草业学报 ›› 2025, Vol. 34 ›› Issue (10): 202-212.DOI: 10.11686/cyxb2024485
• 研究论文 • 上一篇
卢琦1,2(
), 覃继肖1,2, 班一鸣1,2, 高成成1,2, 杨蓉3, 李培瑶1,2, 许一清1,2, 谢双龙1,2, 陈睿1,2, 周迪3(
), 田兴舟1,2(
)
收稿日期:2024-12-04
修回日期:2025-01-23
出版日期:2025-10-20
发布日期:2025-07-11
通讯作者:
周迪,田兴舟
作者简介:tianxingzhou@yeah.net基金资助:
Qi LU1,2(
), Ji-xiao QIN1,2, Yi-ming BAN1,2, Cheng-cheng GAO1,2, Rong YANG3, Pei-yao LI1,2, Yi-qing XU1,2, Shuang-long XIE1,2, Rui CHEN1,2, Di ZHOU3(
), Xing-zhou TIAN1,2(
)
Received:2024-12-04
Revised:2025-01-23
Online:2025-10-20
Published:2025-07-11
Contact:
Di ZHOU,Xing-zhou TIAN
摘要:
为研究紫玉米花青素提取物对肉牛体外产气和瘤胃发酵的影响,采用完全随机试验设计,在底物中添加0、0.2%、0.4%、0.6%和0.8%的紫玉米花青素提取物,测定总产气量、动力学参数、挥发性脂肪酸、甲烷产量、纤维素酶活性及营养物质降解率等瘤胃发酵参数。结果表明:1)发酵72 h后,对照组总产气量显著高于0.6%花青素组(P<0.05)。2)对快速发酵部分的产气量,0.4%花青素组显著高于对照组(P<0.05);产气速率随花青素添加水平的增加呈线性和二次曲线降低(P<0.05),且对照组显著高于其他4个花青素组(P<0.05)。3)乙酸和丁酸含量随花青素添加水平的增加均呈线性和二次曲线下降(P<0.05),且对照组均显著高于0.4%、0.6%和0.8%花青素组(P<0.05);丙酸含量随花青素添加水平的增加呈线性和二次曲线上升(P<0.05),且对照组均显著低于花青素组(P<0.05);乙酸/丙酸和甲烷产量均随花青素添加水平的增加呈线性或二次曲线降低(P<0.05),且花青素组均显著低于对照组(P<0.05)。4)羧甲基纤维素酶和纤维二糖酶在12 h随花青素添加水平的增加均呈线性和二次曲线升高(P<0.05),且0.8%花青素组显著高于其他4组(P<0.05);同时,0.2%、0.4%、0.6%花青素组木聚糖酶在24 h显著高于对照组(P<0.05)。5)蛋白质降解率和酸性洗涤纤维降解率随花青素添加水平的增加均呈线性和二次曲线升高(P<0.05),且花青素组蛋白质降解率显著高于对照组(P<0.05)。综上可知,紫玉米花青素提取物可改善肉牛瘤胃发酵模式,提高丙酸含量、纤维素酶活性及营养物质降解率,降低瘤胃甲烷产量。本试验条件下,在肉牛饲粮中添加紫玉米花青素提取物适宜水平是0.4%。
卢琦, 覃继肖, 班一鸣, 高成成, 杨蓉, 李培瑶, 许一清, 谢双龙, 陈睿, 周迪, 田兴舟. 不同水平紫玉米花青素提取物对肉牛体外产气和瘤胃发酵的影响[J]. 草业学报, 2025, 34(10): 202-212.
Qi LU, Ji-xiao QIN, Yi-ming BAN, Cheng-cheng GAO, Rong YANG, Pei-yao LI, Yi-qing XU, Shuang-long XIE, Rui CHEN, Di ZHOU, Xing-zhou TIAN. Effect of different levels of purple maize anthocyanin extract on in vitro gas production and rumen fermentation in beef cattle[J]. Acta Prataculturae Sinica, 2025, 34(10): 202-212.
