry weight | 0.767** | 0.845** | 0.819** | -0.851** | 0.735* | ||||||||||
| 根长Root length | 0.968** | 0.962** | 0.980** | -0.911** | 0.508 | 0.710* | |||||||||
| 茎长Stem length | 0.907** | 0.901** | 0.902** | -0.858** | 0.418 | 0.613 | 0.896** | ||||||||
| 游离脯氨酸Free proline | -0.593 | -0.626 | -0.626 | 0.637* | -0.204 | -0.547 | -0.549 | -0.667* | |||||||
| 叶绿素Chlorophyll | 0.865** | 0.898** | 0.918** | -0.908** | 0.494 | 0.743* | 0.890** | 0.843** | -0.663* | ||||||
| 可溶性糖Soluble sugar | 0.270 | 0.200 | 0.204 | -0.143 | 0.077 | -0.014 | 0.216 | 0.326 | 0.128 | 0.183 | |||||
| 丙二醛Malondialdehyde (MDA) | -0.862** | -0.873** | -0.845** | 0.813** | -0.748* | -0.701* | -0.795** | -0.839** | 0.403 | -0.768** | -0.481 | ||||
| 可溶性蛋白Soluble protein | -0.268 | -0.231 | -0.258 | 0.197 | 0.020 | -0.333 | -0.178 | -0.184 | 0.617 | -0.310 | 0.099 | 0.060 | |||
| 过氧化物酶Peroxidase (POD) | 0.371 | 0.449 | 0.396 | -0.438 | 0.535 | 0.656* | 0.247 | 0.367 | -0.690* | 0.356 | -0.448 | -0.338 | -0.412 | ||
| 超氧化物歧化酶Superoxide dismutase (SOD) | -0.370 | -0.324 | -0.299 | 0.120 | -0.602 | -0.374 | -0.296 | -0.097 | -0.128 | -0.029 | 0.223 | 0.199 | -0.170 | -0.259 | |
| 过氧化氢酶Catalase (CAT) | 0.387 | 0.470 | 0.422 | -0.455 | 0.515 | 0.597 | 0.361 | 0.354 | -0.359 | 0.262 | -0.510 | -0.266 | 0.145 | 0.730* | -0.619 |
| 处理Treatment | D值D value | 排序Sort |
|---|---|---|
| CK+CONC0 | 0.74 | 3 |
| CK+CONC2.5 | 0.82 | 1 |
| CK+CONC5 | 0.80 | 2 |
| CK+CONC10 | 0.66 | 4 |
| CK+CONC15 | 0.65 | 5 |
| SALT+CONC0 | 0.08 | 10 |
| SALT+CONC2.5 | 0.30 | 7 |
| SALT+CONC5 | 0.33 | 6 |
| SALT+CONC10 | 0.22 | 8 |
| SALT+CONC15 | 0.18 | 9 |
表6 胺鲜酯、NaCl处理下紫花苜蓿生长综合隶属函数值
Table 6 The comprehensive membership function values of alfalfa growth under diethyl aminoethyl hexanoate and NaCl treatments
| 处理Treatment | D值D value | 排序Sort |
|---|---|---|
| CK+CONC0 | 0.74 | 3 |
| CK+CONC2.5 | 0.82 | 1 |
| CK+CONC5 | 0.80 | 2 |
| CK+CONC10 | 0.66 | 4 |
| CK+CONC15 | 0.65 | 5 |
| SALT+CONC0 | 0.08 | 10 |
| SALT+CONC2.5 | 0.30 | 7 |
| SALT+CONC5 | 0.33 | 6 |
| SALT+CONC10 | 0.22 | 8 |
| SALT+CONC15 | 0.18 | 9 |
| 1 | Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 2013, 112(7): 1209-1221. |
| 2 | Ondrasek G, Rathod S, Manohara K K, et al. Salt stress in plants and mitigation approaches. Plants, 2022, 11(6): 717. |
| 3 | Huang J, Kong Y L, Xu Q S, et al. Progresses for characteristics and amelioration measures of saline soil. Soils, 2022, 54(1): 18-23. |
| 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展. 土壤, 2022, 54(1): 18-23. | |
| 4 | Qadir M, Oster J D, Schubert S, et al. Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 2007, 96: 197-247. |
| 5 | Sun Q Z, Yu Z, Xu C C. Urgency of further developing alfalfa industry in China. Pratacultural Science, 2012, 29(2): 314-319. |
| 孙启忠, 玉柱, 徐春城. 我国苜蓿产业亟待振兴. 草业科学, 2012, 29(2): 314-319. | |
| 6 | Amirinejad A A, Sayyari M, Ghanbari F, et al. Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Advances in Horticultural Science, 2017, 31(3): 157-163. |
| 7 | Wang X S, Ren H L, Wei Z W, et al. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. Journal of Integrative Agriculture, 2017, 16(8): 1800-1807. |
