草业学报 ›› 2025, Vol. 34 ›› Issue (10): 132-150.DOI: 10.11686/cyxb2025030
• 研究论文 • 上一篇
韩宜霖(
), 康文娟(
), 师尚礼(
), 杜媛媛, 何富强, 汪艳, 侯文璐, 谢西琳
收稿日期:2025-02-01
修回日期:2025-02-20
出版日期:2025-10-20
发布日期:2025-07-11
通讯作者:
康文娟,师尚礼
作者简介:shishangli@gsau.edu.cn基金资助:
Yi-lin HAN(
), Wen-juan KANG(
), Shang-li SHI(
), Yuan-yuan DU, Fu-qiang HE, Yan WANG, Wen-lu HOU, Xi-lin XIE
Received:2025-02-01
Revised:2025-02-20
Online:2025-10-20
Published:2025-07-11
Contact:
Wen-juan KANG,Shang-li SHI
摘要:
为明确中华根瘤菌株QL2共生不同紫花苜蓿品种的固氮效应差异特征,提高紫花苜蓿的结瘤固氮能力和天然氮素利用效率。以中华根瘤菌QL2和8个紫花苜蓿 [3个国外引进品种(WL168HQ、WL298HQ和WL319HQ)、我国3个育成品种(甘农3号、甘农5号和甘农9号)及2个地方品种(清水苜蓿和陇中苜蓿)]为材料,通过结瘤、固氮、饲草生物量和营养品质等指标,研究接种QL2后在共生、固氮和促生效应等方面的差异特征。结果表明:接种根瘤菌QL2后,我国育成型紫花苜蓿品种的有效根瘤单颗重、根瘤直径以及根瘤组织被侵染细胞数目均显著优于地方品种和国外引进品种70%以上。固氮效应方面,国外引进品种固氮率(52.62%~63.49%)和我国育成品种的固氮率(53.30%~62.41%),均显著高于地方品种(43.05%~46.72%)。层次分割分析表明结瘤因子(根瘤组织被侵染细胞数目、单株有效根瘤数、单颗有效根瘤重和根瘤直径)和固氮因子(固氮酶活性、固氮率和固氮量)对地上干重具有63%的解释率,其中固氮因子的贡献率达89.56%,结瘤因子的贡献率仅占13.55%。相关性分析表明接种根瘤菌QL2后,不同类型品种固氮率均与地上干重显著正相关,即国外引进品种整体的地上干重增长率最大,最高达48.08%,其次为我国育成型和地方型品种。固氮率也与饲草营养品质的产量显著正相关,接种根瘤菌可普遍提高紫花苜蓿粗蛋白产量,最高增长率达51.08%(P<0.05),降低中性洗涤纤维和酸性洗涤纤维产量,最高分别降低40.55%和53.96%,可使饲草等级跃升1~2个等级。因此,固氮率对地上干重和饲草营养品质均会产生显著的积极影响,说明其在紫花苜蓿的产量提升和营养品质改善方面发挥着更为关键的作用,本研究结果为精准调控豆科植物-根瘤菌组合的固氮效应以及优化紫花苜蓿饲草品质提供了重要依据。
韩宜霖, 康文娟, 师尚礼, 杜媛媛, 何富强, 汪艳, 侯文璐, 谢西琳. 中华根瘤菌株QL2与不同紫花苜蓿品种共生效应的差异[J]. 草业学报, 2025, 34(10): 132-150.
Yi-lin HAN, Wen-juan KANG, Shang-li SHI, Yuan-yuan DU, Fu-qiang HE, Yan WANG, Wen-lu HOU, Xi-lin XIE. Studies of the difference in symbiotic interaction between Sinorhizobium meliloti strain QL2 and different alfalfa varieties[J]. Acta Prataculturae Sinica, 2025, 34(10): 132-150.