| 原料Ingredient | 含量Content | 营养水平Nutrient levels2 | 含量Content |
|---|---|---|---|
| 稻草 Rice straw | 17.20 | 干物质 Dry matter | 89.79 |
| 皇竹草 Hybrid giant napier | 42.80 | 粗蛋白质Crude protein | 10.22 |
| 玉米 Corn | 23.70 | 中性洗涤纤维 Neutral detergent fiber | 40.32 |
| 豆粕 Soybean meal | 5.80 | 酸性洗涤纤维 Acid detergent fiber | 24.71 |
| 菜籽饼 Rapeseed meal | 2.20 | 粗灰分 Ash | 8.50 |
| 麸皮 Bran | 5.60 | 钙 Calcium | 0.51 |
| 磷酸氢钙 Dicalcium phosphate | 0.50 | 磷 Phosphorus | 0.37 |
| 食盐 Salt | 0.50 | ||
| 碳酸氢钠 NaHCO3 | 0.50 | ||
| 预混料Premix1 | 1.20 | ||
| 合计 Total | 100.00 |
表1 全混合日粮组成及营养水平(风干基础)
| 原料Ingredient | 含量Content | 营养水平Nutrient levels2 | 含量Content |
|---|---|---|---|
| 稻草 Rice straw | 17.20 | 干物质 Dry matter | 89.79 |
| 皇竹草 Hybrid giant napier | 42.80 | 粗蛋白质Crude protein | 10.22 |
| 玉米 Corn | 23.70 | 中性洗涤纤维 Neutral detergent fiber | 40.32 |
| 豆粕 Soybean meal | 5.80 | 酸性洗涤纤维 Acid detergent fiber | 24.71 |
| 菜籽饼 Rapeseed meal | 2.20 | 粗灰分 Ash | 8.50 |
| 麸皮 Bran | 5.60 | 钙 Calcium | 0.51 |
| 磷酸氢钙 Dicalcium phosphate | 0.50 | 磷 Phosphorus | 0.37 |
| 食盐 Salt | 0.50 | ||
| 碳酸氢钠 NaHCO3 | 0.50 | ||
| 预混料Premix1 | 1.20 | ||
| 合计 Total | 100.00 |
时间 Time (h) | 紫玉米花青素提取物添加水平Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | 处理Treatment | 线性Linear | 二次Quadratic | ||
| 2 | 9.83 | 10.67 | 9.67 | 9.50 | 8.33 | 0.834 | 0.421 | 0.116 | 0.174 |
| 4 | 21.17a | 17.67b | 15.50bc | 13.17c | 13.67c | 1.019 | <0.001 | <0.001 | <0.001 |
| 6 | 25.83a | 22.50b | 21.33bc | 19.33c | 19.17c | 0.999 | <0.001 | <0.001 | <0.001 |
| 8 | 29.50a | 26.33b | 24.67b | 23.00b | 23.17b | 1.061 | 0.001 | <0.001 | <0.001 |
| 12 | 36.33a | 32.50b | 29.33c | 28.17c | 30.50bc | 0.961 | <0.001 | <0.001 | <0.001 |
| 24 | 57.33a | 51.00b | 43.17c | 40.50c | 43.33c | 2.064 | <0.001 | <0.001 | <0.001 |
| 48 | 73.33a | 69.33ab | 65.50bc | 60.17c | 62.50c | 2.017 | 0.001 | <0.001 | <0.001 |
| 72 | 81.00a | 80.00a | 78.50a | 70.17b | 74.17ab | 2.232 | 0.011 | 0.003 | 0.014 |
表2 不同紫玉米花青素提取物添加水平对体外发酵72 h累积产气量的影响
Table 2 Effect of different levels of purple maize anthocyanin extract on cumulative gas production at 72 h in vitro fermentation (mL)
时间 Time (h) | 紫玉米花青素提取物添加水平Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | 处理Treatment | 线性Linear | 二次Quadratic | ||
| 2 | 9.83 | 10.67 | 9.67 | 9.50 | 8.33 | 0.834 | 0.421 | 0.116 | 0.174 |
| 4 | 21.17a | 17.67b | 15.50bc | 13.17c | 13.67c | 1.019 | <0.001 | <0.001 | <0.001 |
| 6 | 25.83a | 22.50b | 21.33bc | 19.33c | 19.17c | 0.999 | <0.001 | <0.001 | <0.001 |
| 8 | 29.50a | 26.33b | 24.67b | 23.00b | 23.17b | 1.061 | 0.001 | <0.001 | <0.001 |
| 12 | 36.33a | 32.50b | 29.33c | 28.17c | 30.50bc | 0.961 | <0.001 | <0.001 | <0.001 |
| 24 | 57.33a | 51.00b | 43.17c | 40.50c | 43.33c | 2.064 | <0.001 | <0.001 | <0.001 |
| 48 | 73.33a | 69.33ab | 65.50bc | 60.17c | 62.50c | 2.017 | 0.001 | <0.001 | <0.001 |
| 72 | 81.00a | 80.00a | 78.50a | 70.17b | 74.17ab | 2.232 | 0.011 | 0.003 | 0.014 |
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 快速发酵部分的产气量Gas production from the immediately soluble fraction (a, mL) | 2.99b | 3.83ab | 4.84a | 3.90ab | 3.50ab | 0.542 | 0.046 | 0.549 | 0.086 |
| 慢速发酵部分的产气量Gas production from the insoluble fraction (b, mL) | 78.79ab | 79.36ab | 83.24a | 74.04b | 75.42b | 2.315 | 0.034 | 0.134 | 0.156 |
| 潜在产气量Potential extent of gas production (a+b, mL) | 81.78ab | 83.20ab | 88.08a | 77.95b | 78.92b | 2.434 | 0.043 | 0.205 | 0.127 |