| 8 | Khan I, Muhammad A, Chattha M U, et al. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Frontiers in Plant Science, 2022, 13(26): 840900. |
| 9 | Khatri K, Rathore M S. Salt and osmotic stress-induced changes in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut. Plant Stress, 2022, 3: 100063. |
| 10 | Ghosh U K, Islam M N, Siddiqui M N, et al. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signaling & Behavior, 2021,16(8): 1913306. |
| 11 | Chauhan J, Srivastava J P, Singhal R K, et al. Alterations of oxidative stress indicators, antioxidant enzymes, soluble sugars, and amino acids in mustard [Brassica juncea(L.) Czern and Coss.] in response to varying sowing time, and field temperature. Frontiers in Plant Science, 2022, 13(3): 875009. |
| 12 | Libertad Carrasco-Ríos, Pinto M Manuel. Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn, ‘Lluteno’ and ‘Jubilee’. Chilean Journal of Agricultural Research, 2014, 74(1): 89-95. |
| 13 | Pan L Q, Wei H Z, Zhang H, et al. Effects of chitosan on seed germination and seedling growth of Trifolium repens under salt stress. Molecular Plant Breeding, 2018, 16(11): 3740-3744. |
| 潘丽芹, 韦海忠, 张浩, 等. 壳聚糖对盐胁迫下白三叶种子萌发及幼苗生长的缓解作用. 分子植物育种, 2018, 16(11): 3740-3744. | |
| 14 | Zheng X F, Sun B J, Liu L, et al. A study on acute toxicity of hexanoic acid 2- (diethylamino) ethyl ester. Journal of Henan Agricultural University, 2006, 40(1): 74-76. |
| 郑先福, 孙炳剑, 刘玲, 等. 己酸二乙氨基乙醇酯急性毒性研究. 河南农业大学学报, 2006, 40(1): 74-76. | |
| 15 | Zhang X M, Wang Y X, Zhu Y Z, et al. Effects of diethyl aminoethyl hexanoate on nutrient uptake and physiological indexse of Cyphomandra betacea seedlings. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(4): 606-614. |
| 张雪梅, 王雨熙, 朱沿舟, 等. 胺鲜酯对树番茄幼苗养分吸收和生理指标的影响. 云南农业大学学报(自然科学), 2023, 38(4): 606-614. | |
| 16 | Huang W T, Feng N J, Zheng D F, et al. Effects of uniconazole and diethyl aminoethyl hexanoate on photosynthetic characteristics and carbon metabolism of soybean leaves. Soybean Science, 2020, 39(2): 243-251. |
| 黄文婷, 冯乃杰, 郑殿峰, 等. 烯效唑和胺鲜酯对大豆叶片光合特性与碳代谢的调控效应. 大豆科学, 2020, 39(2): 243-251. | |
| 17 | Wang C X, Ren R J, Chang R X, et al. Optimum concentration of different bioactive substances to improve the germination and salt tolerance of maize seeds. Journal of China Agricultural University, 2020, 25(7): 20-27. |
| 王晨霞, 任如佳, 常瑞雪, 等. 生物活性物质提高玉米种子萌发及抗盐能力. 中国农业大学学报, 2020, 25(7): 20-27. | |
| 18 | Wang D, Tian Y L, Zhang H J, et al. Effects of diethyl aminoethyl hexanoate on seed germination characteristics of white clover under chromium stress. Pratacultural Science, 2021, 38(10): 1986-1997. |
| 王铎, 田雨龙, 张鸿建, 等. 胺鲜酯对铬胁迫下白三叶种子萌发特性的影响. 草业科学, 2021, 38(10): 1986-1997. | |
| 19 | Liu L, Han J, Deng L, et al. Effects of diethyl aminoethyl hexanoate on the physiology and selenium absorption of grape seedlings. Acta Physiologiae Plantarum, 2021, 43: 115. |
| 20 | Huang P, Li Q W, Sun L F, et al. Effects of NaCl stress on seed germination and leaf physiological characteristics of Veronica persica Poir. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(2): 195-200. |
