草业学报 ›› 2026, Vol. 35 ›› Issue (4): 112-123.DOI: 10.11686/cyxb2025188
• 研究论文 • 上一篇
马苹1,2(
), 刘志国1,2, 沙煜舒1,2, 刘亚玲1,2, 妥小梅1,2, 伏兵哲1,2, 高雪芹1,2,3(
)
收稿日期:2025-05-09
修回日期:2025-06-05
出版日期:2026-04-20
发布日期:2026-02-07
通讯作者:
高雪芹
作者简介:Corresponding author. E-mail: qinqin_803@sina.com基金资助:
Ping MA1,2(
), Zhi-guo LIU1,2, Yu-shu SHA1,2, Ya-ling LIU1,2, Xiao-mei TUO1,2, Bing-zhe FU1,2, Xue-qing GAO1,2,3(
)
Received:2025-05-09
Revised:2025-06-05
Online:2026-04-20
Published:2026-02-07
Contact:
Xue-qing GAO
摘要:
本研究以20个紫花苜蓿品种为试验材料,通过低氮(20 mg·L-1)和正常氮(200 mg·L-1)处理,分析不同品种在生长特性、氮同化关键酶活性及氮利用效率等方面的差异,探究紫花苜蓿苗期的氮利用特性,并初步筛选氮高效品种。试验采用营养液水培法,以无氮Hoagland-Arnon营养液为基础,设置低氮(N20)和正常氮(N200)两个水平,对20个紫花苜蓿品种进行培养。测定株高、生物量、根长、根体积等生长指标,硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性等生理指标,以及全株氮含量、氮积累量和氮利用效率。通过相关性分析、多元线性回归和隶属函数法进行综合评价。结果表明:不同品种氮利用特性存在显著差异,在低氮(N20)条件下,不同紫花苜蓿品种的氮利用效率为2.71%~23.66%,品种标杆(MX13)表现出较高的生物量、发达的根系及较强的氮同化能力;品种北方SLT(MX9)表现出较低的生长性能及较低的氮同化能力。正常氮(N200)条件下,不同紫花苜蓿品种的氮利用效率为2.71%~22.36%,标杆(MX13)、岩石(MX16)、骑士2(MX19)的氮利用效率显著高于其他品种(P<0.05)。相关性分析显示,株高、根长、硝酸还原酶活性等指标与氮含量显著正相关,多元线性回归分析表明,氮利用效率受硝酸还原酶和地上生物量的显著影响,可用D=-8.390+0.487×X8+0.476×X2回归方程进行预测。通过隶属函数法综合评价,品种熊岳(MX2)、耐盐之星(MX5)、雷达克之星(MX7)、标杆(MX13)、秘鲁(MX14)、骑士2(MX19)在N20和N200下综合值均大于0.50;皇冠(MX3)、岩石(MX16)、驯鹿(MX20)在N20条件下大于0.5,在N200条件下综合值小于0.5。经综合分析,筛选出氮高效型品种1个、常效型4个、低效型13个和反效型品种2个,研究结果为紫花苜蓿氮高效品种的选育及大田氮肥优化管理提供理论参考。
马苹, 刘志国, 沙煜舒, 刘亚玲, 妥小梅, 伏兵哲, 高雪芹. 紫花苜蓿苗期氮利用特性及氮高效品种的筛选[J]. 草业学报, 2026, 35(4): 112-123.
Ping MA, Zhi-guo LIU, Yu-shu SHA, Ya-ling LIU, Xiao-mei TUO, Bing-zhe FU, Xue-qing GAO. Nitrogen utilization characteristics of alfalfa at the seedling stage and screening of nitrogen-efficient varieties[J]. Acta Prataculturae Sinica, 2026, 35(4): 112-123.
| 编号Code | 品种Variety | 材料来源Source of materials |
|---|---|---|
| MX1 | 甘农3号Gannong 3 | 甘肃农业大学Gansu Agricultural University |
| MX2 | 熊岳Xiongyue | 中国农业科学院草原所Grassland Institute of Chinese Academy of Agricultural Sciences |
| MX3 | 皇冠Crown | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX4 | NY1 | 宁夏大学Ningxia University |
| MX5 | 耐盐之星Salt Tolerant Star | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX6 | 匈牙利 Hungary | 甘肃农业大学Gansu Agricultural University |
| MX7 | 雷达克之星 Star of Radacor | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX8 | WL366HQ | 北京正道Beijing Zhengdao |
| MX9 | 北方SLT North SLT | 猛犸生物科技有限公司 Mammoth Biotech Co, Ltd. |
| MX10 | 猎人河Hunter River | 内蒙古农业大学Inner Mongolia Agricultural University |
| MX11 | 公农1号Gongnong 1 | 集宁Jining |
| MX12 | 旱地Dryland | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX13 | 标杆Benchmark | 北京正道生态科技有限公司Beijing Zhengdao Ecological Technology Co., Ltd. |
| MX14 | 秘鲁Peru | 甘肃农业大学Gansu Agricultural University |
| MX15 | 勇士Warrior | 宁夏草原工作站Ningxia Grassland Station |
| MX16 | 岩石 Rock | 宁夏草原工作站Ningxia Grassland Station |
| MX17 | 巨能6 Giant 6 | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX18 | 劲能Jinneng | 宁夏彭阳草原工作站Ningxia Pengyang Grassland Station |
| MX19 | 骑士2 Knight 2 | 宁夏草原工作站Ningxia Grassland Station |
| MX20 | 驯鹿 Reindeer | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
表1 供试紫花苜蓿品种及来源
Table 1 Alfalfa varieties under study and their sources
| 编号Code | 品种Variety | 材料来源Source of materials |
|---|---|---|
| MX1 | 甘农3号Gannong 3 | 甘肃农业大学Gansu Agricultural University |
| MX2 | 熊岳Xiongyue | 中国农业科学院草原所Grassland Institute of Chinese Academy of Agricultural Sciences |
| MX3 | 皇冠Crown | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX4 | NY1 | 宁夏大学Ningxia University |
| MX5 | 耐盐之星Salt Tolerant Star | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX6 | 匈牙利 Hungary | 甘肃农业大学Gansu Agricultural University |
| MX7 | 雷达克之星 Star of Radacor | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX8 | WL366HQ | 北京正道Beijing Zhengdao |
| MX9 | 北方SLT North SLT | 猛犸生物科技有限公司 Mammoth Biotech Co, Ltd. |
| MX10 | 猎人河Hunter River | 内蒙古农业大学Inner Mongolia Agricultural University |
| MX11 | 公农1号Gongnong 1 | 集宁Jining |