编号 Number | 品种名 Variety name | 学名 Scientific name | 类型 Type | 产地 Habitat | 来源 Source |
|---|---|---|---|---|---|
| WL168 | WL168HQ | M. sativa ‘WL168HQ’ | 国外引进品种 Foreign introduced varieties | 美国 America | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Co., Ltd. |
| WL298 | WL298HQ | M. sativa ‘WL298HQ’ | |||
| WL319 | WL319HQ | M. sativa ‘WL319HQ’ | |||
| QS | 清水苜蓿Qingshui | M. sativa ‘Qingshui’ | 地方品种 The local varieties | 中国 China | 甘肃农业大学草业生态系统教育部重点实验室 Key Laboratory of Grassland Ecosystem of Ministry of Education, Gansu Agricultural University |
| LZ | 陇中苜蓿Longzhong | M. sativa ‘Longzhong’ | |||
| G9 | 甘农9号Gannong No.9 | M. sativa ‘Gannong No.9’ | 我国育成品种 Varieties bred in China | 中国 China | 甘肃农业大学草业生态系统教育部重点实验室 Key Laboratory of Grassland Ecosystem of Ministry of Education, Gansu Agricultural University |
| G3 | 甘农3号Gannong No.3 | M. sativa ‘Gannong No.3’ | |||
| G5 | 甘农5号Gannong No.5 | M. sativa ‘Gannong No.5’ |
表1 供试紫花苜蓿品种
Table 1 Test alfalfa varieties
编号 Number | 品种名 Variety name | 学名 Scientific name | 类型 Type | 产地 Habitat | 来源 Source |
|---|---|---|---|---|---|
| WL168 | WL168HQ | M. sativa ‘WL168HQ’ | 国外引进品种 Foreign introduced varieties | 美国 America | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Co., Ltd. |
| WL298 | WL298HQ | M. sativa ‘WL298HQ’ | |||
| WL319 | WL319HQ | M. sativa ‘WL319HQ’ | |||
| QS | 清水苜蓿Qingshui | M. sativa ‘Qingshui’ | 地方品种 The local varieties | 中国 China | 甘肃农业大学草业生态系统教育部重点实验室 Key Laboratory of Grassland Ecosystem of Ministry of Education, Gansu Agricultural University |
| LZ | 陇中苜蓿Longzhong | M. sativa ‘Longzhong’ | |||
| G9 | 甘农9号Gannong No.9 | M. sativa ‘Gannong No.9’ | 我国育成品种 Varieties bred in China | 中国 China | 甘肃农业大学草业生态系统教育部重点实验室 Key Laboratory of Grassland Ecosystem of Ministry of Education, Gansu Agricultural University |
| G3 | 甘农3号Gannong No.3 | M. sativa ‘Gannong No.3’ | |||
| G5 | 甘农5号Gannong No.5 | M. sativa ‘Gannong No.5’ |
| 分级Grade | GI值GI value (MJ·d-1) |
|---|---|
| 特级 Extra grade | >53.68 |
| 1级 First grade | 33.50~53.68 |
| 2级 Second grade | 19.20~29.29 |
| 3级 Third grade | 11.10~16.44 |
| 4级 Fourth grade | 6.28~10.67 |
| 5级Fifth grade | <6.28 |
表2 粗饲料质量等级标准
Table 2 Grade standard of roughage quality
| 分级Grade | GI值GI value (MJ·d-1) |
|---|---|
| 特级 Extra grade | >53.68 |
| 1级 First grade | 33.50~53.68 |
| 2级 Second grade | 19.20~29.29 |
| 3级 Third grade | 11.10~16.44 |
| 4级 Fourth grade | 6.28~10.67 |
| 5级Fifth grade | <6.28 |
图1 不同共生组合结瘤能力差异G3:甘农3号;G5:甘农5号;G9:甘农9号;WL168:WL168HQ;WL298:WL298HQ; WL319:WL319HQ;QS:清水苜蓿;LZ:陇中苜蓿;不同小写字母表示差异显著(P<0.05),下同。G3: Gannong No.3; G5: Gannong No.5; G9: Gannon No.9; WL168: WL168HQ; WL298: WL298HQ; WL319: WL319HQ; QS: M.sativa Qingshui; LZ: M.sativa Longzhong. The different letters indicate the significant difference (P<0.05), the same below.
Fig.1 The nodulation ability of different symbiotic combinations was different
图2 不同共生组合根瘤切片和根瘤内部被侵染的根瘤细胞数目差异(a)为不同共生组合的根瘤照片以及根瘤甲苯胺蓝染色切片;(b)为不同共生组合根瘤直径;(c)为不同共生组合根瘤中被侵染细胞数目;(d)为不同共生组合的固氮酶活性。(a) shows photos of root nodules of different symbiotic combinations and toluidine blue staining sections of root nodules; (b) is the root nodule diameter of different symbiotic combinations; (c) shows the number of infected cells in nodules of different symbiotic combinations; (d) shows the nitrogenase activity of different symbiotic combinations.
Fig. 2 Differences in the number of infected nodule cells in nodule sections and nodules of different symbiotic combinations
图3 不同共生组合固氮能力差异(a)为不同共生组合15N处理后(室内砂培)的全株氮含量;(b)为不同共生15N的原子百分超;(c)表示不同共生组合的固氮率;(d)为不同共生组合的固氮量。(a) is the whole plant nitrogen content of different symbiotic combinations after 15N treatment (indoor sand culture); (b) shows the atomic percentage excess of different symbiotic 15N; (c) shows the nitrogen fixation percentage of different symbiotic combinations; (d) is the amount of nitrogen fixation in different symbiotic combinations.