| 产气速率Gas production rate (c, %·h-1) | 0.050a | 0.039b | 0.029c | 0.033bc | 0.035bc | 0.002 | <0.001 | <0.001 | <0.001 |
表3 不同紫玉米花青素提取物添加水平对体外发酵产气动力学参数的影响
Table 3 Effect of different levels of purple maize anthocyanin extract on gas production kinetic parameters in vitro fermentation
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 快速发酵部分的产气量Gas production from the immediately soluble fraction (a, mL) | 2.99b | 3.83ab | 4.84a | 3.90ab | 3.50ab | 0.542 | 0.046 | 0.549 | 0.086 |
| 慢速发酵部分的产气量Gas production from the insoluble fraction (b, mL) | 78.79ab | 79.36ab | 83.24a | 74.04b | 75.42b | 2.315 | 0.034 | 0.134 | 0.156 |
| 潜在产气量Potential extent of gas production (a+b, mL) | 81.78ab | 83.20ab | 88.08a | 77.95b | 78.92b | 2.434 | 0.043 | 0.205 | 0.127 |
| 产气速率Gas production rate (c, %·h-1) | 0.050a | 0.039b | 0.029c | 0.033bc | 0.035bc | 0.002 | <0.001 | <0.001 | <0.001 |
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值 P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| pH | 12 | 6.76 | 6.86 | 6.81 | 6.89 | 6.81 | 0.032 | 0.070 | 0.212 | 0.090 |
| 24 | 6.64 | 6.75 | 6.73 | 6.69 | 6.68 | 0.054 | 0.654 | 0.858 | 0.433 | |
氨态氮Ammonia nitrogen (mg·dL-1) | 12 | 8.83bc | 10.10a | 10.34a | 9.68ab | 8.25c | 0.414 | 0.007 | 0.331 | 0.001 |
| 24 | 6.39c | 7.47b | 8.38a | 8.02ab | 8.40a | 0.248 | <0.001 | <0.001 | <0.001 | |
| 乙酸Acetate (mmol·L-1) | 12 | 39.55a | 38.98ab | 37.32bc | 37.25bc | 36.78c | 0.596 | 0.011 | 0.002 | 0.007 |
| 24 | 56.18a | 53.90b | 53.50b | 48.67c | 47.55c | 0.675 | <0.001 | <0.001 | <0.001 | |
| 丙酸Propionate (mmol·L-1) | 12 | 16.80d | 22.13c | 24.15b | 26.05a | 25.58a | 0.437 | <0.001 | <0.001 | <0.001 |
| 24 | 22.67d | 25.17c | 29.52b | 34.35a | 33.03a | 0.550 | <0.001 | <0.001 | <0.001 | |
| 丁酸Butyrate (mmol·L-1) | 12 | 6.78a | 5.58b | 5.58b | 5.48b | 5.48b | 0.116 | <0.001 | <0.001 | <0.001 |
| 24 | 11.02a | 9.70b | 8.45c | 7.33d | 7.15d | 0.220 | <0.001 | <0.001 | <0.001 | |
| 异丁酸Isobutyrate (mmol·L-1) | 12 | 2.13 | 2.10 | 2.04 | 2.06 | 2.15 | 0.073 | 0.807 | 0.971 | 0.483 |
| 24 | 3.06 | 3.08 | 3.29 | 3.37 | 3.10 | 0.138 | 0.414 | 0.405 | 0.277 | |
| 戊酸Valerate (mmol·L-1) | 12 | 1.59 | 1.48 | 1.45 | 1.47 | 1.45 | 0.070 | 0.634 | 0.204 | 0.311 |
| 24 | 2.14 | 2.23 | 2.09 | 2.11 | 2.04 | 0.090 | 0.630 | 0.236 | 0.440 | |
| 异戊酸Isovalerate (mmol·L-1) | 12 | 2.10 | 2.11 | 2.13 | 2.08 | 2.05 | 0.051 | 0.779 | 0.345 | 0.455 |
| 24 | 2.77 | 3.01 | 2.88 | 3.00 | 2.91 | 0.099 | 0.432 | 0.414 | 0.382 | |
| 总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 12 | 68.95b | 72.38a | 72.67a | 74.39a | 73.49a | 0.610 | <0.001 | <0.001 | <0.001 |
| 24 | 97.83 | 97.09 | 99.73 | 98.82 | 95.78 | 0.979 | 0.074 | 0.491 | 0.096 | |
| 乙酸/丙酸Acetate/propionate | 12 | 2.33a | 1.79b | 1.55c | 1.43c | 1.44c | 0.056 | <0.001 | <0.001 | <0.001 |
| 24 | 2.48a | 2.15b | 1.82c | 1.42d | 1.44d | 0.039 | <0.001 | <0.001 | <0.001 | |
| 甲烷产量Methane production (mmol·L-1) | 12 | 15.64a | 13.94b | 12.38c | 11.79c | 11.71c | 0.312 | <0.001 | <0.001 | <0.001 |
| 24 | 23.46a | 21.21b | 19.34c | 15.39d | 15.17d | 0.319 | <0.001 | <0.001 | <0.001 | |
表4 不同紫玉米花青素提取物添加水平对瘤胃发酵参数及甲烷产量的影响
Table 4 Effect of different levels of purple maize anthocyanin extract on rumen fermentation parameters and methane production in vitro fermentation