| MX12 | 旱地Dryland | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX13 | 标杆Benchmark | 北京正道生态科技有限公司Beijing Zhengdao Ecological Technology Co., Ltd. |
| MX14 | 秘鲁Peru | 甘肃农业大学Gansu Agricultural University |
| MX15 | 勇士Warrior | 宁夏草原工作站Ningxia Grassland Station |
| MX16 | 岩石 Rock | 宁夏草原工作站Ningxia Grassland Station |
| MX17 | 巨能6 Giant 6 | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
| MX18 | 劲能Jinneng | 宁夏彭阳草原工作站Ningxia Pengyang Grassland Station |
| MX19 | 骑士2 Knight 2 | 宁夏草原工作站Ningxia Grassland Station |
| MX20 | 驯鹿 Reindeer | 克劳沃(北京)生态科技有限公司Crawford (Beijing) Ecological Technology Co.,Ltd. |
试剂 Reagent | 浓度Concentration (mg·L-1) | 试剂 Reagent | 浓度Concentration (mg·L-1) |
|---|---|---|---|
| CaCl2 | 444 | H3BO3 | 6.2 |
| K2SO4 | 435 | MnSO4·H2O | 16.9 |
| KH2PO4 | 136 | ZnSO4·7H2O | 8.6 |
| MgSO4 | 241 | Na2MoO4·2H2O | 0.25 |
| FeNaEDTA | 36.7 | CuSO4·H2O | 0.025 |
| KI | 0.83 | CoCl2·6H2O | 0.025 |
表2 无氮Hoagland-Arnon营养液配方
Table 2 Nitrogen-free Hoagland-Arnon nutrient solution formula
试剂 Reagent | 浓度Concentration (mg·L-1) | 试剂 Reagent | 浓度Concentration (mg·L-1) |
|---|---|---|---|
| CaCl2 | 444 | H3BO3 | 6.2 |
| K2SO4 | 435 | MnSO4·H2O | 16.9 |
| KH2PO4 | 136 | ZnSO4·7H2O | 8.6 |
| MgSO4 | 241 | Na2MoO4·2H2O | 0.25 |
| FeNaEDTA | 36.7 | CuSO4·H2O | 0.025 |
| KI | 0.83 | CoCl2·6H2O | 0.025 |
编号 No. | 株高Plant height (cm) | 生物量Biomass (mg·plant-1) | 干重Dry weight (mg·plant-1) | 总根长Total root length (cm) | 根体积Root volume (cm3) | ||
|---|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Underground | 地上Aboveground | 地下Underground | ||||
| N20MX1 | 23.80±0.80ab | 345.33±34.78cd | 289.00±11.14bc | 52.53±0.70bcd | 23.60±3.12ab | 196.17±34.84ghi | 0.35±0.02ab |
| N20MX2 | 25.63±0.12a | 364.00±36.29cd | 307.33±11.24b | 53.69±0.75bcd | 22.87±3.45abc | 379.83±8.45ab | 0.38±0.08ab |
| N20MX3 | 23.53±0.95abc | 340.67±34.21cd | 291.67±10.69bc | 69.05±29.79ab | 24.07±1.40a | 284.57±8.45cde | 0.26±0.04ab |
| N20MX4 | 20.37±1.36def | 267.33±26.84efg | 229.33±8.62efg | 39.73±3.86cd | 14.33±0.76def | 222.84±8.45efghi | 0.31±0.08ab |
| N20MX5 | 23.90±0.44ab | 359.33±35.73cd | 229.30±6.84efg | 56.73±1.15bc | 13.67±0.42def | 323.97±15.65bc | 0.40±0.10ab |
| N20MX6 | 21.63±0.80cdef | 308.00±31.00def | 264.67±9.71cd | 43.73±3.36cd | 18.00±0.72bcd | 271.01±8.45cdef | 0.34±0.09ab |
| N20MX7 | 24.73±0.72ab | 262.67±26.27efg | 304.67±11.68b | 39.33±4.11cd | 24.87±0.42a | 374.11±15.65ab | 0.39±0.10ab |
| N20MX8 | 20.43±1.65cdef | 319.33±32.13cdef | 246.00±9.17de | 48.13±3.75bcd | 15.33±0.90de | 253.70±12.25defg | 0.39±0.10ab |
| N20MX9 | 19.10±0.95f | 205.00±20.42g | 163.67±6.11i | 30.67±2.16d | 9.80±0.40ef | 164.48±30.20i | 0.21±0.05b |
| N20MX10 | 20.27±1.02def | 387.00±38.94c | 215.00±8.19fg | 57.87±4.09bc | 14.47±0.50def | 243.22±13.09defgh | 0.27±0.07ab |
| N20MX11 | 22.80±0.78abcd | 321.67±32.52cdef | 181.33±6.66hi | 48.07±3.53bcd | 13.40±0.60def | 283.15±32.32cde | 0.34±0.09ab |
| N20MX12 | 19.43±1.71ef | 256.00±25.71fg | 208.33±7.64gh | 38.33±2.73cd | 13.80±0.35def | 186.90±13.09hi | 0.28±0.07ab |
| N20MX13 | 25.73±0.40a | 594.00±46.03a | 344.00±12.77a | 88.27±6.17a | 25.40±3.70a | 390.20±8.45a | 0.48±0.06a |
| N20MX14 | 23.60±0.75ab | 349.33±27.21cd | 259.67±9.71d | 51.80±3.49bcd | 17.27±0.70cd | 273.43±13.09cdef | 0.35±0.09ab |
| N20MX15 | 19.87±1.66def | 330.33±25.48cde | 129.67±5.13j | 49.07±3.37bcd | 9.20±1.04f | 169.85±8.45i | 0.24±0.06ab |
| N20MX16 | 22.37±0.49bcde | 576.67±44.88a | 129.00±4.58j | 85.60±5.92a | 9.80±0.80ef | 293.92±17.77cd | 0.36±0.09ab |
| N20MX17 | 19.13±0.15f | 358.00±27.78cd | 224.67±8.08efg | 53.33±3.95bcd | 17.53±1.29cd | 168.62±8.45i | 0.26±0.03ab |
| N20MX18 | 20.03±1.08def | 349.33±27.21cd | 240.00±9.17def | 51.80±3.49bcd | 16.80±1.74d | 211.67±8.45fghi | 0.26±0.07ab |
| N20MX19 | 23.93±0.76ab | 571.00±44.31a | 212.00±8.19fg | 84.73±5.69a | 12.87±3.52def | 294.99±47.24cd | 0.35±0.09ab |
