欢迎访问《草业学报》官方网站,今天是

草业学报 ›› 2025, Vol. 34 ›› Issue (9): 147-161.DOI: 10.11686/cyxb2024418

• 研究论文 • 上一篇    

转录组和蛋白组联合筛选饲用燕麦株高性状候选基因

张志鹏(), 蒋庆雪, 周昕越, 苗童, 唐俊, 仪登霞, 王学敏(), 马琳()   

  1. 中国农业科学院北京畜牧兽医研究所,北京 100193
  • 收稿日期:2024-10-24 修回日期:2024-12-02 出版日期:2025-09-20 发布日期:2025-07-02
  • 通讯作者: 王学敏,马琳
  • 作者简介:malin@caas.cn
    E-mail: wangxuemin@caas.cn
    张志鹏(1999-),男,内蒙古乌兰察布人,在读硕士。E-mail: 224998720@qq.com
  • 基金资助:
    科技部、财政部国家科技资源共享服务平台项目-国家作物种质资源库(NCGRC-63);财政部和农业农村部:国家现代农业产业技术体系(CARS-34)

Screening of candidate genes for plant height in forage oat (Avena sativa) through combined transcriptome and proteome analysis

Zhi-peng ZHANG(), Qing-xue JIANG, Xin-yue ZHOU, Tong MIAO, Jun TANG, Deng-xia YI, Xue-min WANG(), Lin MA()   

  1. Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193,China
  • Received:2024-10-24 Revised:2024-12-02 Online:2025-09-20 Published:2025-07-02
  • Contact: Xue-min WANG,Lin MA

摘要:

饲用燕麦是一种高产、优质且抗逆性强的饲草,在我国饲草产业的发展中占据重要地位。本研究分别对饲用燕麦高株高(编号972)与低株高(编号1289)的极端材料取穗下茎节和节间组织进行高通量转录组测序(RNA-Seq)和蛋白组定量分析,筛选差异表达基因(differentially expressed genes, DEGs)和差异表达蛋白(differentially expressed proteins, DEPs)。转录组分析筛选到22762个差异表达基因;蛋白组分析获得3934个差异表达蛋白;进一步的联合分析发现1147个差异表达基因(蛋白)重叠出现于转录组及蛋白组分析中。通过对重叠基因(蛋白)进行GO功能富集分析和KEGG信号通路分析,发现很多基因被显著富集到与细胞生长、代谢和细胞壁形成的通路上。进一步结合转录因子分析,筛选到10个饲用燕麦株高性状相关的候选基因。对候选基因进行qRT-PCR验证,得到了测序结果的可靠性。此外,对10个候选基因的组织表达特异性分析发现候选基因在燕麦茎、茎节中均有较高表达,而在其他组织中表达量较低,表明以上候选基因可能参与饲用燕麦的株高发育过程。综上,通过转录组与蛋白组联合分析,结合差异基因功能注释及转录因子分析,筛选到10个饲用燕麦株高性状相关的候选基因。以上候选基因主要通过调控细胞生长、代谢和细胞壁发育参与饲用燕麦株高性状的形成。本研究为进一步探究饲用燕麦株高性状形成的分子机制奠定了基础,并为今后饲用燕麦株高性状的生物育种提供了关键候选基因。

关键词: 饲用燕麦, 株高, 转录组, 蛋白组, 联合分析

Abstract:

Forage oat (Avena sativa) is a high-yielding, high-quality, and stress-resistant forage that plays a significant role in China’s forage industry. In this study, high-throughput transcriptome sequencing (RNA-Seq) and quantitative proteomic analysis were performed on stem nodes and internode tissues from high-stalk (No.972) and low-stalk (No.1289) forage oat varieties. The aim was to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) between these two varieties to discover plant height-related genes in A. sativa. We identified 22762 DEGs and 3934 DEPs between the two germplasm lines. Further integrated analyses revealed 1147 overlapping DEGs/DEPs in the transcriptome and proteome datasets. Gene Ontology (GO) enrichment and KEGG pathway analysis indicated that these 1147 overlapping genes/proteins were significantly enriched in pathways associated with cell growth, metabolism, and cell wall formation. Among these DEGs/DEPs, 10 candidate transcription factors were identified through transcription factor analysis, and their transcription profiles were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The transcription patterns of the ten candidate genes were highly consistent with those predicted from the transcriptomic and proteomic data, confirming the reliability of the sequencing results. Tissue-specific analyses of their transcriptional profiles showed that these ten candidate genes exhibited higher transcript levels in stems and nodes but lower levels in other tissues, suggesting that they play roles in regulating plant height in forage oat. In summary, through integrated transcriptomic and proteomic analyses, along with differential gene function annotation and transcription factor analyses, we identified ten candidate genes related to plant height in forage oat. These candidate genes primarily regulate processes such as cell growth, metabolism, and cell wall development, contributing to plant height formation in forage oat. These findings provide a foundation for further exploration of the molecular mechanisms underlying plant height and offer key candidate genes for forage oat breeding programs.

Key words: forage oat, plant height, transcriptome, proteome, combined analysis