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值 P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| pH | 12 | 6.76 | 6.86 | 6.81 | 6.89 | 6.81 | 0.032 | 0.070 | 0.212 | 0.090 |
| 24 | 6.64 | 6.75 | 6.73 | 6.69 | 6.68 | 0.054 | 0.654 | 0.858 | 0.433 | |
氨态氮Ammonia nitrogen (mg·dL-1) | 12 | 8.83bc | 10.10a | 10.34a | 9.68ab | 8.25c | 0.414 | 0.007 | 0.331 | 0.001 |
| 24 | 6.39c | 7.47b | 8.38a | 8.02ab | 8.40a | 0.248 | <0.001 | <0.001 | <0.001 | |
| 乙酸Acetate (mmol·L-1) | 12 | 39.55a | 38.98ab | 37.32bc | 37.25bc | 36.78c | 0.596 | 0.011 | 0.002 | 0.007 |
| 24 | 56.18a | 53.90b | 53.50b | 48.67c | 47.55c | 0.675 | <0.001 | <0.001 | <0.001 | |
| 丙酸Propionate (mmol·L-1) | 12 | 16.80d | 22.13c | 24.15b | 26.05a | 25.58a | 0.437 | <0.001 | <0.001 | <0.001 |
| 24 | 22.67d | 25.17c | 29.52b | 34.35a | 33.03a | 0.550 | <0.001 | <0.001 | <0.001 | |
| 丁酸Butyrate (mmol·L-1) | 12 | 6.78a | 5.58b | 5.58b | 5.48b | 5.48b | 0.116 | <0.001 | <0.001 | <0.001 |
| 24 | 11.02a | 9.70b | 8.45c | 7.33d | 7.15d | 0.220 | <0.001 | <0.001 | <0.001 | |
| 异丁酸Isobutyrate (mmol·L-1) | 12 | 2.13 | 2.10 | 2.04 | 2.06 | 2.15 | 0.073 | 0.807 | 0.971 | 0.483 |
| 24 | 3.06 | 3.08 | 3.29 | 3.37 | 3.10 | 0.138 | 0.414 | 0.405 | 0.277 | |
| 戊酸Valerate (mmol·L-1) | 12 | 1.59 | 1.48 | 1.45 | 1.47 | 1.45 | 0.070 | 0.634 | 0.204 | 0.311 |
| 24 | 2.14 | 2.23 | 2.09 | 2.11 | 2.04 | 0.090 | 0.630 | 0.236 | 0.440 | |
| 异戊酸Isovalerate (mmol·L-1) | 12 | 2.10 | 2.11 | 2.13 | 2.08 | 2.05 | 0.051 | 0.779 | 0.345 | 0.455 |
| 24 | 2.77 | 3.01 | 2.88 | 3.00 | 2.91 | 0.099 | 0.432 | 0.414 | 0.382 | |
| 总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 12 | 68.95b | 72.38a | 72.67a | 74.39a | 73.49a | 0.610 | <0.001 | <0.001 | <0.001 |
| 24 | 97.83 | 97.09 | 99.73 | 98.82 | 95.78 | 0.979 | 0.074 | 0.491 | 0.096 | |
| 乙酸/丙酸Acetate/propionate | 12 | 2.33a | 1.79b | 1.55c | 1.43c | 1.44c | 0.056 | <0.001 | <0.001 | <0.001 |
| 24 | 2.48a | 2.15b | 1.82c | 1.42d | 1.44d | 0.039 | <0.001 | <0.001 | <0.001 | |
| 甲烷产量Methane production (mmol·L-1) | 12 | 15.64a | 13.94b | 12.38c | 11.79c | 11.71c | 0.312 | <0.001 | <0.001 | <0.001 |
| 24 | 23.46a | 21.21b | 19.34c | 15.39d | 15.17d | 0.319 | <0.001 | <0.001 | <0.001 | |
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| 羧甲基纤维素酶Carboxymethyl cellulose (U·mL-1) | 12 | 3.28b | 3.67b | 4.21b | 4.06b | 5.39a | 0.397 | 0.015 | 0.001 | 0.004 |
| 24 | 5.87 | 4.04 | 3.42 | 4.92 | 3.92 | 0.772 | 0.223 | 0.246 | 0.235 | |
纤维二糖酶 Cellobiase (U·mL-1) | 12 | 3.87b | 4.39b | 4.31b | 4.18b | 6.36a | 0.424 | 0.004 | 0.005 | 0.003 |
| 24 | 4.03 | 4.77 | 2.98 | 2.81 | 3.29 | 0.670 | 0.248 | 0.120 | 0.281 | |
木聚糖酶 Xylanase (U·mL-1) | 12 | 15.86 | 14.97 | 12.96 | 14.70 | 14.51 | 1.674 | 0.810 | 0.567 | 0.597 |
| 24 | 26.43b | 53.07a | 55.57a | 53.22a | 31.18b | 5.328 | 0.001 | 0.692 | <0.001 | |
滤纸纤维素酶 Filter paper cellulose (U·mL-1) | 12 | 3.80 | 3.90 | 3.51 | 4.43 | 4.27 | 0.479 | 0.677 | 0.330 | 0.568 |
| 24 | 5.34 | 3.30 | 3.80 | 4.23 | 4.56 | 0.529 | 0.116 | 0.736 | 0.087 | |
表5 不同紫玉米花青素提取物添加水平对体外发酵纤维素酶活性的影响
Table 5 Effect of different levels of purple maize anthocyanin extract on cellulose activity in vitro fermentation
项目 Item | 时间 Time (h) | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | ||||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | ||||||