| N20MX20 | 22.03±1.42bcdef | 478.67±37.07b | 114.33±4.04j | 71.13±5.00ab | 8.93±1.10f | 368.57±17.85ab | 0.39±0.10ab |
| N200MX1 | 28.43±1.79abc | 564.33±54.23abcde | 402.67±23.67ab | 78.27±23.71bcde | 78.80±6.52a | 388.98±4.42a | 0.37±0.07abc |
| N200MX2 | 31.87±1.22a | 629.67±60.92abc | 432.00±23.00a | 107.20±17.34abcd | 79.07±7.57a | 378.80±12.25a | 0.37±0.10abc |
| N200MX3 | 27.63±0.86abc | 504.00±48.57abcdef | 396.33±24.00ab | 85.60±14.4bcde | 70.20±4.36abcd | 329.17±8.45bc | 0.27±0.07bc |
| N200MX4 | 25.17±0.25bc | 490.67±47.39bcdefg | 296.33±14.33cde | 88.93±0.46bcde | 65.73±1.42cdefg | 274.18±9.51de | 0.37±0.06abc |
| N200MX5 | 28.53±1.53abc | 627.33±60.74abc | 294.33±13.67cde | 100.60±10.26abcde | 66.93±2.20cdefg | 303.56±3.39cd | 0.46±0.07ab |
| N200MX6 | 26.97±0.81abc | 433.67±41.88cdefgh | 340.00±18.00bc | 147.27±60.64a | 68.67±0.92bcde | 388.77±15.55a | 0.45±0.07ab |
| N200MX7 | 31.50±0.44a | 628.33±60.74abc | 390.33±24.67ab | 96.74±13.48abcde | 77.00±2.16ab | 290.98±8.45cd | 0.45±0.07ab |
| N200MX8 | 25.57±1.77bc | 345.33±33.20fgh | 319.00±15.00cd | 57.80±9.34cde | 73.53±2.81abc | 176.89±18.65g | 0.45±0.07ab |
| N200MX9 | 24.93±1.07bc | 268.67±25.87h | 214.00±9.67fgh | 44.20±4.45e | 60.60±3.47defg | 273.86±9.93de | 0.24±0.04c |
| N200MX10 | 25.07±0.46bc | 353.00±34.04fgh | 278.67±14.33cdef | 59.27±10.13cde | 67.40±1.39bcdef | 323.76±16.53c | 0.32±0.05abc |
| N200MX11 | 28.10±2.36bc | 504.33±48.72abcdef | 237.00±13.33efg | 88.67±16.9bcde | 63.93±0.50cdefg | 221.52±18.99f | 0.39±0.06abc |
| N200MX12 | 24.13±0.84c | 289.67±27.87gh | 271.00±13.67cdef | 51.73±14.63de | 65.00±1.31cdefg | 410.47±9.75a | 0.30±0.05bc |
| N200MX13 | 28.67±5.17abc | 701.00±13.89a | 442.00±25.67a | 114.40±18.2abc | 78.87±1.30a | 233.63±6.22ef | 0.51±0.08a |
| N200MX14 | 29.63±1.69ab | 412.33±8.11defgh | 395.67±17.33ab | 63.53±4.94bcde | 76.80±0.92ab | 244.51±25.49ef | 0.37±0.06abc |
| N200MX15 | 25.15±0.05bc | 389.33±7.54efgh | 191.67±9.33gh | 66.13±1.90bcde | 59.07±0.92efg | 314.59±17.73cd | 0.31±0.05bc |
| N200MX16 | 27.27±1.23abc | 612.00±12.17abcd | 165.67±10.00h | 102.33±6.27abcd | 58.47±2.76fg | 243.80±8.45ef | 0.27±0.04bc |
| N200MX17 | 24.90±0.89bc | 334.00±6.66fgh | 287.67±17.67cde | 50.60±2.27de | 65.93±1.60cdefg | 209.99±9.20fg | 0.28±0.03bc |
| N200MX18 | 24.93±0.80bc | 412.33±8.11defgh | 210.67±17.00fgh | 65.20±1.59bcde | 60.87±1.42defg | 315.56±12.57cd | 0.30±0.05bc |
| N200MX19 | 29.40±0.62abc | 674.00±13.32ab | 266.67±13.00def | 119.07±3.50ab | 64.20±1.64cdefg | 272.83±12.57de | 0.38±0.06abc |
| N200MX20 | 26.63±0.40abc | 519.00±10.44abcdef | 166.67±8.67h | 84.00±1.11bcde | 57.53±0.70g | 368.57±17.85ab | 0.41±0.06abc |
表3 不同紫花苜蓿品种在不同氮水平下生长特性的差异
Table 3 Differences in growth characteristics of different alfalfa varieties under different nitrogen levels
编号 No. | 株高Plant height (cm) | 生物量Biomass (mg·plant-1) | 干重Dry weight (mg·plant-1) | 总根长Total root length (cm) | 根体积Root volume (cm3) | ||
|---|---|---|---|---|---|---|---|
| 地上Aboveground | 地下Underground | 地上Aboveground | 地下Underground | ||||
| N20MX1 | 23.80±0.80ab | 345.33±34.78cd | 289.00±11.14bc | 52.53±0.70bcd | 23.60±3.12ab | 196.17±34.84ghi | 0.35±0.02ab |
| N20MX2 | 25.63±0.12a | 364.00±36.29cd | 307.33±11.24b | 53.69±0.75bcd | 22.87±3.45abc | 379.83±8.45ab | 0.38±0.08ab |
| N20MX3 | 23.53±0.95abc | 340.67±34.21cd | 291.67±10.69bc | 69.05±29.79ab | 24.07±1.40a | 284.57±8.45cde | 0.26±0.04ab |
| N20MX4 | 20.37±1.36def | 267.33±26.84efg | 229.33±8.62efg | 39.73±3.86cd | 14.33±0.76def | 222.84±8.45efghi | 0.31±0.08ab |
| N20MX5 | 23.90±0.44ab | 359.33±35.73cd | 229.30±6.84efg | 56.73±1.15bc | 13.67±0.42def | 323.97±15.65bc | 0.40±0.10ab |
| N20MX6 | 21.63±0.80cdef | 308.00±31.00def | 264.67±9.71cd | 43.73±3.36cd | 18.00±0.72bcd | 271.01±8.45cdef | 0.34±0.09ab |
| N20MX7 | 24.73±0.72ab | 262.67±26.27efg | 304.67±11.68b | 39.33±4.11cd | 24.87±0.42a | 374.11±15.65ab | 0.39±0.10ab |