Fig. 3 The difference of nitrogenase activity and nitrogen fixation in different symbiotic combinations
图4 不同共生组合与对照地上、地下氮积累量差异(a)表示不同品种紫花苜蓿接菌处理和对照组地上氮积累量;(b)表示不同品种紫花苜蓿接菌处理与对照组地下氮积累量;(c)表示接菌处理较对照组的地上、地下氮积累量的增长率。(a) shows the above-ground nitrogen accumulation of different varieties of alfalfa and CK; (b) shows the under-ground nitrogen accumulation of different varieties of alfalfa and CK; (c) shows the growth rate of above-ground and under-ground nitrogen accumulation in the inoculated treatment compared with CK.
Fig.4 The difference of aboveground and underground nitrogen accumulation between different symbiotic combinations and CK
图5 不同共生固氮组合地上、地下干重和较CK增长率的差异(a)代表不同品种紫花苜蓿接菌处理与对照组地上干重;(b)表示不同品种紫花苜蓿接菌处理与对照组地下干重;(c)表示接菌处理较对照组的地上、地下干重的增长率。 (a) represents the above-ground dry weight of different varieties of alfalfa inoculated with CK; (b) shows the under-ground dry weight of different varieties of alfalfa and CK; (c) shows the growth rate of the above-ground and under-ground dry weight of the inoculated treatment compared with CK.
Fig.5 The aboveground and underground dry weight of different symbiotic nitrogen fixation combinations and growth rate difference compared with CK
类型 Type | 特点 Feature | 品种(接菌后) Varieties (after inoculation) |
|---|---|---|
| 地上积累型Above-ground accumulation type | 地上干重增加,地下干重无显著差异。Above-ground dry weight increased significantly, while under-ground dry weight showed no significant difference. | WL298 |
| 地上、地下积累型Above-ground and under-ground accumulation type | 地上、地下干重增加。The dry weight of both above-ground and under-ground exhibited an increase. | G3、WL319 |
| 地下积累型Under-ground accumulation type | 地上干重无显著差异,地下干重显著增加。There was no significant difference in above-ground dry weight, while under-ground dry weight increased significantly. | WL168 |
| 零增长型Zero-growth type | 地上、地下干重均无显著差异。The above-ground and under-ground dry weights did not exhibit any statistically significant difference. | QS |
| 地上、地下消耗型Above-ground and under-ground depletion type | 地上、地下干重减少。The above-ground and under-ground biomass demonstrated a substantial reduction. | G9 |
| 地下消耗型Under-ground depletion type | 地上干重无显著差异,地下干重减少。The above-ground biomass did not exhibit any significant difference, whereas a notable decrease was observed in the under-ground biomass. | G5、LZ |
表3 不同共生组合地上、地下生物量变化类型
Table 3 The change types of aboveground and underground biomass in different symbiotic combinations
类型 Type | 特点 Feature | 品种(接菌后) Varieties (after inoculation) |
|---|---|---|
| 地上积累型Above-ground accumulation type | 地上干重增加,地下干重无显著差异。Above-ground dry weight increased significantly, while under-ground dry weight showed no significant difference. | WL298 |
| 地上、地下积累型Above-ground and under-ground accumulation type | 地上、地下干重增加。The dry weight of both above-ground and under-ground exhibited an increase. | G3、WL319 |
| 地下积累型Under-ground accumulation type | 地上干重无显著差异,地下干重显著增加。There was no significant difference in above-ground dry weight, while under-ground dry weight increased significantly. | WL168 |
| 零增长型Zero-growth type | 地上、地下干重均无显著差异。The above-ground and under-ground dry weights did not exhibit any statistically significant difference. | QS |
| 地上、地下消耗型Above-ground and under-ground depletion type | 地上、地下干重减少。The above-ground and under-ground biomass demonstrated a substantial reduction. | G9 |
| 地下消耗型Under-ground depletion type | 地上干重无显著差异,地下干重减少。The above-ground biomass did not exhibit any significant difference, whereas a notable decrease was observed in the under-ground biomass. | G5、LZ |
图6 不同共生组合粗蛋白含量和较CK增长率的差异(a)代表不同品种紫花苜蓿接菌处理与对照组粗蛋白含量;(b)表示接菌处理较对照组的粗蛋白含量的增长率;(c)表示不同品种紫花苜蓿接菌处理与对照组粗蛋白产量;(d)表示接菌处理较对照组的粗蛋白产量的增长率。 (a) represents the crude protein content of different varieties of alfalfa inoculated with bacteria and CK; (b) shows the growth rate of crude protein content in the inoculated treatment compared with CK; (c) shows the crude protein yield of different varieties of alfalfa inoculated with bacteria and CK; (d) shows the growth rate of crude protein production in the inoculated treatment compared with CK.