| 羧甲基纤维素酶Carboxymethyl cellulose (U·mL-1) | 12 | 3.28b | 3.67b | 4.21b | 4.06b | 5.39a | 0.397 | 0.015 | 0.001 | 0.004 |
| 24 | 5.87 | 4.04 | 3.42 | 4.92 | 3.92 | 0.772 | 0.223 | 0.246 | 0.235 | |
纤维二糖酶 Cellobiase (U·mL-1) | 12 | 3.87b | 4.39b | 4.31b | 4.18b | 6.36a | 0.424 | 0.004 | 0.005 | 0.003 |
| 24 | 4.03 | 4.77 | 2.98 | 2.81 | 3.29 | 0.670 | 0.248 | 0.120 | 0.281 | |
木聚糖酶 Xylanase (U·mL-1) | 12 | 15.86 | 14.97 | 12.96 | 14.70 | 14.51 | 1.674 | 0.810 | 0.567 | 0.597 |
| 24 | 26.43b | 53.07a | 55.57a | 53.22a | 31.18b | 5.328 | 0.001 | 0.692 | <0.001 | |
滤纸纤维素酶 Filter paper cellulose (U·mL-1) | 12 | 3.80 | 3.90 | 3.51 | 4.43 | 4.27 | 0.479 | 0.677 | 0.330 | 0.568 |
| 24 | 5.34 | 3.30 | 3.80 | 4.23 | 4.56 | 0.529 | 0.116 | 0.736 | 0.087 | |
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 干物质降解率Dry matter degradation rate | 30.27 | 30.04 | 30.04 | 30.17 | 30.46 | 0.354 | 0.913 | 0.640 | 0.602 |
| 粗蛋白降解率Crude protein degradation rate | 48.96b | 56.66a | 56.34a | 59.37a | 60.56a | 2.315 | 0.034 | 0.003 | 0.008 |
| 中性洗涤纤维降解率Neutral detergent fiber degradation rate | 15.18 | 15.12 | 14.92 | 16.04 | 15.41 | 1.046 | 0.950 | 0.658 | 0.908 |
| 酸性洗涤纤维降解率Acid detergent fiber degradation rate | 8.63c | 8.98bc | 10.65abc | 12.73a | 11.94ab | 0.962 | 0.041 | 0.004 | 0.016 |
表6 不同紫玉米花青素提取物添加水平对营养物质降解率的影响
Table 6 Effect of different levels of purple maize anthocyanin extract on nutrient degradation rate in vitro fermentation (%)
项目 Item | 紫玉米花青素提取物添加水平 Purple maize anthocyanin extract supplemental level | 标准误 SEM | P值P-value | ||||||
|---|---|---|---|---|---|---|---|---|---|
处理 Treatment | 线性 Linear | 二次 Quadratic | |||||||
| 0 | 0.2% | 0.4% | 0.6% | 0.8% | |||||
| 干物质降解率Dry matter degradation rate | 30.27 | 30.04 | 30.04 | 30.17 | 30.46 | 0.354 | 0.913 | 0.640 | 0.602 |
| 粗蛋白降解率Crude protein degradation rate | 48.96b | 56.66a | 56.34a | 59.37a | 60.56a | 2.315 | 0.034 | 0.003 | 0.008 |
| 中性洗涤纤维降解率Neutral detergent fiber degradation rate | 15.18 | 15.12 | 14.92 | 16.04 | 15.41 | 1.046 | 0.950 | 0.658 | 0.908 |
| 酸性洗涤纤维降解率Acid detergent fiber degradation rate | 8.63c | 8.98bc | 10.65abc | 12.73a | 11.94ab | 0.962 | 0.041 | 0.004 | 0.016 |
| [1] | Bai Q C, Hao X Y, Xiang B W, et al. Effects of sea buckthorn flavone on gas production, rumen fermentation parameters and microflora population of sheep in vitro. Chinese Journal of Animal Nutrition, 2020, 32(3): 1405-1414. |
| 白齐昌, 郝小燕, 项斌伟, 等. 沙棘黄酮对绵羊体外产气量、瘤胃发酵参数和微生物菌群的影响. 动物营养学报, 2020, 32(3): 1405-1414. | |
| [2] | Alexander G, Singh B, Sahoo A, et al. In vitro screening of plant extracts to enhance the efficiency of utilization of energy and nitrogen in ruminant diets. Animal Feed Science and Technology, 2008, 145(1/2/3/4): 229-244. |
| [3] | Busquet M, Calsamiglia S, Ferret A, et al. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 2006, 89(2): 761-771. |
| [4] | Purba R A P, Suong N T M, Paengkoum S, et al. Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats. Animal Bioscience, 2023, 36(2): 218-228. |
| [5] | Tian Y Y, Qin T, Zhang X L, et al. Effect of purple corn stover silage on energy utilization, plasma metabolites and antioxidant capacity parameters of heat-stressed dairy goats. Journal of the Chinese Cereals and Oils Association, 2021, 36(8): 60-65. |
| 田亚原, 覃谭, 张旭林, 等. 紫玉米秸秆青贮饲料对热应激奶山羊能量利用、血浆代谢和抗氧化参数的影响. 中国粮油学报, 2021, 36(8): 60-65. | |