| N20MX8 | 20.43±1.65cdef | 319.33±32.13cdef | 246.00±9.17de | 48.13±3.75bcd | 15.33±0.90de | 253.70±12.25defg | 0.39±0.10ab |
| N20MX9 | 19.10±0.95f | 205.00±20.42g | 163.67±6.11i | 30.67±2.16d | 9.80±0.40ef | 164.48±30.20i | 0.21±0.05b |
| N20MX10 | 20.27±1.02def | 387.00±38.94c | 215.00±8.19fg | 57.87±4.09bc | 14.47±0.50def | 243.22±13.09defgh | 0.27±0.07ab |
| N20MX11 | 22.80±0.78abcd | 321.67±32.52cdef | 181.33±6.66hi | 48.07±3.53bcd | 13.40±0.60def | 283.15±32.32cde | 0.34±0.09ab |
| N20MX12 | 19.43±1.71ef | 256.00±25.71fg | 208.33±7.64gh | 38.33±2.73cd | 13.80±0.35def | 186.90±13.09hi | 0.28±0.07ab |
| N20MX13 | 25.73±0.40a | 594.00±46.03a | 344.00±12.77a | 88.27±6.17a | 25.40±3.70a | 390.20±8.45a | 0.48±0.06a |
| N20MX14 | 23.60±0.75ab | 349.33±27.21cd | 259.67±9.71d | 51.80±3.49bcd | 17.27±0.70cd | 273.43±13.09cdef | 0.35±0.09ab |
| N20MX15 | 19.87±1.66def | 330.33±25.48cde | 129.67±5.13j | 49.07±3.37bcd | 9.20±1.04f | 169.85±8.45i | 0.24±0.06ab |
| N20MX16 | 22.37±0.49bcde | 576.67±44.88a | 129.00±4.58j | 85.60±5.92a | 9.80±0.80ef | 293.92±17.77cd | 0.36±0.09ab |
| N20MX17 | 19.13±0.15f | 358.00±27.78cd | 224.67±8.08efg | 53.33±3.95bcd | 17.53±1.29cd | 168.62±8.45i | 0.26±0.03ab |
| N20MX18 | 20.03±1.08def | 349.33±27.21cd | 240.00±9.17def | 51.80±3.49bcd | 16.80±1.74d | 211.67±8.45fghi | 0.26±0.07ab |
| N20MX19 | 23.93±0.76ab | 571.00±44.31a | 212.00±8.19fg | 84.73±5.69a | 12.87±3.52def | 294.99±47.24cd | 0.35±0.09ab |
| N20MX20 | 22.03±1.42bcdef | 478.67±37.07b | 114.33±4.04j | 71.13±5.00ab | 8.93±1.10f | 368.57±17.85ab | 0.39±0.10ab |
| N200MX1 | 28.43±1.79abc | 564.33±54.23abcde | 402.67±23.67ab | 78.27±23.71bcde | 78.80±6.52a | 388.98±4.42a | 0.37±0.07abc |
| N200MX2 | 31.87±1.22a | 629.67±60.92abc | 432.00±23.00a | 107.20±17.34abcd | 79.07±7.57a | 378.80±12.25a | 0.37±0.10abc |
| N200MX3 | 27.63±0.86abc | 504.00±48.57abcdef | 396.33±24.00ab | 85.60±14.4bcde | 70.20±4.36abcd | 329.17±8.45bc | 0.27±0.07bc |
| N200MX4 | 25.17±0.25bc | 490.67±47.39bcdefg | 296.33±14.33cde | 88.93±0.46bcde | 65.73±1.42cdefg | 274.18±9.51de | 0.37±0.06abc |
| N200MX5 | 28.53±1.53abc | 627.33±60.74abc | 294.33±13.67cde | 100.60±10.26abcde | 66.93±2.20cdefg | 303.56±3.39cd | 0.46±0.07ab |
| N200MX6 | 26.97±0.81abc | 433.67±41.88cdefgh | 340.00±18.00bc | 147.27±60.64a | 68.67±0.92bcde | 388.77±15.55a | 0.45±0.07ab |
| N200MX7 | 31.50±0.44a | 628.33±60.74abc | 390.33±24.67ab | 96.74±13.48abcde | 77.00±2.16ab | 290.98±8.45cd | 0.45±0.07ab |
| N200MX8 | 25.57±1.77bc | 345.33±33.20fgh | 319.00±15.00cd | 57.80±9.34cde | 73.53±2.81abc | 176.89±18.65g | 0.45±0.07ab |
| N200MX9 | 24.93±1.07bc | 268.67±25.87h | 214.00±9.67fgh | 44.20±4.45e | 60.60±3.47defg | 273.86±9.93de | 0.24±0.04c |
| N200MX10 | 25.07±0.46bc | 353.00±34.04fgh | 278.67±14.33cdef | 59.27±10.13cde | 67.40±1.39bcdef | 323.76±16.53c | 0.32±0.05abc |
| N200MX11 | 28.10±2.36bc | 504.33±48.72abcdef | 237.00±13.33efg | 88.67±16.9bcde | 63.93±0.50cdefg | 221.52±18.99f | 0.39±0.06abc |
| N200MX12 | 24.13±0.84c | 289.67±27.87gh | 271.00±13.67cdef | 51.73±14.63de | 65.00±1.31cdefg | 410.47±9.75a | 0.30±0.05bc |
| N200MX13 | 28.67±5.17abc | 701.00±13.89a | 442.00±25.67a | 114.40±18.2abc | 78.87±1.30a | 233.63±6.22ef | 0.51±0.08a |
| N200MX14 | 29.63±1.69ab | 412.33±8.11defgh | 395.67±17.33ab | 63.53±4.94bcde | 76.80±0.92ab | 244.51±25.49ef | 0.37±0.06abc |
| N200MX15 | 25.15±0.05bc | 389.33±7.54efgh | 191.67±9.33gh | 66.13±1.90bcde | 59.07±0.92efg | 314.59±17.73cd | 0.31±0.05bc |
| N200MX16 | 27.27±1.23abc | 612.00±12.17abcd | 165.67±10.00h | 102.33±6.27abcd | 58.47±2.76fg | 243.80±8.45ef | 0.27±0.04bc |
| N200MX17 | 24.90±0.89bc | 334.00±6.66fgh | 287.67±17.67cde | 50.60±2.27de | 65.93±1.60cdefg | 209.99±9.20fg | 0.28±0.03bc |
| N200MX18 | 24.93±0.80bc | 412.33±8.11defgh | 210.67±17.00fgh | 65.20±1.59bcde | 60.87±1.42defg | 315.56±12.57cd | 0.30±0.05bc |