Fig.6 The crude protein content in different symbiotic combinations and growth rate difference compared with CK
图7 不同共生组合NDF、ADF含量差异(a)代表不同品种紫花苜蓿接菌处理与对照组中性洗涤纤维含量;(b)表示接菌处理较对照组的中性洗涤纤维含量的增长率;(c)表示不同品种紫花苜蓿接菌处理与对照组酸性洗涤纤维含量;(d)表示接菌处理较对照组的酸性洗涤纤维含量的增长率;(e)代表不同品种紫花苜蓿接菌处理与对照组中性洗涤纤维产量;(f)表示接菌处理较对照组的中性洗涤纤维产量的增长率;(g)表示不同品种紫花苜蓿接菌处理与对照组酸性洗涤纤维产量;(h)表示接菌处理较对照组的酸性洗涤纤维产量的增长率。(a) represents the NDF content of different varieties of alfalfa inoculated with bacteria and CK; (b) shows the growth rate of NDF content in the inoculated treatment compared with CK; (c) shows the ADF content of in different varieties of alfalfa inoculated with bacteria and CK; (d) shows the growth rate of ADF content in the inoculated treatment compared with CK; (e) represents the NDF yield of different varieties of alfalfa inoculated with bacteria and CK; (f) shows the growth rate of NDF yield in the inoculated treatment compared with CK; (g) shows the ADF yield of different varieties of alfalfa inoculated with bacteria and CK; (h) shows the growth rate of ADF yield in the inoculated treatment compared with CK. NDF: Nuetral datergent fiber; ADF: Acid detergent fiber.
Fig. 7 Difference of NDF and ADF content in different symbiotic combinations
图8 不同共生组合地上、地下部共生效应的差异(a)代表不同共生组合的地上共生效应;(b)代表不同共生组合的地下共生效应。(a) represents the above-ground symbiotic effect of different symbiotic combinations; (b) shows the under-ground symbiotic effect representing different symbiotic combinations.
Fig. 8 Differences in symbiotic effects between aboveground and underground parts of different symbiotic combinations
图9 共生固氮因子对地上干重的相对贡献NFA:固氮量;NFP:固氮率;NITC:被侵染根瘤细胞数量;SERNW:单颗有效根瘤重;NA:固氮酶活性;RND:根瘤直径;NERNPP:单株有效根瘤数量。*:P<0.05,**:P<0.01,***:P<0.001。NFA: Nitrogen fixation amount; NFP: Nitrogen fixation percentage; NITC: The number of infected nodule cells; SERNW: Single effective root nodule weight; NA: Nitrogenase activity; RND: Root nodule diameter; NERNPP: Number of effective root nodules per plant. *:P<0.05, **:P<0.01, ***: P<0.001.
Fig.9 Relative contribution of symbiotic nitrogen fixation factors to aboveground dry weight
图10 不同共生组合较CK饲草品质的差异及评价(a)代表不同品种紫花苜蓿接菌处理与对照组的干物质随意采食量;(b)表示不同品种紫花苜蓿接菌处理与对照组的产乳净能值;(c)表示不同品种紫花苜蓿接菌处理与对照组的饲草分级指数。(a) represents dry matter intake of different varieties of alfalfa inoculated with bacteria and CK; (b) shows the net energy for lactation of different varieties of alfalfa inoculated with bacteria and CK; (c) shows the forage grading index of different varieties of alfalfa inoculated with bacteria and CK. VDMI:干物质随意采食量Voluntary dry matter intake;NEL:产乳净能值Net energy for lactation;GI:饲草分级指数Grading index.