| [6] | Tian X Z, Xin H L, Paengkoum P, et al. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. Journal of Animal Science, 2019, 97(3): 1384-1397. |
| [7] | Suong N T M, Paengkoum S, Schonewille J T, et al. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage. Frontiers in Veterinary Science, 2022, 9: 880838. |
| [8] | Zhou D, Wang Y C, Tian X Z, et al. Study of the mechanism of anthocyanins enhancing antioxidant capacity in ruminants. Acta Veterinaria et Zootechnica Sinica, 2019, 50(8): 1536-1544. |
| 周迪, 王胤晨, 田兴舟, 等. 花青素增强反刍动物抗氧化性能作用机制的研究. 畜牧兽医学报, 2019, 50(8): 1536-1544. | |
| [9] | Jing P. Purple corn anthocyanins: Chemical structure, chemoprotective activity and structure/function relationships. USA: Ohio State University, 2006. |
| [10] | Zhou D, Zhao Z H, Wang F, et al. Screening and validation of the key genes for muscle growth and development in Guanling cattle based on transcriptome sequencing. Journal of Southern Agriculture, 2024, 55(3): 611-622. |
| 周迪, 赵忠海, 王府, 等. 基于转录组测序的关岭牛肌肉生长发育关键基因筛选与鉴定. 南方农业学报, 2024, 55(3): 611-622. | |
| [11] | Tian X Z, Li J, Luo Q, et al. Effects of purple corn anthocyanin on growth performance, meat quality, muscle antioxidant status, and fatty acid profiles in goats. Foods, 2022, 11: 1255. |
| [12] | General Administration of Quality Supervision, Spection and Quarantine of the People’s Republic of China, China National Standardization Administration. Determination of moisture in feedstuffs: GB/T 6435-2014. Beijing: Standards Press of China, 2014. |
| 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料中水分的测定: GB/T 6435-2014. 北京: 中国标准出版社, 2014. | |
| [13] | State Administration for Market Regulation, China National Standardization Administration. Determination of crude protein in feeds-Kjeldahl method: GB/T 6432-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中粗蛋白的测定 凯氏定氮法: GB/T 6432-2018.北京: 中国标准出版社, 2018. | |
| [14] | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
| [15] | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Animal feeding stuffs-determination of crude ash: GB/T 6438-2007. Beijing: Standards Press of China, 2007. |
| 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料中粗灰分的测定: GB/T 6438-2007. 北京: 中国标准出版社, 2007. | |
| [16] | State Administration for Market Regulation, China National Standardization Administration. Determination of calcium in feeds: GB/T 6436-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中钙的测定: GB/T 6436-2018. 北京: 中国标准出版社, 2018. | |
| [17] | State Administration for Market Regulation, China National Standardization Administration. Determination of phosphorus in feeds-spectrophotometry: GB/T 6437-2018. Beijing: Standards Press of China, 2018. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中总磷的测定 分光光度法: GB/T 6437-2018. 北京: 中国标准出版社, 2018. | |
| [18] | Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28: 7-55. |
| [19] | Ørskov E R, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 1979, 92(2): 499-503. |
| [20] | Feng Z C, Gao M. Improvement of the method for measuring ammonia nitrogen content in rumen fluid by colorimetry. Animal Husbandry and Feed Science, 2010, 6: 37. |
| 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 6: 37. | |
| [21] | Wang J Q. Methods in ruminant nutrition research. Beijing: Modern Education Press, 2011: 145-148. |
| 王加启. 反刍动物营养学研究方法. 北京:现代教育出版社, 2011: 145-148. | |