| N200MX19 | 29.40±0.62abc | 674.00±13.32ab | 266.67±13.00def | 119.07±3.50ab | 64.20±1.64cdefg | 272.83±12.57de | 0.38±0.06abc |
| N200MX20 | 26.63±0.40abc | 519.00±10.44abcdef | 166.67±8.67h | 84.00±1.11bcde | 57.53±0.70g | 368.57±17.85ab | 0.41±0.06abc |
编号 No. | NR (μg·g-1·h-1) | GS (μg·g-1·h-1) | ||
|---|---|---|---|---|
| N20 | N200 | N20 | N200 | |
| MX1 | 12.03±0.30de | 19.07±0.15ef | 0.04±0.002cde | 0.06±0.014ab |
| MX2 | 13.12±0.26b | 23.01±0.16a | 0.05±0.003ab | 0.09±0.020ab |
| MX3 | 11.81±0.30e | 16.34±0.11h | 0.05±0.003ab | 0.06±0.014ab |
| MX4 | 9.79±0.20gh | 14.10±0.10i | 0.04±0.002cd | 0.07±0.015ab |
| MX5 | 12.78±0.25bcd | 19.61±0.13cd | 0.05±0.003ab | 0.09±0.020ab |
| MX6 | 10.06±0.20fg | 17.92±0.15g | 0.05±0.003bc | 0.07±0.015ab |
| MX7 | 13.00±0.27bc | 19.96±0.13c | 0.05±0.003ab | 0.09±0.020ab |
| MX8 | 10.81±0.22f | 16.58±0.11h | 0.05±0.003ab | 0.09±0.020ab |
| MX9 | 8.21±0.17j | 12.60±0.09kl | 0.03±0.002e | 0.05±0.012abc |
| MX10 | 9.18±0.19hi | 14.10±0.10i | 0.04±0.002cde | 0.06±0.014ab |
| MX11 | 12.35±0.25cde | 18.95±0.13ef | 0.05±0.003b | 0.08±0.018ab |
| MX12 | 8.43±0.17ij | 12.95±0.09jk | 0.03±0.002de | 0.05±0.012abc |
| MX13 | 14.69±0.30a | 22.55±0.15b | 0.06±0.003a | 0.10±0.023a |
| MX14 | 12.56±0.25bcde | 19.27±0.13de | 0.05±0.003ab | 0.09±0.019ab |
| MX15 | 8.16±0.17j | 12.53±0.09l | 0.03±0.002de | 0.06±0.013abc |
| MX16 | 12.36±0.25bcde | 18.96±0.13ef | 0.05±0.003ab | 0.09±0.019ab |
| MX17 | 8.23±0.17j | 12.64±0.09kl | 0.03±0.002de | 0.05±0.011abc |
| MX18 | 8.64±0.18ij | 13.26±0.09j | 0.03±0.002de | 0.06±0.013bc |
| MX19 | 12.89±0.26bc | 19.78±0.13c | 0.05±0.003ab | 0.06±0.014c |
| MX20 | 12.24±0.25cde | 18.79±0.13f | 0.05±0.003b | 0.09±0.019c |
表4 不同紫花苜蓿品种硝酸还原酶、谷氨酰胺合成酶活性在不同氮素水平下的差异
Table 4 Differences of nitrate reductase and glutamine synthetase activities in different alfalfa varieties under different nitrogen levels
编号 No. | NR (μg·g-1·h-1) | GS (μg·g-1·h-1) | ||
|---|---|---|---|---|
| N20 | N200 | N20 | N200 | |
| MX1 | 12.03±0.30de | 19.07±0.15ef | 0.04±0.002cde | 0.06±0.014ab |
| MX2 | 13.12±0.26b | 23.01±0.16a | 0.05±0.003ab | 0.09±0.020ab |
| MX3 | 11.81±0.30e | 16.34±0.11h | 0.05±0.003ab | 0.06±0.014ab |
| MX4 | 9.79±0.20gh | 14.10±0.10i | 0.04±0.002cd | 0.07±0.015ab |
| MX5 | 12.78±0.25bcd | 19.61±0.13cd | 0.05±0.003ab | 0.09±0.020ab |
| MX6 | 10.06±0.20fg | 17.92±0.15g | 0.05±0.003bc | 0.07±0.015ab |
| MX7 | 13.00±0.27bc | 19.96±0.13c | 0.05±0.003ab | 0.09±0.020ab |
| MX8 | 10.81±0.22f | 16.58±0.11h | 0.05±0.003ab | 0.09±0.020ab |
| MX9 | 8.21±0.17j | 12.60±0.09kl | 0.03±0.002e | 0.05±0.012abc |
| MX10 | 9.18±0.19hi | 14.10±0.10i | 0.04±0.002cde | 0.06±0.014ab |
| MX11 | 12.35±0.25cde | 18.95±0.13ef | 0.05±0.003b | 0.08±0.018ab |
| MX12 | 8.43±0.17ij | 12.95±0.09jk | 0.03±0.002de | 0.05±0.012abc |
| MX13 | 14.69±0.30a | 22.55±0.15b | 0.06±0.003a | 0.10±0.023a |
| MX14 | 12.56±0.25bcde | 19.27±0.13de | 0.05±0.003ab | 0.09±0.019ab |
| MX15 | 8.16±0.17j | 12.53±0.09l | 0.03±0.002de | 0.06±0.013abc |
| MX16 | 12.36±0.25bcde | 18.96±0.13ef | 0.05±0.003ab | 0.09±0.019ab |
| MX17 | 8.23±0.17j | 12.64±0.09kl | 0.03±0.002de | 0.05±0.011abc |
| MX18 | 8.64±0.18ij | 13.26±0.09j | 0.03±0.002de | 0.06±0.013bc |
| MX19 | 12.89±0.26bc | 19.78±0.13c | 0.05±0.003ab | 0.06±0.014c |
| MX20 | 12.24±0.25cde | 18.79±0.13f | 0.05±0.003b | 0.09±0.019c |
编号 No. | 全株氮含量TNC (%) | 氮素积累量 NA (mg·plant-1) | 氮利用效率 NUE (%) | |||
|---|---|---|---|---|---|---|
| N20 | N200 | N20 | N200 | N20 | N200 | |
| MX1 | 1.63±0.00g | 3.61±0.00h | 1.24±0.00fg | 5.68±0.00hij | 6.21±0.31fg | 2.84±0.42hig |
| MX2 | 2.87±0.01b | 5.93±0.01d | 2.19±0.01c | 11.04±0.01cd | 10.97±0.42c | 5.52±0.46cd |
| MX3 | 1.54±0.02h | 2.46±0.02j | 1.44±0.02ef | 3.82±0.02jk | 7.20±2.48ef | 1.91±0.23jk |
| MX4 | 1.41±0.01i | 3.57±0.01hi | 0.76±0.01hi | 5.52±0.01hij | 3.80±0.28hi | 2.76±0.02hij |