Fig.10 The difference and evaluation of forage quality of different symbiotic combinations compared with CK
共生组合 Symbiotic combinations | GI值 GI value (MJ·d-1) | GI级别 GI grade |
|---|---|---|
| G3-QL2 | 58.97 | 特级 Extra grade |
| G5-QL2 | 55.47 | 特级 Extra grade |
| G9-QL2 | 55.22 | 特级 Extra grade |
| WL168-QL2 | 62.12 | 特级 Extra grade |
| WL298-QL2 | 60.90 | 特级 Extra grade |
| WL319-QL2 | 56.19 | 特级 Extra grade |
| QS-QL2 | 47.10 | 1级 First grade |
| LZ-QL2 | 56.09 | 特级 Extra grade |
表4 8个共生组合的GI级别
Table 4 GI grades of 8 symbiotic combinations
共生组合 Symbiotic combinations | GI值 GI value (MJ·d-1) | GI级别 GI grade |
|---|---|---|
| G3-QL2 | 58.97 | 特级 Extra grade |
| G5-QL2 | 55.47 | 特级 Extra grade |
| G9-QL2 | 55.22 | 特级 Extra grade |
| WL168-QL2 | 62.12 | 特级 Extra grade |
| WL298-QL2 | 60.90 | 特级 Extra grade |
| WL319-QL2 | 56.19 | 特级 Extra grade |
| QS-QL2 | 47.10 | 1级 First grade |
| LZ-QL2 | 56.09 | 特级 Extra grade |
图11 供试紫花苜蓿接种根瘤菌QL2共生固氮效应指标的相关性(a)为所有供试紫花苜蓿接种根瘤菌QL2共生固氮效应指标的相关性分析;(b)表示我国育成紫花苜蓿品种接种根瘤菌QL2共生固氮效应指标的相关性分析;(c)表示国外引进紫花苜蓿品种接种根瘤菌QL2共生固氮效应指标的相关性分析;(d)表示地方型紫花苜蓿品种接种根瘤菌QL2共生固氮效应指标的相关性分析。NFP:固氮率; SNF:共生固氮;NERNPP:单株有效根瘤数;SERNW:单颗有效根瘤重;RND:根瘤直径;NITC:被侵染根瘤细胞数量;NA:固氮酶活性;NFA:固氮量;AGSE:地上共生效应;UGSE:地下共生效应; AGDW:地上干重; UGDW:地下干重;AGTNA:地上氮积累量;UGTNA:地下氮积累量;CPY:粗蛋白产量;NDFY:中性洗涤纤维产量;ADFY:酸性洗涤纤维产量; GI:饲草分级指数。图中*,**和***分别表示在0.05,0.01和0.001水平下差异显著。(a) shows the correlation analysis of symbiotic nitrogen fixation effect indexes of all tested alfalfa inoculated with rhizobia QL2; (b) shows the correlation analysis of symbiotic nitrogen fixation effect indexes of alfalfa varieties inoculated with rhizobia QL2 in China; (c) shows the correlation analysis of symbiotic nitrogen fixation effect index of alfalfa varieties introducted from abroad and inoculated with rhizobia QL2; (d) shows the correlation analysis of symbiotic nitrogen fixation effect indexes of local alfalfa varieties introducted from abroad and inoculated with rhizobia QL2. NFP: Nitrogen fixation percentage; SNF: Symbiotic nitrogen fixation; NERNPP: Number of effective root nodules per plant; SERNW: Single effective root nodule weight; RND: Root nodule diameter; NITC: The number of infected nodule cells; NA: Nitrogenase activity; NFA: Nitrogen fixation amount; AGSE: Aboveground symbiotic effect; UGSE: Underground symbiotic effect; AGDW: Aboveground dry weight; UGDW: Underground dry weight; AGTNA: Aboveground nitrogen accumulation; UGTNA: Underground nitrogen accumulation; CPY: Crude protein yield; NDFY: Neutral detergent fiber yield; ADFY: Acid detergent fiber yield; GI: Forage grading index. In the figure, *, ** and *** represent significant differences at 0.05,0.01 and 0.001 levels, respectively.
