草业学报 ›› 2025, Vol. 34 ›› Issue (9): 206-214.DOI: 10.11686/cyxb2024400
• 研究简报 • 上一篇
刘沂欣(
), 隋晓青(
), 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格
收稿日期:2024-10-16
修回日期:2024-12-02
出版日期:2025-09-20
发布日期:2025-07-02
通讯作者:
隋晓青
作者简介:E-mail: sxq303@163.com基金资助:
Yi-xin LIU(
), Xiao-qing SUI(
), Xin-yao WANG, Meng-qing LANG, Ling-zi-yin SUN, Er-ge JIER
Received:2024-10-16
Revised:2024-12-02
Online:2025-09-20
Published:2025-07-02
Contact:
Xiao-qing SUI
摘要:
盐胁迫严重制约植物的生长,对农业可持续发展造成威胁。褪黑素是一种强大的抗氧化剂,在不同植物抵抗各种胁迫环境中发挥着重要作用。以‘公农1号’紫花苜蓿(‘Gongnong No.1’)为材料,通过水培试验探究不同浓度外源褪黑素对150 mmol·L-1 NaCl胁迫下紫花苜蓿生理特性的影响和调节。结果显示,外施50、100、150 μmol·L-1褪黑素均可缓解盐胁迫给苜蓿幼苗带来的一系列生理损伤,例如:增加盐胁迫下游离脯氨酸、可溶性蛋白和可溶性糖等渗透调节物质含量。增加盐胁迫下羟自由基清除率,降低丙二醛、过氧化氢含量和相对电导率等损伤,增加超氧化物歧化酶、过氧化氢酶、过氧化物酶、谷胱甘肽S-转移酶、谷胱甘肽还原酶等抗氧化酶活性和抗坏血酸、还原型谷胱甘肽等抗氧化物含量,增加K+含量,降低Na+含量以平衡离子稳态;但200 μmol·L-1褪黑素会给苜蓿造成渗透应激、氧化胁迫和离子失衡等不利影响。主成分分析表明过氧化氢酶活性、过氧化氢含量和K+/Na+可作为评价紫花苜蓿耐盐性的关键指标。运用隶属函数对17个生理指标进行综合评价,结果显示,150 μmol·L-1褪黑素处理对盐胁迫缓解效果最佳。本研究结果进一步表明,褪黑素通过两种方式增强苜蓿对盐胁迫的抵抗力:一种是通过直接途径,如直接清除活性氧;另一种是通过间接途径,如通过增强抗氧化酶系统、渗透调节物质等代谢物含量,调节离子稳态。
刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214.
Yi-xin LIU, Xiao-qing SUI, Xin-yao WANG, Meng-qing LANG, Ling-zi-yin SUN, Er-ge JIER. Mitigating effects of exogenous melatonin on alfalfa under salt stress[J]. Acta Prataculturae Sinica, 2025, 34(9): 206-214.
处理 Treatment | 霍格兰营养液 Hoagland’s nutrient solution (g·L-1) | NaCl (mmol·L-1) | 褪黑素 Melatonin (MT, μmol·L-1) | 处理 Treatment | 霍格兰营养液 Hoagland’s nutrient solution (g·L-1) | NaCl (mmol·L-1) | 褪黑素 Melatonin (MT, μmol·L-1) |
|---|---|---|---|---|---|---|---|
| CK | 1.96 | 0 | 0 | N | 1.96 | 150 | 0 |
| MT1 | 1.96 | 0 | 50 | NM1 | 1.96 | 150 | 50 |
| MT2 | 1.96 | 0 | 100 | NM2 | 1.96 | 150 | 100 |
| MT3 | 1.96 | 0 | 150 | NM3 | 1.96 | 150 | 150 |
| MT4 | 1.96 | 0 | 200 | NM4 | 1.96 | 150 | 200 |
表1 各处理组分及浓度
Table 1 Treatment components and concentrations
处理 Treatment | 霍格兰营养液 Hoagland’s nutrient solution (g·L-1) | NaCl (mmol·L-1) | 褪黑素 Melatonin (MT, μmol·L-1) | 处理 Treatment | 霍格兰营养液 Hoagland’s nutrient solution (g·L-1) | NaCl (mmol·L-1) | 褪黑素 Melatonin (MT, μmol·L-1) |
|---|---|---|---|---|---|---|---|
| CK | 1.96 | 0 | 0 | N | 1.96 | 150 | 0 |
| MT1 | 1.96 | 0 | 50 | NM1 | 1.96 | 150 | 50 |
| MT2 | 1.96 | 0 | 100 | NM2 | 1.96 | 150 | 100 |
| MT3 | 1.96 | 0 | 150 | NM3 | 1.96 | 150 | 150 |
| MT4 | 1.96 | 0 | 200 | NM4 | 1.96 | 150 | 200 |
图1 外源褪黑素对盐胁迫下紫花苜蓿叶片渗透调节物质的缓解效果FW: 鲜重Fresh weight. 不同小写字母表示处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant differences among treatments (P<0.05), the same below.