| MX5 | 2.74±0.02cdef | 3.60±0.02h | 1.93±0.02cd | 6.03±0.02hi | 9.66±0.17cd | 3.01±0.19hi |
| MX6 | 1.52±0.00h | 5.71±0.00e | 0.94±0.00gh | 12.35±0.00bc | 4.70±0.30gh | 6.17±1.78bc |
| MX7 | 2.79±0.01cd | 7.96±0.01b | 1.79±0.01d | 13.83±0.01b | 8.95±0.65d | 6.92±0.62b |
| MX8 | 1.58±0.02gh | 5.78±0.02e | 1.00±0.02gh | 7.59±0.02fgh | 5.01±0.35gh | 3.80±0.35fgh |
| MX9 | 1.34±0.00j | 3.52±0.00i | 0.54±0.00i | 3.69±0.00jk | 2.71±0.12i | 1.84±0.03jk |
| MX10 | 1.12±0.01k | 4.62±0.01g | 0.81±0.01hi | 5.85±0.01hij | 4.05±0.25hi | 2.93±0.22hij |
| MX11 | 2.68±0.11f | 6.94±0.11c | 1.65±0.11de | 10.60±0.11cde | 8.25±0.73de | 5.30±0.59cde |
| MX12 | 1.06±0.00l | 2.50±0.00j | 0.55±0.00i | 2.92±0.00k | 2.77±0.14i | 1.46±0.17k |
| MX13 | 3.93±0.02a | 9.21±0.02a | 4.47±0.02a | 17.80±0.02a | 22.36±1.99a | 8.90±0.89a |
| MX14 | 2.74±0.01def | 6.94±0.01c | 1.89±0.01cd | 9.74±0.01def | 9.46±0.44cd | 4.87±0.15ef |
| MX15 | 1.36±0.00ij | 3.50±0.00i | 0.79±0.00hi | 4.39±0.00ijk | 3.97±0.30hi | 2.19±0.04ijk |
| MX16 | 2.79±0.01cd | 5.89±0.01d | 2.67±0.01b | 9.47±0.01def | 13.33±0.75b | 4.73±0.25def |
| MX17 | 1.34±0.04j | 2.47±0.04j | 0.95±0.04gh | 2.88±0.04k | 4.76±0.34gh | 1.44±0.05k |
| MX18 | 1.37±0.00ij | 2.46±0.00j | 0.94±0.00gh | 3.11±0.00k | 4.69±0.36gh | 1.55±0.04k |
| MX19 | 2.80±0.00c | 4.69±0.00f | 2.73±0.00b | 8.60±0.00efg | 13.64±0.74b | 4.30±0.11efg |
| MX20 | 2.71±0.00ef | 4.62±0.00fg | 2.17±0.00c | 6.55±0.00ghi | 10.83±0.74c | 3.27±0.03gh |
表5 不同紫花苜蓿品种在不同氮素水平下氮利用特性比较
Table 5 Differences in nitrogen utilization of alfalfa under different nitrogen levels
编号 No. | 全株氮含量TNC (%) | 氮素积累量 NA (mg·plant-1) | 氮利用效率 NUE (%) | |||
|---|---|---|---|---|---|---|
| N20 | N200 | N20 | N200 | N20 | N200 | |
| MX1 | 1.63±0.00g | 3.61±0.00h | 1.24±0.00fg | 5.68±0.00hij | 6.21±0.31fg | 2.84±0.42hig |
| MX2 | 2.87±0.01b | 5.93±0.01d | 2.19±0.01c | 11.04±0.01cd | 10.97±0.42c | 5.52±0.46cd |
| MX3 | 1.54±0.02h | 2.46±0.02j | 1.44±0.02ef | 3.82±0.02jk | 7.20±2.48ef | 1.91±0.23jk |
| MX4 | 1.41±0.01i | 3.57±0.01hi | 0.76±0.01hi | 5.52±0.01hij | 3.80±0.28hi | 2.76±0.02hij |
| MX5 | 2.74±0.02cdef | 3.60±0.02h | 1.93±0.02cd | 6.03±0.02hi | 9.66±0.17cd | 3.01±0.19hi |
| MX6 | 1.52±0.00h | 5.71±0.00e | 0.94±0.00gh | 12.35±0.00bc | 4.70±0.30gh | 6.17±1.78bc |
| MX7 | 2.79±0.01cd | 7.96±0.01b | 1.79±0.01d | 13.83±0.01b | 8.95±0.65d | 6.92±0.62b |
| MX8 | 1.58±0.02gh | 5.78±0.02e | 1.00±0.02gh | 7.59±0.02fgh | 5.01±0.35gh | 3.80±0.35fgh |
| MX9 | 1.34±0.00j | 3.52±0.00i | 0.54±0.00i | 3.69±0.00jk | 2.71±0.12i | 1.84±0.03jk |
| MX10 | 1.12±0.01k | 4.62±0.01g | 0.81±0.01hi | 5.85±0.01hij | 4.05±0.25hi | 2.93±0.22hij |
| MX11 | 2.68±0.11f | 6.94±0.11c | 1.65±0.11de | 10.60±0.11cde | 8.25±0.73de | 5.30±0.59cde |
| MX12 | 1.06±0.00l | 2.50±0.00j | 0.55±0.00i | 2.92±0.00k | 2.77±0.14i | 1.46±0.17k |
| MX13 | 3.93±0.02a | 9.21±0.02a | 4.47±0.02a | 17.80±0.02a | 22.36±1.99a | 8.90±0.89a |
| MX14 | 2.74±0.01def | 6.94±0.01c | 1.89±0.01cd | 9.74±0.01def | 9.46±0.44cd | 4.87±0.15ef |
| MX15 | 1.36±0.00ij | 3.50±0.00i | 0.79±0.00hi | 4.39±0.00ijk | 3.97±0.30hi | 2.19±0.04ijk |
| MX16 | 2.79±0.01cd | 5.89±0.01d | 2.67±0.01b | 9.47±0.01def | 13.33±0.75b | 4.73±0.25def |
| MX17 | 1.34±0.04j | 2.47±0.04j | 0.95±0.04gh | 2.88±0.04k | 4.76±0.34gh | 1.44±0.05k |
| MX18 | 1.37±0.00ij | 2.46±0.00j | 0.94±0.00gh | 3.11±0.00k | 4.69±0.36gh | 1.55±0.04k |
| MX19 | 2.80±0.00c | 4.69±0.00f | 2.73±0.00b | 8.60±0.00efg | 13.64±0.74b | 4.30±0.11efg |
| MX20 | 2.71±0.00ef | 4.62±0.00fg | 2.17±0.00c | 6.55±0.00ghi | 10.83±0.74c | 3.27±0.03gh |
图1 不同氮素水平下苗期各指标间的相关性分析PH: 株高Plant height; AGB: 地上生物量Aboveground biomass; BGB: 地下生物量Underground biomass; ADM: 地上干物质Aboveground dry matter; BDM: 地下干物质Underground dry matter; TRL: 总根长Total root length; RV: 根体积Root volume; NR: 硝酸还原酶Nitrate reductase; GS: 谷氨酰胺合成酶Glutamine synthetase; TNC: 全株氮含量Whole plant nitrogen content; 下同The same below. *: P<0.05; **: P<0.01; ***: P<0.001.