Fig. 11 Correlation of symbiotic nitrogen fixation (SNF) effect indexes of alfalfa inoculated with rhizobia QL2
| [1] | Liu W W. Evaluation of germplasm resources and identification of new germplasms in alfalfa. Hohhot: Inner Mongolia Agricultural University, 2013. |
| 刘伟伟. 紫花苜蓿种质资源评价及新种质的鉴定. 呼和浩特: 内蒙古农业大学, 2013. | |
| [2] | Jia X T. Study on genetic diversity and DUS test characteristics of alfalfa germplasms. Lanzhou: Lanzhou University, 2023. |
| 贾喜涛. 苜蓿种质资源遗传多样性及DUS测试性状研究. 兰州: 兰州大学, 2023. | |
| [3] | Sun W B. Comprehensive evaluation of 20 alfalfa varieties in different ecological environment and comparison of nutrition characteristics among different growth stages. Lanzhou: Gansu Agricultural University, 2016. |
| 孙万斌. 不同生境下20个紫花苜蓿品种的综合评价及不同生育期营养特性的比较. 兰州: 甘肃农业大学, 2016. | |
| [4] | Tormozin M A, Cherniavskih V I, Sajfutdinova L D, et al. Ecological study of alfalfa varieties of different geographical origin in the south of the central Russian upland. Russian Agricultural Sciences, 2023, 49(2): 140-145. |
| [5] | Shi S L, Nan L L, Smith K F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7(1): 1. |
| [6] | Ladha J K, Peoples M B, Reddy P M. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 2022, 283: 108541. |
| [7] | Meng J. Effects of inoculating different rhizobia on growth and seed yield of alfalfa. Urumqi: Xinjiang Agricultural University, 2021. |
| 孟捷. 接种不同根瘤菌对苜蓿生长和种子产量的影响. 乌鲁木齐: 新疆农业大学, 2021. | |
| [8] | Gu C M, Huang W, Li Y, et al. Green manure amendment can reduce nitrogen fertilizer application rates for oilseed rape in maize-oilseed rape rotation. Plants, 2021, 10: 2640. |
| [9] | Kassaw T K. Molecular genetics of nodule number regulation: Cloning, characterization and functional studies of the root determined nodulator1 (RDN1) gene in Medicago truncatula. Clemson: South Carolina Clemson University, 2012. |
| [10] | Shi M L, Deng B, Liu Z K, et al. Inoculation effects of five rhizobial stains to alfalfa. Pratacultural Science, 2015, 32(1): 101-106. |
| 石茂玲, 邓波, 刘忠宽, 等. 5株根瘤菌接种紫花苜蓿的效果.草业科学, 2015, 32(1): 101-106. | |
| [11] | Nutman P S. Varietal differences in the nodulation of subterranean clover. Australian Journal of Agricultural Research, 1967, 18(3): 381-425. |
| [12] | Chen L Y, Zhang L J, Zhou Z Y. Research of salt tolerable rhizobia inoculation effects on Medicago sativa. Acta Prataculturae Sinica, 2008, 17(5): 43-47. |
| 陈利云, 张丽静, 周志宇. 耐盐根瘤菌对紫花苜蓿接种效果的研究. 草业学报, 2008, 17(5): 43-47. | |
| [13] | Pan J, Fan Y, Li R, et al. Screening of high efficient symbiotic rhizobium for Medicago sativa cv. Gannong No.3 and M. sativa cv. Longdong. Pratacultural Science, 2016, 33(8): 1536-1549. |
| 潘佳, 范燕, 李荣, 等. 甘农3号和陇东苜蓿高效共生根瘤菌菌株的筛选. 草业科学, 2016, 33(8): 1536-1549. | |
| [14] | Kang W J. Biotype classification of Medicago sativa rhizobia and its transcriptome analysis. Lanzhou: Gansu Agricultural University, 2019. |
| 康文娟. 紫花苜蓿根瘤菌生物型划分及其转录组学分析. 兰州: 甘肃农业大学, 2019. | |
| [15] | Zhang S Q, Li J F, Shi S L. The relationship between developmental processes of reproductive organs and infection quantity of endogenous rhizobia. Jiangsu Journal of Agricultural Sciences, 2009, 25(5): 997-1001. |
| 张淑卿, 李剑峰, 师尚礼. 苜蓿繁殖器官发育过程与内生根瘤菌侵染数量的关系. 江苏农业学报, 2009, 25(5): 997-1001. | |
| [16] | Zeng Z H, Sui X H, Hu Y G, et al. Screening of highly-effective Sinorhizobium meliloti strains for Medicago sativa cultivars and their field inoculation. Acta Prataculturae Sinica, 2004, 13(5): 95-100. |
| 曾昭海, 隋新华, 胡跃高, 等.紫花苜蓿-根瘤菌高效共生体筛选及田间作用效果. 草业学报, 2004, 13(5): 95-100. | |
| [17] | Wang L L. Molecular mechanism of leghemoglobin in controlling efficient nodule symbiotic nitrogen fixation. Wuhan: Huazhong Agricultural University, 2019. |
| 王龙龙. 豆血红蛋白调控根瘤高效固氮的分子机制研究. 武汉: 华中农业大学, 2019. | |