Fig.1 Mitigating effects of exogenous melatonin on osmoregulatory substances in alfalfa leaves under salt stress
图2 外源褪黑素对盐胁迫下紫花苜蓿叶片氧化伤害和细胞膜稳定性的缓解效果
Fig.2 Mitigating effects of exogenous melatonin on oxidative damage and cell membrane stability in alfalfa leaves under salt stress
生理指标 Physiological index | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
|---|---|---|---|
| 过氧化氢酶Catalase | 0.93 | 0.07 | -0.14 |
| 丙二醛Malondialdehyde | 0.92 | 0.19 | -0.07 |
| 过氧化物酶Peroxidase | 0.88 | 0.28 | -0.17 |
| 可溶性糖Soluble sugar | 0.86 | 0.14 | -0.32 |
| 游离脯氨酸Free proline | 0.78 | 0.46 | -0.11 |
| 可溶性蛋白Soluble protein | 0.76 | -0.59 | 0.00 |
| 相对电导率Relative conductivity | 0.62 | 0.61 | -0.13 |
| 超氧化物歧化酶Superoxide dismutase | 0.57 | 0.41 | 0.43 |
| 谷胱甘肽S-转移酶Glutathione S-transferase | 0.52 | 0.33 | 0.28 |
| 还原型谷胱甘肽Glutathione reduced | 0.43 | -0.81 | 0.15 |
| 过氧化氢Hydrogen peroxide | -0.62 | 0.75 | 0.07 |
| 谷胱甘肽还原酶Glutathione reductase | 0.49 | 0.73 | 0.00 |
| 抗坏血酸Ascorbic acid | 0.57 | -0.71 | 0.17 |
| 羟自由基清除率Hydroxyl free radical clearance rate | -0.66 | 0.71 | 0.10 |
| 钾离子K+ | 0.54 | -0.70 | 0.24 |
| 钠离子Na+ | 0.55 | 0.64 | 0.09 |
| K+/Na+ | 0.20 | 0.23 | 0.84 |
| 贡献率Contribution rate (%) | 44.69 | 29.74 | 7.57 |
| 累计贡献率Cumulative contribution rate (%) | 44.69 | 74.43 | 82.00 |
表2 主成分分析
Table 2 Principal component analysis
生理指标 Physiological index | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
|---|---|---|---|
| 过氧化氢酶Catalase | 0.93 | 0.07 | -0.14 |
| 丙二醛Malondialdehyde | 0.92 | 0.19 | -0.07 |
| 过氧化物酶Peroxidase | 0.88 | 0.28 | -0.17 |
| 可溶性糖Soluble sugar | 0.86 | 0.14 | -0.32 |
| 游离脯氨酸Free proline | 0.78 | 0.46 | -0.11 |
| 可溶性蛋白Soluble protein | 0.76 | -0.59 | 0.00 |
| 相对电导率Relative conductivity | 0.62 | 0.61 | -0.13 |
| 超氧化物歧化酶Superoxide dismutase | 0.57 | 0.41 | 0.43 |
| 谷胱甘肽S-转移酶Glutathione S-transferase | 0.52 | 0.33 | 0.28 |
| 还原型谷胱甘肽Glutathione reduced | 0.43 | -0.81 | 0.15 |
| 过氧化氢Hydrogen peroxide | -0.62 | 0.75 | 0.07 |
| 谷胱甘肽还原酶Glutathione reductase | 0.49 | 0.73 | 0.00 |
| 抗坏血酸Ascorbic acid | 0.57 | -0.71 | 0.17 |
| 羟自由基清除率Hydroxyl free radical clearance rate | -0.66 | 0.71 | 0.10 |
| 钾离子K+ | 0.54 | -0.70 | 0.24 |
| 钠离子Na+ | 0.55 | 0.64 | 0.09 |
| K+/Na+ | 0.20 | 0.23 | 0.84 |
| 贡献率Contribution rate (%) | 44.69 | 29.74 | 7.57 |
| 累计贡献率Cumulative contribution rate (%) | 44.69 | 74.43 | 82.00 |
| 指标Index | CK | MT1 | MT2 | MT3 | MT4 | N | NM1 | NM2 | NM3 | NM4 |
|---|---|---|---|---|---|---|---|---|---|---|
| 过氧化氢酶Catalase | 0.00 | 0.21 | 0.41 | 0.49 | 0.08 | 0.16 | 0.59 | 0.87 | 1.00 | 0.35 |
| 丙二醛Malondialdehyde | 0.10 | 0.07 | 0.00 | 0.03 | 0.89 | 1.00 | 0.68 | 0.48 | 0.31 | 0.98 |
| 过氧化物酶Peroxidase | 0.09 | 0.00 | 0.50 | 0.88 | 0.27 | 0.25 | 0.50 | 1.00 | 1.00 | 0.34 |