| [22] | Moss A R, Jouany J P, Newbold J. Methane production by ruminants: Its contribution to global warming. Annales De Zootech, 2000, 49(3):231-253. |
| [23] | Wu W C, Ma T, Li W J, et al. Effects of resveratrol on in vitro gas production and fermentation parameters of different types of substrates and its metabolites research. Chinese Journal of Animal Nutrition, 2020, 32(1): 321-333. |
| 吴万成, 马涛, 李文娟, 等. 白藜芦醇对不同类型底物体外产气和发酵参数的影响及其代谢产物的研究. 动物营养学报, 2020, 32(1): 321-333. | |
| [24] | Wu W C, Ma T, Liu N, et al. Effect of resveratrol on methane production, nutrient degradation and microbial community under different substrates. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1281-1294. |
| 吴万成, 马涛, 刘娜, 等. 白藜芦醇对不同类型底物甲烷产生、养分降解及微生物区系的影响. 畜牧兽医学报, 2020, 51(6): 1281-1294. | |
| [25] | Tian X Z, Paengkoum P, Paengkoum S, et al. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. Journal of Integrative Agriculture, 2018, 17(9): 2082-2095. |
| [26] | Qi S, Jiao T, Li X X, et al. Effect of varying levels of stevioside supplementation on in vitro gas production and rumen fermentation in sheep. Pratacultural Science, 2024, 41(6): 1429-1440. |
| 齐帅, 焦婷, 李雄雄, 等. 不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响. 草业科学, 2024, 41(6): 1429-1440. | |
| [27] | An J, Yang Y, Wu W X, et al. Feasibility evaluation on replacing dietary alfalfa protein with slow-release urea using in vitro gas production technique for goats. Chinese Journal of Animal Nutrition, 2023, 35(10): 6516-6525. |
| 安靖, 杨艺, 吴文旋, 等. 体外产气法评价缓释尿素替代山羊饲粮中苜蓿蛋白的可行性. 动物营养学报, 2023, 35(10): 6516-6525. | |
| [28] | Tang Y C, Hu G H, Jiang H, et al. The effect of adding different concentrations of sodium caproate on rumen gas production and fermentation parameters in cows in vitro. Shangdong Journal of Animal Science and Veterinary Medicine, 2023, 44(6): 28-33. |
| 唐煜淳, 胡光辉, 蒋慧, 等. 添加不同浓度己酸钠对奶牛瘤胃体外产气及发酵参数的影响. 山东畜牧兽医, 2023, 44(6): 28-33. | |
| [29] | Gao J, Cheng B B, Liu Y F, et al. Effects of red cabbage extract rich in anthocyanins on rumen fermentation, rumen bacterial community, nutrient digestion, and plasma indices in beef bulls. Animal, 2022, 16(5): 100510. |
| [30] | Taethaisong N, Paengkoum S, Nakharuthai C, et al. Effect of purple neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Animals, 2022, 12: 2985. |
| [31] | Tian X Z, Paengkoum P, Paengkoum S, et al. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 2019, 102(1): 413-418. |
| [32] | Zu H C, Xu J, Cong Y Y. Reducing rumen methane emission through regulating rumen microorganisms by adding hydrogen-consuming compounds. Chinese Journal of Animal Nutrition, 2019, 31(11): 4968-4973. |
| 俎昊辰, 许静, 丛玉艳. 通过添加耗氢化合物调节瘤胃微生物实现甲烷减排. 动物营养学报, 2019, 31(11): 4968-4973. | |
| [33] | Lazalde-Cruz R, Miranda-Romero L A, Tirado-González D N, et al. Potential effects of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside of Hibiscus sabdariffa L. on ruminant meat and milk quality. Animals, 2021, 11: 2827. |
| [34] | Lu Q, Luo Q, Li J, et al. Evaluation of the chemical composition, bioactive substance, gas production, and rumen fermentation parameters of four types of distiller’s grains. Molecules, 2022, 27(18): 6134. |
| [35] | Garcia E H C. Methane production in dairy cows. Uppsala, Sweden: Swedish University of Agricultural Sciences, 2017. |