| 黄萍, 李庆伟, 孙龙飞, 等. NaCl胁迫对阿拉伯婆婆纳种子萌发及叶片生理特性的影响. 信阳师范学院学报(自然科学版), 2021, 34(2): 195-200. | |
| 21 | Giannopolites C N, Ries S K. Superoxide dismutase occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
| 22 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1980, 22(5): 867-880. |
| 23 | Chen J X, Wang X F. Experimental guidance of plant physiology. Guangzhou: South China University of Technology Press, 2022. |
| 陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2002. | |
| 24 | Li H S. Principles and techniques of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2001: 134-170. |
| 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001: 134-170. | |
| 25 | lbrahim E A. Seed priming to alleviate salinity stress in germinating seeds. Plant Physiology, 2016, 15(192): 38-46. |
| 26 | Khoso M A, Hussain A, Ritonga F N, et al. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science, 2022, 13(8): 1039329. |
| 27 | Zhang X, Yang F, Ma H Y, et al. Evaluation of the saline-alkaline tolerance of rice (Oryza sativa L.) mutants induced by heavy-ion beam mutagenesis. Biology, 2022, 11(1): 126. |
| 28 | Feng S, Ren L, Sun H, et al. Morphological and physiological responses of two willow species from different habitats to salt stress. Scientific Reports, 2020, 10(1): 18228. |
| 29 | Cheng C, Liu J, Wang Z, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). Journal of Visualized Experiments, 2022, 30(189): e64702. |
| 30 | Farooq M, Irfan M, Aziz T, et al. Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 2013, 199(1): 12-22. |
| 31 | Wu Y, Geng S D, Shi C J, et al. Effects of DA-6 on growth and leaf nitrogen metabolism of Dendranthema morifolium cv ‘chuju’ seedlings. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2283-2289. |
| 吴燕, 耿书德, 史长江, 等. DA-6对滁菊幼苗生长及叶片氮代谢的影响. 核农学报, 2014, 28(12): 2283-2289. | |
| 32 | Liu Q, Huo R, Lin L, et al. Effects of different rootstocks on cadmium accumulation of grafted Cyphomandra betacea seedlings. International Journal of Environmental Analytical Chemistry, 2019, 99(12): 1-8. |
| 33 | Yu C, Yang Y, Li X, et al. Effects of plant growth regulators on remediation efficiency of Solanum nigrum L. in serious cadmium polluted soil. Subtropical Resource and Environment, 2019, 14(3): 1-5. |
| 34 | Dong Y, Liang L, Lin L, et al. Effects of diethyl aminoethyl hexanoate (DA-6) on the growth and cadmium accumulation of tomato seedlings. Environmental Progress & Sustainable Energy, 2021, 40(4): e13627. |
| 35 | Li Z, Peng D, Zhang X, et al. Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environmental and Experimental Botany, 2017, 144(1): 11-24. |
| 36 | Niu X M, Bressan R, Hasegawa P, et al. Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109(3): 735-742. |
| 37 | Vaculik M, Pavlovic A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety, 2015, 120(1): 66-73. |
| 38 | Gupta B, Huang B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 2014(1): 701596. |
| 39 | Li M, Zhang J, Li Y J, et al. Research progress on the physiology and salt tolerance genes of plants. Jiangsu Agricultural Sciences, 2012, 40(10): 45-49. |