| 可溶性糖Soluble sugar | 0.00 | 0.47 | 0.78 | 1.00 | 0.27 | 0.55 | 0.66 | 1.00 | 0.91 | 0.46 |
| 游离脯氨酸Free proline | 0.00 | 0.12 | 0.47 | 0.66 | 0.24 | 0.59 | 0.78 | 1.00 | 0.93 | 0.33 |
| 可溶性蛋白Soluble protein | 0.01 | 0.04 | 0.10 | 0.23 | 0.00 | 0.65 | 0.75 | 0.90 | 1.00 | 0.48 |
| 相对电导率Relative conductivity | 0.06 | 0.06 | 0.04 | 0.00 | 0.57 | 1.00 | 0.64 | 0.57 | 0.50 | 0.74 |
| 超氧化物歧化酶Superoxide dismutase | 0.03 | 0.00 | 0.61 | 0.97 | 0.90 | 0.31 | 0.10 | 0.26 | 1.00 | 0.61 |
| 谷胱甘肽S-转移酶Glutathione S-transferase | 0.00 | 0.28 | 0.58 | 0.71 | 0.67 | 0.21 | 0.69 | 0.65 | 1.00 | 0.68 |
| 还原型谷胱甘肽Glutathione reduced | 0.00 | 0.17 | 0.71 | 0.81 | 1.00 | 0.46 | 0.74 | 0.97 | 0.79 | 0.48 |
| 过氧化氢Hydrogen peroxide | 0.22 | 0.20 | 0.04 | 0.00 | 1.00 | 0.93 | 0.78 | 0.53 | 0.46 | 0.68 |
| 谷胱甘肽还原酶Glutathione reductase | 0.00 | 0.02 | 0.23 | 0.34 | 0.41 | 0.50 | 0.74 | 0.89 | 1.00 | 0.52 |
| 抗坏血酸Ascorbic acid | 0.00 | 0.24 | 0.33 | 0.37 | 0.25 | 0.44 | 0.77 | 1.00 | 0.87 | 0.63 |
| 羟自由基清除率Hydroxyl free radical clearance rate | 0.00 | 0.02 | 0.06 | 0.12 | 0.39 | 0.44 | 0.75 | 1.00 | 0.89 | 0.45 |
| 钾离子K+ | 0.44 | 0.68 | 0.89 | 1.00 | 0.19 | 0.00 | 0.12 | 0.25 | 0.27 | 0.03 |
| 钠离子Na+ | 0.15 | 0.08 | 0.02 | 0.00 | 0.66 | 1.00 | 0.43 | 0.20 | 0.21 | 0.56 |
| K+/Na+ | 0.43 | 0.65 | 0.87 | 1.00 | 0.11 | 0.00 | 0.14 | 0.29 | 0.30 | 0.07 |
| D值D value | 0.09 | 0.19 | 0.39 | 0.51 | 0.47 | 0.50 | 0.58 | 0.70 | 0.73 | 0.49 |
| 排名Ranking | 10 | 9 | 8 | 4 | 7 | 5 | 3 | 2 | 1 | 6 |
表3 隶属函数综合评价
Table 3 Comprehensive evaluation of membership functions
| 指标Index | CK | MT1 | MT2 | MT3 | MT4 | N | NM1 | NM2 | NM3 | NM4 |
|---|---|---|---|---|---|---|---|---|---|---|
| 过氧化氢酶Catalase | 0.00 | 0.21 | 0.41 | 0.49 | 0.08 | 0.16 | 0.59 | 0.87 | 1.00 | 0.35 |
| 丙二醛Malondialdehyde | 0.10 | 0.07 | 0.00 | 0.03 | 0.89 | 1.00 | 0.68 | 0.48 | 0.31 | 0.98 |
| 过氧化物酶Peroxidase | 0.09 | 0.00 | 0.50 | 0.88 | 0.27 | 0.25 | 0.50 | 1.00 | 1.00 | 0.34 |
| 可溶性糖Soluble sugar | 0.00 | 0.47 | 0.78 | 1.00 | 0.27 | 0.55 | 0.66 | 1.00 | 0.91 | 0.46 |
| 游离脯氨酸Free proline | 0.00 | 0.12 | 0.47 | 0.66 | 0.24 | 0.59 | 0.78 | 1.00 | 0.93 | 0.33 |
| 可溶性蛋白Soluble protein | 0.01 | 0.04 | 0.10 | 0.23 | 0.00 | 0.65 | 0.75 | 0.90 | 1.00 | 0.48 |
| 相对电导率Relative conductivity | 0.06 | 0.06 | 0.04 | 0.00 | 0.57 | 1.00 | 0.64 | 0.57 | 0.50 | 0.74 |
| 超氧化物歧化酶Superoxide dismutase | 0.03 | 0.00 | 0.61 | 0.97 | 0.90 | 0.31 | 0.10 | 0.26 | 1.00 | 0.61 |
| 谷胱甘肽S-转移酶Glutathione S-transferase | 0.00 | 0.28 | 0.58 | 0.71 | 0.67 | 0.21 | 0.69 | 0.65 | 1.00 | 0.68 |
| 还原型谷胱甘肽Glutathione reduced | 0.00 | 0.17 | 0.71 | 0.81 | 1.00 | 0.46 | 0.74 | 0.97 | 0.79 | 0.48 |
| 过氧化氢Hydrogen peroxide | 0.22 | 0.20 | 0.04 | 0.00 | 1.00 | 0.93 | 0.78 | 0.53 | 0.46 | 0.68 |
| 谷胱甘肽还原酶Glutathione reductase | 0.00 | 0.02 | 0.23 | 0.34 | 0.41 | 0.50 | 0.74 | 0.89 | 1.00 | 0.52 |