| [36] | Sinz S, Marquardt S, Soliva C R, et al. Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-Australasian Journal of Animal Sciences, 2019, 32(7): 966-976. |
| [37] | Varga G A, Kolver E S. Microbial and animal limitations to fiber digestion and utilization. The Journal of Nutrition, 1997, 127: 819-823. |
| [38] | Banakar P S, Kumar S, Varada V V, et al. Dietary supplementation of Aloe vera extract modulates rumen microbes and improves the functional food value of milk by altering phenolic content, antioxidant capacity, and fatty acid profile in lactating goats. Animal Biotechnology, 2023, 34: 3027-3038. |
| [39] | Suong N T M, Paengkoum S, Purba R A P, et al. Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative. Fermentation, 2022, 8: 248. |
| [40] | Ma T, Chen D D, Tu Y, et al. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. Journal of Animal Physiology and Animal Nutrition, 2015, 99: 676-683. |
| [41] | Sun H, Zhang Y Z, Jiang F. Comparison of synergistic effects between cellulase and xylanases from different sources//Proceedings of the 3rd National Symposium on the Application of Enzyme Preparations in the Feed Industry. Beijing: China Agricultural Science and Technology Press, 2009: 403-407. |
| 孙赫, 张玉枝, 姜飞. 纤维素酶与不同来源的木聚糖酶之间协同效果的比较//第三届全国酶制剂在饲料工业中的应用学术研讨会论文集. 北京: 中国农业科学技术出版社, 2009: 403-407. | |
| [42] | Hosoda K, Matsuo M, Miyaji M, et al. Fermentative quality of purple rice (Oryza sativa L.) silage and its effects on digestibility, ruminal fermentation and oxidative status markers in sheep: A preliminary study. Grassland Science, 2012, 58: 161-169. |
| [43] | Klyosov A A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29(47): 10577-10585. |
| [1] | 袁玖. 绿豆衣、大蒜皮、茄子皮与玉米秸秆青贮料、精料间饲料组合效应研究[J]. 草业学报, 2025, 34(9): 173-184. |
| [2] | 郭楠, 杜鹉辰, 纪守坤, 刘建, 崔素倩, 袁辉, 韩旭, 刘计双, 高立杰. 施肥和补播对山地草甸牧草营养及瘤胃发酵的影响[J]. 草业学报, 2025, 34(4): 150-163. |
| [3] | 洪莉平, 李小冬, 于二汝, 裴成江, 尚以顺, 骆金红, 孙光, 周云昊, 李世歌, 杨航, 刘凤丹. 不同紫苏原料对贵州黑山羊血清抗氧化酶活性、瘤胃发酵参数、瘤胃微生物区系的影响[J]. 草业学报, 2024, 33(9): 214-226. |
| [4] | 杨得玉, 黄文植, 冯宇哲, 薛斌, 张晓卫, 崔占鸿. 暖季补饲矿物质盐砖对放牧牦牛生长性能、瘤胃发酵、血液和被毛矿物质含量的影响[J]. 草业学报, 2024, 33(7): 105-118. |
| [5] | 党浩千, 覃娟清, 郭宇康, 张富, 王迎港, 刘庆华. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响[J]. 草业学报, 2023, 32(7): 135-148. |
| [6] | 吴刀知才让, 裴成芳, 马志远, 刘红山, 曹旭亮, 刘虎, 周建伟. 燕麦干草不同饲喂水平对牦牛日增重、血液生理生化指标及瘤胃发酵参数的影响[J]. 草业学报, 2023, 32(11): 119-129. |
| [7] | 游茵洁, 周浩珍, 刘垚, 王晨曦, 彭忠利. 燕麦干草、青贮燕麦与天然牧草饲喂牦牛的营养价值比较研究[J]. 草业学报, 2022, 31(8): 99-110. |
| [8] | 戴东文, 庞凯悦, 王迅, 杨英魁, 柴沙驼, 王书祥. 精料补饲水平对暖季放牧牦牛瘤胃发酵和菌群结构的影响[J]. 草业学报, 2022, 31(5): 169-177. |
| [9] | 范玉洁, 司华哲, 王晓旭, 杨乾龙, 张新宇, 钟伟, 王凯英. 精氨酸水平对梅花鹿仔鹿瘤胃发酵参数和菌群结构的影响[J]. 草业学报, 2022, 31(10): 154-166. |
| [10] | 邹诗雨, 陈思葵, 唐启源, 陈东, 陈元伟, 邓攀, 黄胥莱, 李付强. 青贮剂对再生稻头季全株青贮品质和体外瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(7): 122-132. |
| [11] | 张丹丹, 张元庆, 程景, 靳光, 李博, 王栋才, 徐芳, 孙锐锋. 不同粗饲料组合对晋南牛瘤胃体外发酵特性的研究[J]. 草业学报, 2021, 30(7): 93-100. |
| [12] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
| [13] | 李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169. |
| [14] | 董利锋, 杨修竹, 高彦华, 李斌昌, 王贝, 刁其玉. 日粮不同NDF/NFC水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征和甲烷排放的影响[J]. 草业学报, 2021, 30(2): 156-165. |
| [15] | 李雄雄, 焦婷, 赵生国, 秦伟娜, 高雪梅, 王正文, 吴建平, 雷赵民. 牛至精油与有机钴协同对青贮玉米秸秆降解及绵羊瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(11): 191-202. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||