| [18] | Zhou N, Li W, Wu Z, et al. Sequential extractions: A new way for protein quantification-data from peanut allergens. Analytical Biochemistry, 2015, 484: 31-36. |
| [19] | Ma C, Liu C Y, Yu Y Y, et al. GmTNRP1, associated with rhizobial type-Ⅲ effector NoPT, regulates nitrogenase activity in the nodules of soybean (Glycine max). Food Energy Security, 2023, 12(4): e466. |
| [20] | Shi S L. The analysis for factors that affect the ability of growth promotion of alfalfa rhizobia in cold and drought regions and screening of high efficient strains. Lanzhou: Gansu Agricultural University, 2005. |
| 师尚礼. 甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究. 兰州: 甘肃农业大学, 2005. | |
| [21] | Zhang L Y. Feed analyses and quality test (second edition). Beijing: China Agricultural University Press, 2006: 1615-1622. |
| 张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2006: 1615-1622. | |
| [22] | Zhang J K, Lu D X, Liu J X, et al. The present research situation and progress of crude fodder quality evaluation index. Pratacultural Science, 2004, 21(9): 55-61. |
| 张吉鹍, 卢德勋, 刘建新, 等.粗饲料品质评定指数的研究现状及其进展. 草业科学, 2004, 21(9): 55-61. | |
| [23] | Li J, Cui J J, Yu L L, et al. Research the quality on whole-plant corn silage in Jidong area. China Feed, 2021(7): 131-134. |
| 李娟, 崔婧婧, 于玲玲, 等. 冀东地区全株玉米青贮饲料品质研究. 中国饲料, 2021(7): 131-134. | |
| [24] | Li Y G, Zhou J C. Root colonization and nodulation of Sinorhizobium fredii HN01DL in Glycine max rhizosphere. Chinese Journal of Applied Ecology, 2003, 14(8): 1283-1286. |
| 李友国, 周俊初. 费氏中华根瘤菌HN01DL在大豆根圈的定殖动态与结瘤研究. 应用生态学报, 2003, 14(8): 1283-1286. | |
| [25] | He L. The study of symbiotic nitrogen fixation effect of alfalfa varieties and rhizobium strains. Lanzhou: Gansu Agricultural University, 2023. |
| 何龙. 紫花苜蓿品种-根瘤菌株共生固氮效应研究. 兰州: 甘肃农业大学, 2023. | |
| [26] | Chen G. Study on lrp gene of Sinorhizobim fredii HNO1. Nanning: Guangxi University, 2007. |
| 陈钢.费氏中华根瘤菌HNO1 lrP基因的研究. 南宁: 广西大学, 2007. | |
| [27] | Kang J M, Zhang L J, Guo W S, et al. Screening of high efficient symbiotic rhizobium for Zhongmu No.1 alfalfa. Acta Agrestia Sinica, 2008, 16(5): 497-500. |
| 康俊梅, 张丽娟, 郭文山, 等. 中苜1号紫花苜蓿高效共生根瘤菌的筛选. 草地学报, 2008, 16(5): 497-500. | |
| [28] | Gibson A H, Curnow B C, Bergersen F J, et al.Studies of field populations of rhizobium: Effectiveness of strains of rhizobium trifolii associated with Trifolium subterraneum L. pastures in South-Eastern Australia.Soil Biology and Biochemistry, 1975, 7: 95-102. |
| [29] | Zhan J S, Liu M M, Zhao G Q. Effects of flavonoids and their application in ruminants. China Feed, 2014(23): 13-15. |
| 占今舜, 刘明美, 赵国琦. 黄酮的作用及其在反刍动物上的应用. 中国饲料, 2014(23): 13-15. | |
| [30] | Liu Y H, Chen Y, Li H G, et al. Regulation of nitrogen application rate on nodulation,nitrogen fixation, yield, and crude protein content of different alfalfa varieties. Soil and Fertilizer Sciences in China, 2024(6): 186-198. |
| 刘雨涵, 陈杨, 李海港, 等. 施氮量对不同品种苜蓿结瘤固氮和产量及粗蛋白含量的调控. 中国土壤与肥料, 2024(6): 186-198. | |
| [31] | Ma X, Wang L L, Li W J, et al. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia. Acta Prataculturae Sinica, 2013, 22(1): 95-102. |
| 马霞, 王丽丽, 李卫军, 等. 不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响. 草业学报, 2013, 22(1): 95-102. | |
| [32] | Lamouche F, Bonadé-Bottino N, Mergaert P, et al. Symbiotic efficiency of spherical and elongated bacteroids in the Aeschynomene-Bradyrhizobium symbiosis. Frontiers in Plant Science, 2019, 10: 377. |
| [33] | Guo P, Wang J Y, Shi X L, et al. Effects of nitrogen application rate on nodule characteristics and nitrogen utilization in different peanut genotypes. Journal of Shenyang Agricultural University, 2022, 53(4): 385-393. |
| 郭佩, 王佳艺, 史晓龙, 等. 施氮量对不同基因型花生结瘤特性及氮素利用的影响. 沈阳农业大学学报, 2022, 53(4): 385-393. | |
| [34] | Awodele S O, Bennett J A. Soil biota legacies of alfalfa production vary with field conditions and among varieties and species. Agriculture, Ecosystems & Environment, 2022, 335: 107994. |