| 抗坏血酸Ascorbic acid | 0.00 | 0.24 | 0.33 | 0.37 | 0.25 | 0.44 | 0.77 | 1.00 | 0.87 | 0.63 |
| 羟自由基清除率Hydroxyl free radical clearance rate | 0.00 | 0.02 | 0.06 | 0.12 | 0.39 | 0.44 | 0.75 | 1.00 | 0.89 | 0.45 |
| 钾离子K+ | 0.44 | 0.68 | 0.89 | 1.00 | 0.19 | 0.00 | 0.12 | 0.25 | 0.27 | 0.03 |
| 钠离子Na+ | 0.15 | 0.08 | 0.02 | 0.00 | 0.66 | 1.00 | 0.43 | 0.20 | 0.21 | 0.56 |
| K+/Na+ | 0.43 | 0.65 | 0.87 | 1.00 | 0.11 | 0.00 | 0.14 | 0.29 | 0.30 | 0.07 |
| D值D value | 0.09 | 0.19 | 0.39 | 0.51 | 0.47 | 0.50 | 0.58 | 0.70 | 0.73 | 0.49 |
| 排名Ranking | 10 | 9 | 8 | 4 | 7 | 5 | 3 | 2 | 1 | 6 |
| [1] | Wang J J, Lv P H, Yan D, et al. Exogenous melatonin improves seed germination of wheat (Triticum aestivum L.) under salt stress. International Journal of Molecular Sciences, 2022, 23(15): 8436. |
| [2] | Li X Y, Xie L N. Research progress in Na+ regulation mechanism of plants under salt stress. Biotechnology Bulletin, 2019, 35(7): 148-155. |
| 李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展. 生物技术通报, 2019, 35(7): 148-155. | |
| [3] | Zhao L J, Ma D M, Wang W J, et al. Effect of exogenous melatonin on antioxidant capacity and photosynthetic efficiency of alfalfa seedling under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1355-1363. |
| 赵丽娟, 麻冬梅, 王文静, 等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响. 西北植物学报, 2021, 41(8): 1355-1363. | |
| [4] | Zhao L X, Wang L, Wen L, et al. Adaptation mechanism and cultivation strategy of alfalfa in saline soil. Grassland and Turf, 2022, 42(1): 142-149. |
| 赵力兴, 王琳, 温丽, 等. 盐碱地紫花苜蓿的适应机制与栽培策略. 草原与草坪, 2022, 42(1): 142-149. | |
| [5] | Gao F, Wang T M, Lu X S. Analysis of production situation of commercial forage in China in 2021 and trend outlook in 2022. Animal Agriculture, 2022(3): 32-37. |
| 高菲, 王铁梅, 卢欣石. 2021年我国商品饲草生产形势分析与2022年趋势展望. 畜牧产业, 2022(3): 32-37. | |
| [6] | Shi J H, Lu Q, Zhang G J, et al. Research progress on the effects of salt stress on growth, development, and nutritional quality of alfalfa. Grassland and Prataculture, 2024, 36(1): 1-7. |
| 史金红, 卢强, 张桂杰, 等. 盐胁迫对紫花苜蓿生长发育及营养品质影响的研究进展. 草原与草业, 2024, 36(1): 1-7. | |
| [7] | Wang Q Q, Xie J H, Yu L Q, et al. Research progress and prospect of alfalfa breeding in China. Journal of Grassland and Forage Science, 2023(4): 1-7. |
| 王旗旗, 解继红, 于林清, 等. 我国苜蓿育种研究进展及展望. 草学, 2023(4): 1-7. | |
| [8] | Zhang T G, Shi Z F, Zhang X H, et al. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 2020, 262: 109070. |
| [9] | Ren J H, Ye J, Yin L N, et al. Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy, 2020, 10(5): 663. |
| [10] | Chen Y E, Mao J J, Sun L Q, et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia Plantarum, 2018, 164(3): 349-363. |