Fig.1 Correlation analysis of each index of alfalfa seedling stage under different nitrogen levels
| 保留变量Retain variable | 系数Coefficient | 显著性Significance | VIF | r | R2 | 剔除变量Remove variable |
|---|---|---|---|---|---|---|
| 常量Constant | -8.390 | 0.912 | 0.813 | X1、X3、X4、X5、X6、X7、X9、X10 | ||
| 硝酸还原酶NR (X8) | 0.487 | 0.009 | 2.724 | |||
| 地上生物量AGB (X2) | 0.476 | 0.010 | 2.724 |
表6 不同氮水平下紫花苜蓿氮利用效率线性回归
Table 6 Multiple linear regression analysis of alfalfa nitrogen use efficiency under different nitrogen levels
| 保留变量Retain variable | 系数Coefficient | 显著性Significance | VIF | r | R2 | 剔除变量Remove variable |
|---|---|---|---|---|---|---|
| 常量Constant | -8.390 | 0.912 | 0.813 | X1、X3、X4、X5、X6、X7、X9、X10 | ||
| 硝酸还原酶NR (X8) | 0.487 | 0.009 | 2.724 | |||
| 地上生物量AGB (X2) | 0.476 | 0.010 | 2.724 |
| 氮水平N level | 指标Parameter | PH | AGB | BGB | BDM | TRL | RV | NR | GS | TNC | NA | NUE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N20 | 变异系数Variable coefficient | 0.10 | 0.29 | 0.28 | 0.33 | 0.26 | 0.20 | 0.18 | 0.20 | 0.40 | 0.61 | 0.61 |
| 权重Weight | 0.03 | 0.08 | 0.07 | 0.09 | 0.07 | 0.05 | 0.05 | 0.05 | 0.11 | 0.16 | 0.16 | |
| N200 | 变异系数Variable coefficient | 0.08 | 0.28 | 0.29 | 0.11 | 0.22 | 0.21 | 0.20 | 0.22 | 0.41 | 0.54 | 0.54 |
| 权重Weight | 0.02 | 0.08 | 0.09 | 0.09 | 0.03 | 0.07 | 0.06 | 0.06 | 0.06 | 0.12 | 0.16 |
表7 不同氮水平下紫花苜蓿各评价指标的变异系数和权重
Table 7 The variable coefficient and weight of each evaluation index of alfalfa under different nitrogen levels
| 氮水平N level | 指标Parameter | PH | AGB | BGB | BDM | TRL | RV | NR | GS | TNC | NA | NUE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N20 | 变异系数Variable coefficient | 0.10 | 0.29 | 0.28 | 0.33 | 0.26 | 0.20 | 0.18 | 0.20 | 0.40 | 0.61 | 0.61 |
| 权重Weight | 0.03 | 0.08 | 0.07 | 0.09 | 0.07 | 0.05 | 0.05 | 0.05 | 0.11 | 0.16 | 0.16 | |
| N200 | 变异系数Variable coefficient | 0.08 | 0.28 | 0.29 | 0.11 | 0.22 | 0.21 | 0.20 | 0.22 | 0.41 | 0.54 | 0.54 |
| 权重Weight | 0.02 | 0.08 | 0.09 | 0.09 | 0.03 | 0.07 | 0.06 | 0.06 | 0.06 | 0.12 | 0.16 |
| 编号No. | N20 | N200 | 编号No. | N20 | N200 | 编号No. | N20 | N200 | 编号No. | N20 | N200 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| MX1 | 0.44 | 0.56 | MX6 | 0.36 | 0.54 | MX11 | 0.47 | 0.51 | MX16 | 0.58 | 0.44 |
| MX2 | 0.70 | 0.76 | MX7 | 0.65 | 0.75 | MX12 | 0.14 | 0.20 | MX17 | 0.23 | 0.22 |
| MX3 | 0.50 | 0.45 | MX8 | 0.38 | 0.48 | MX13 | 0.92 | 0.85 | MX18 | 0.26 | 0.21 |
| MX4 | 0.27 | 0.40 | MX9 | 0.03 | 0.13 | MX14 | 0.55 | 0.56 | MX19 | 0.65 | 0.54 |
| MX5 | 0.58 | 0.55 | MX10 | 0.26 | 0.31 | MX15 | 0.13 | 0.22 | MX20 | 0.51 | 0.41 |
表8 不同氮水平下紫花苜蓿氮利用效率隶属函数综合指数
Table 8 Comprehensive index of membership function of nitrogen efficiency of alfalfa under different nitrogen levels
| 编号No. | N20 | N200 | 编号No. | N20 | N200 | 编号No. | N20 | N200 | 编号No. | N20 | N200 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| MX1 | 0.44 | 0.56 | MX6 | 0.36 | 0.54 | MX11 | 0.47 | 0.51 | MX16 | 0.58 | 0.44 |
| MX2 | 0.70 | 0.76 | MX7 | 0.65 | 0.75 | MX12 | 0.14 | 0.20 | MX17 | 0.23 | 0.22 |
| MX3 | 0.50 | 0.45 | MX8 | 0.38 | 0.48 | MX13 | 0.92 | 0.85 | MX18 | 0.26 | 0.21 |
| MX4 | 0.27 | 0.40 | MX9 | 0.03 | 0.13 | MX14 | 0.55 | 0.56 | MX19 | 0.65 | 0.54 |
| MX5 | 0.58 | 0.55 | MX10 | 0.26 | 0.31 | MX15 | 0.13 | 0.22 | MX20 | 0.51 | 0.41 |
| [1] | Lyu H G, Kang J M, Long R C, et al. Yield evaluation of 22 alfalfa cultivars in Hebei area. Acta Agrestia Sinica, 2018, 26(4): 948-958. |
| 吕会刚, 康俊梅, 龙瑞才, 等. 河北地区22个紫花苜蓿品种的生产性能比较研究. 草地学报, 2018, 26(4): 948-958. | |
| [2] | Li Y Z, Wu F, Shi S L, et al. Evaluation on production and nutritional value of 13 introduced alfalfa cultivars in Hexi Corridor of Gansu Province. Agricultural Research in the Arid Areas, 2019, 37(5): 119-129. |
| 李玉珠, 吴芳, 师尚礼, 等. 河西走廊13个引进紫花苜蓿品种生产性能和营养价值评价. 干旱地区农业研究, 2019, 37(5): 119-129. | |
| [3] | Wang Y, Cui G W, Yin H, et al. Effects of different fertilization schemes on alfalfa performance and nutritional quality. Pratacultural Science, 2019, 36(3): 793-803. |