| [35] | Zhang F, Li Y M, Dong S K, et al. Research progress on asymbiotic nitrogen-fixing microorganisms in grassland soil. (2024-07:24)[2025-02-01]. http://kns.cnki.net/kcms/detail/62.1069.S.20240723.1724.004.html. |
| 张凤, 李耀明, 董世魁, 等. 草地土壤非共生固氮微生物研究进展. (2024-07:24)[2025-02-01]. http://kns.cnki.net/kcms/detail/62.1069.S.20240723.1724.004.html. | |
| [36] | Ma X F, Gao M, Cheng Z J. Molecular regulation for uptake and utilization of nitrogen in plant. The Crop Journal, 2013(4): 32-38. |
| 马雪峰, 高旻, 程治军. 植物氮素吸收与利用的分子机制研究进展. 作物杂志, 2013(4): 32-38. | |
| [37] | Kou J T, Shi S L, Cai Z S. Effects of ridge and furrow rainfall harvesting on growth characteristics and quality of Medicago sativa in dryland. Agricultural Sciences in China, 2010, 43(24): 5028-5036. |
| 寇江涛, 师尚礼, 蔡卓山. 垄沟集雨种植对旱作紫花苜蓿生长特性及品质的影响. 中国农业科学, 2010, 43(24): 5028-5036. | |
| [38] | Ma Y J, Quan J P, Gan H L, et al. Assessment of the impact of rhizobial inoculation on production performance and nutritional value of different varieties of purple alfalfa. Animal Husbandry & Veterinary Medicine, 2024, 43(1): 27-33. |
| 马垭杰, 权金鹏, 甘辉林, 等. 接种根瘤菌对不同品种紫花苜蓿生产性能及营养价值的影响评价. 畜牧兽医杂志, 2024, 43(1): 27-33. | |
| [39] | Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
| 韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响.草业学报, 2013, 22(5): 104-112. | |
| [40] | Luo J J, Xiao Y Z, Hou M L, et al. Effects of different additives on quality and vitamin content of mixed silage of alfalfa and Leymus chinensis. (2024-11-28) [2025-02-01]. http://kns.cnki.net/kcms/detail/11.3362.S.20241128.0906.002.html. |
| 罗俊杰, 肖燕子, 侯美玲, 等. 不同添加剂对苜蓿与羊草混合青贮品质及维生素含量的影响. (2024-11-28) [2025-02-01]. http://kns.cnki.net/kcms/detail/11.3362.S.20241128.0906.002.html. | |
| [41] | Cao K F, Liu J W, Suo R Z, et al. Effect of rhizobia inoculation on nodule nitrogen fixation and growth of ‘Mengnong Clover No.1’. Acta Agrestia Sinica, 2023, 31(12): 3876-3886. |
| 曹克璠, 刘嘉伟, 索荣臻, 等. 接种根瘤菌对‘蒙农三叶草1号’结瘤固氮及生长的影响. 草地学报, 2023, 31(12): 3876-3886. | |
| [42] | Wang L R, Wang W, Pu X J, et al. Comprehensive evaluation of production performance and feed quality of 19 alfalfa varieties in Qaidam Basin. Acta Agrestia Sinica, 2023, 31(10): 3136-3144. |
| 王龙然, 王伟, 蒲小剑, 等. 柴达木盆地19个紫花苜蓿品种生产性能和饲用品质综合评价. 草地学报, 2023, 31(10): 3136-3144. | |
| [43] | Wang X L, Li H, Mi F G, et al. Comparison of production performance and winter survival rate of different fall dormancy alfalfa varieties. Acta Prataculturae Sinica, 2019, 28(6): 82-92. |
| 王晓龙, 李红, 米福贵, 等. 不同秋眠级苜蓿生产性能及越冬率评价. 草业学报, 2019, 28(6): 82-92. | |
| [44] | Peng Y, Ma S J, De J, et al. Comparative analysis of identification and quality of 3 (Medicago Sativa) species in Nyingchi. Journal of Plateau Agriculture, 2019, 3(1): 76-83. |
| 彭艳, 马素洁, 德吉, 等. 林芝不同紫花苜蓿(Medicago Sativa)栽培品种鉴定及品质研究. 高原农业, 2019, 3(1): 76-83. |
| [1] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [2] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [3] | 刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214. |
| [4] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [5] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [6] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [7] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [8] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [9] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [10] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [11] | 张磊, 杜锦涛, 范倩玉, 李顺, 高嵩涓, 曹卫东. 紫云英生物固氮对土壤肥力及根瘤菌的响应特征[J]. 草业学报, 2025, 34(5): 51-63. |
| [12] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [13] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [14] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [15] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||