| [11] | Cui Q L. Effect of water stress on membrane permeability and malondialdehyde content in seabuckthorn cells. Modern Agricultural Science and Technology, 2017(11): 139, 145. |
| 崔庆利. 水分胁迫对沙棘细胞膜透性及丙二醛含量的影响. 现代农业科技, 2017(11): 139, 145. | |
| [12] | Wang M C. Effect of pea aphid hazard on soluble protein and tannin content changes of four alfalfa cultivars (lines). Modern Agriculture, 2020(8): 24-25. |
| 王明春. 豌豆蚜危害对四种苜蓿品种(系)可溶性蛋白和单宁含量变化的影响. 现代农业, 2020(8): 24-25. | |
| [13] | Thompson D I, Edwards T J, Van Staden J. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species. Plant Growth Regulation, 2007, 53: 163-171. |
| [14] | Hu X R, Tao M, Lu X X, et al. Study on the genetic integrity of ultra-dried seed of rice with isozyme of α-Amy and SOD. Journal of Plant Genetic Resources, 2007, 8(2): 228-230. |
| 胡小荣, 陶梅, 卢新雄, 等. α-淀粉酶和超氧化物歧化酶等位酶与水稻种子超干燥保存遗传完整性的研究. 植物遗传资源学报, 2007, 8(2): 228-230. | |
| [15] | Munns R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 2002, 25(2): 239-250. |
| [16] | Zhu Y, Zhong W, Zhao X M, et al. Comparison of hydroxyl free radical-scavenging activity of polysaccharide from Paeonia suffruticosa leaves. Jiangsu Agricultural Sciences, 2016, 44(11): 341-342. |
| 朱月, 钟尉, 赵雪梅, 等. 紫斑牡丹叶片多糖对羟自由基清除能力的比较. 江苏农业科学, 2016, 44(11): 341-342. | |
| [17] | Wang H, Lin X, Cao S, et al. Alkali tolerance in rice (Oryza sativa L.): growth, photosynthesis, nitrogen metabolism, and ion homeostasis. Photosynthetica, 2015, 53: 55-65. |
| [18] | Tian L H, Zhou Q P, Lu S J, et al. Comprehensive evaluation of drought resistance of different species of Poa L. grass at seedling stage. Acta Agrestia Sinica, 2017, 25(3): 561-566. |
| 田莉华, 周青平, 卢素锦, 等. 不同种类早熟禾苗期抗旱性综合评价. 草地学报, 2017, 25(3): 561-566. | |
| [19] | Helal N M, Saudy H S, Hamada M M A, et al. Potentiality of melatonin for reinforcing salinity tolerance in sorghum seedlings via boosting photosynthetic pigments, ionic and osmotic homeostasis and reducing the carbonyl/oxidative stress markers. Journal of Soil Science and Plant Nutrition, 2024, 24: 4243-4260. |
| [20] | Liao L Z, Yang B, Fan J, et al. Effects of exogenous melatonin on the growth and physiological characteristics of Rhus chinensis seedlings under salt stress. Biological Resources, 2024, 46(4): 324-333. |
| 廖聆孜, 杨冰, 樊静, 等. 外源褪黑素对盐胁迫下盐肤木幼苗生长和生理特性的影响. 生物资源, 2024, 46(4): 324-333. | |
| [21] | Kesawat M S, Satheesh N, Kherawat B S, et al. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-Current perspectives and future directions. Plants, 2023, 12(4): 864. |
| [22] | Wang W W, Shen F, Wu Y C, et al. Summary of melatonin biosynthesis and its role in plant stress. Jiangsu Agricultural Sciences, 2022, 50(1): 1-6. |
| 王薇薇, 沈峰, 吴永成, 等. 褪黑素生物合成及其在植物逆境胁迫中的作用综述. 江苏农业科学, 2022, 50(1): 1-6. | |
| [23] | Jiang C Q, Cui Q R, Feng K, et al. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 2016, 38(4): 1-9. |