| 李敏, 张健, 李玉娟, 等. 植物耐盐生理及耐盐基因的研究进展. 江苏农业科学, 2012, 40(10): 45-49. | |
| 40 | Zhao F B, Wang L Q, Ji G H. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants. Environmental Pollution & Control, 2012, 34(10): 40-44. |
| 赵风斌, 王丽卿, 季高华. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响. 环境污染与防治, 2012, 34(10): 40-44. | |
| 41 | Sathiyaraj G, Srinivasan S, Kim Y J, et al. Acclimation of hydrogen peroxide enhances salts tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Molecular Biology Reports, 2014, 41(6): 3761-3771. |
| 42 | Parvin S, Lee O R, Sathiyaraj R, et al. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 2014, 537(1): 70-78. |
| 43 | Cao Y Q, Cheng B Z, Li Z. Effects of the seed soaking with DA-6 on germination characteristics and stress tolerance of white clover under salt stress. Acta Agrestia Sinica, 2023, 31(1): 140-147. |
| 曹亦芹, 程碧真, 李州. 胺鲜酯(DA-6)浸种对盐胁迫下白三叶种子萌发及抗盐性的影响. 草地学报, 2023, 31(1): 140-147. | |
| 44 | Li W, Guo J J, Li H Y. Effects of H2O2 on the growth of kale seedlings under salt stress. Jiangsu Agricultural Sciences, 2017, 45(22): 149-152. |
| 李伟, 郭君洁, 李鸿雁. H2O2对盐胁迫下羽衣甘蓝幼苗生长的影响. 江苏农业科学, 2017, 45(22): 149-152. | |
| 45 | Liu A R. Effect of salt stress on the growth and the antioxidant enzyme activity of Thellungiella halophila. Bulletin of Botanical Research, 2006, 26(2): 216-221. |
| 46 | Wang Q, Xu W, Ren C, et al. Physiological and biochemical mechanisms of exogenous melatonin regulation of saline-alkali tolerance in oats. Agronomy, 2023, 13(5): 1327. |
| 47 | Wu Q, He S. Effects of DA-6 and EDTA on enhancing the remediation of Pb contaminated soil and physiological characteristics of Lolium perenne. Journal of Soil and Water Conservation, 2013, 27(6): 67-72. |
| [1] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [2] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [3] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [4] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [5] | 马婷, 陈奋奇, 王勇, 哈雪, 李亚君, 马晖玲. NaCl胁迫下鹰嘴紫云英根系基因差异表达及相关通路分析[J]. 草业学报, 2025, 34(4): 104-123. |
| [6] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [7] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [8] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| [9] | 陈彩锦, 包明芳, 王文虎, 尚继红, 曾燕霞, 沙晓弟, 朱新忠, 王学敏, 刘文辉. 紫花苜蓿抗旱育种研究现状及展望[J]. 草业学报, 2025, 34(3): 204-223. |
| [10] | 胡鹏飞, 叶雨浓, 王通锐, 王晶, 王星, 伏兵哲, 高雪芹. 紫花苜蓿半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2025, 34(3): 85-96. |
| [11] | 马超, 孙熙婧, 冯雅岚, 周爽, 琚吉浩, 吴毅, 王添宁, 郭彬彬, 张均. 紫花苜蓿GLK基因家族鉴定及渗透胁迫下的表达分析[J]. 草业学报, 2025, 34(1): 174-190. |
| [12] | 蔡文祺, 李淑霞, 王晓彤, 宋文学, 麻旭霞, 马小梅, 李小红, 代昕瑶. 外源褪黑素与乙烯交互对盐胁迫下紫花苜蓿幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(1): 80-93. |
| [13] | 王晓彤, 李小红, 麻旭霞, 蔡文祺, 冯学丽, 李淑霞. 紫花苜蓿FBA基因家族成员的鉴定与分析[J]. 草业学报, 2024, 33(9): 81-93. |
| [14] | 张盈盈, 胡丹丹, 马春晖, 张前兵. 苜蓿叶片结构和光合特性对菌磷添加的响应[J]. 草业学报, 2024, 33(8): 133-144. |
| [15] | 王峥, 常伟, 李俊诚, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿还田对饲料玉米产量和氮素吸收转运的影响[J]. 草业学报, 2024, 33(8): 63-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||