| [24] | Zhao H L, Ye L, Wang Y P, et al. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 2016, 7: 01814. |
| [25] | Liu Z Y, Sun L, Liu Z W, et al. Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings under waterlogging stress. PeerJ, 2024, 12(1): e17927. |
| [26] | Zhao D H. Effects of exogenous abscisic acid and melatonin on physiological characteristics of alfalfa under salt stress. Yangling: Northwest A & F University, 2023. |
| 赵东豪. 外源脱落酸和褪黑素对盐胁迫下紫花苜蓿生理特性的影响. 杨凌: 西北农林科技大学, 2023. | |
| [27] | Liu L Y. Physiological characteristics of Medicago sativa in response to salt stress and analysis of root metabolites. Yangzhou: Yangzhou University, 2021. |
| 刘隆阳. 紫花苜蓿响应盐胁迫的生理特性及根代谢产物分析. 扬州: 扬州大学, 2021. | |
| [28] | Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445. |
| [29] | Chen Z, Cao X L, Niu J P. Effects of melatonin on morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa under high-nitrate stress. Frontiers in Plant Science, 2021, 12: 694179. |
| [30] | Zhou D. Effects of salt stress on photosynthesis and water in plants. Botanical Research, 2021, 10(3): 231-238. |
| 周丹. 盐胁迫对植物光合-水分关系的影响研究. 植物学研究, 2021, 10(3): 231-238. | |
| [31] | Ou C, Zhang M, Yao X M, et al. Effect of melatonin on growth, ion absorption and photosynthesis of Toona sinensis seedlings under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2226-2234. |
| 偶春, 张敏, 姚侠妹, 等. 褪黑素对盐胁迫下香椿幼苗生长及离子吸收和光合作用的影响. 西北植物学报, 2019, 39(12): 2226-2234. | |
| [32] | Gao Q H, Guo Y Y, Wu Y, et al. Alleviation effects of melatonin and Ca2+ on melon seedlings under salt stress. Chinese Journal of Applied Ecology, 2017, 28(6): 1925-1931. |
| 高青海, 郭远远, 吴燕, 等. 盐胁迫下外源褪黑素和Ca2+对甜瓜幼苗的缓解效应. 应用生态学报, 2017, 28(6): 1925-1931. |
| [1] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [2] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [3] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [4] | 项凌飞, 张峰举, 麻冬梅, 刘金龙, 兰剑, 邓建强, 胡海英, 王斌, 蔡春江, 马巧利. 氮磷钾配施对盐碱地湖南稷子生产性能和营养品质的影响[J]. 草业学报, 2025, 34(7): 185-195. |
| [5] | 白小红, 陈文燕, 李琴, 王奕璇, 张雪, 王磊, 曲文杰, 朱林. 不同种源乌拉尔甘草种子萌发及幼苗生长比较研究[J]. 草业学报, 2025, 34(7): 196-209. |
| [6] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [7] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [8] | 张晴晴, 马兴羽, 鲁艳, 赵广兴, 曾凡江, 黄彩变. 沙化盐渍土地不同生长时期油莎豆的耐盐性差异研究[J]. 草业学报, 2025, 34(6): 168-180. |
| [9] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [10] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [11] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [12] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [13] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [14] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [15] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||