| 王洋, 崔国文, 尹航, 等. 施肥对紫花苜蓿生产性能及营养品质的影响. 草业科学, 2019, 36(3): 793-803. | |
| [4] | Zhang T J, Zhao Z X, Long R C, et al. Study on effects of N, P and K fertilizers on alfalfa hay and recommended fertilizer rate in Huang-Huai-Hai area. Acta Agrestia Sinica, 2019, 27(1): 243-249. |
| 张铁军, 赵忠祥, 龙瑞才, 等. 黄淮海地区紫花苜蓿氮磷钾肥料效应与推荐施肥量研究. 草地学报, 2019, 27(1): 243-249. | |
| [5] | Yan Y L. Biological nitrogen fixation: Promote the reduction and efficiency of chemical fertilizers and help the green development of agriculture. Biotechnology Bulletin, 2019, 35(10): 6-7. |
| 燕永亮. 生物固氮: 促进化肥减施增效, 助力农业绿色发展. 生物技术通报, 2019, 35(10): 6-7. | |
| [6] | Yao Y B, Zhang S Q, Chai Y S, et al. Study on nitrogen accumulation characteristics of soybean varieties in different growth periods. Soil and Fertilizer Sciences in China, 2021(5): 169-175. |
| 姚玉波, 张树权, 柴永山, 等. 不同生育期大豆品种氮素积累特性研究.中国土壤与肥料, 2021(5): 169-175. | |
| [7] | Tong C C, Liu X J, Wu Y, et al. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
| 童长春, 刘晓静, 吴勇, 等. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究. 草业学报, 2022, 31(3): 124-135. | |
| [8] | Gao L M, Su J, Tian Q, et al. Effects of nitrogen application on nitrogen accumulation and root nitrogenase activity in Medicago sativa at different soil water contents. Acta Prataculturae Sinica, 2020, 29(3): 130-136. |
| 高丽敏, 苏晶, 田倩, 等. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响. 草业学报, 2020, 29(3): 130-136. | |
| [9] | Cherney J H, Duxbury J M. Inorganic nitrogen supply and symbiotic dinitrogen fixation in alfalfa. Journal of Plant Nutrition,1994,17(12): 2053-2067. |
| [10] | Li Q, Ding G D, Yang N M, et al. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant, Cell & Environment, 2020, 43(3): 712-731. |
| [11] | Shi W M, Xu W F, Li S M, et al. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant and Soil, 2010, 326(1): 291-302. |
| [12] | Liu C J, Gong X W, Wang H L, et al. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiology and Biochemistry, 2020, 151: 233-242. |
| [13] | Liu Y N, Liu X J. Effect of fertilization on production performance and quality of different varieties of alfalfa. Journal of Gansu Agricultural University, 2014, 49(1): 111-115. |
| 刘艳楠, 刘晓静. 施肥对两个紫花苜蓿品种生产性能及营养品质的影响. 甘肃农业大学学报, 2014, 49(1): 111-115. | |
| [14] | Erley G S A, Dewi E R, Nikus O, et al. Genotypic differences in nitrogen efficiency of white cabbage (Brassica oleracea L.). Plant and Soil, 2010, 328(1/2): 313-325. |
| [15] | Balint T, Rengel Z. Nitrogen efficiency of canola genotypes varies between vegetative stage and grain maturity. Euphytica, 2008, 164(2): 421-432. |
| [16] | Zhang H, Xue Y G, Wang Z Q, et al. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Research, 2009, 113(1): 31-40. |
| [17] | Worku M, Baenziger M, Erley G S A, et al. Nitrogen efficiency as related to dry matter partitioning and root system size in tropical mid-altitude maize hybrids under different levels of nitrogen stress. Field Crops Research, 2012, 130: 57-67. |
| [18] | Zhang P Y, Wang D Y, Gao T M, et al. Difference in nitrogen absorption, transportation and utilization of sesame varieties with contrasting nitrogen efficiency at seedling stage. Acta Agriculturae Boreali-Sinica, 2023, 38(6): 134-143. |
| 张鹏钰, 王东勇, 高桐梅, 等. 不同氮效率芝麻品种苗期氮吸收转运与利用差异. 华北农学报, 2023, 38(6): 134-143. | |
| [19] | Zhang N, Guo R F. Advancements in nitrogen efficient screening of germplasm resources and deficiency tolerance mechanism study in rice. Guangdong Agricultural Sciences, 2014, 41(5): 66-70. |
| 张宁, 郭荣发. 水稻氮高效种质资源筛选及其耐低氮胁迫机理研究进展. 广东农业科学, 2014, 41(5): 66-70. | |
| [20] | Sun H N, Cao X, Shen Q, et al. Effects of planting density and nitrogen application rate on yield components of soybean variety Zhongji 602. Journal of Inner Mongolia Minzu University (Natural Science Edition), 2024, 39(2): 26-31. |
| 孙浩楠, 曹霞, 申晴, 等. 种植密度和施氮量对中吉602大豆产量构成因素的影响. 内蒙古民族大学学报(自然科学版), 2024, 39(2): 26-31. | |
| [21] | Zou Q. Experimental guidance of plant physiology. Beijing: China Agricultural Publishing House, 2006. |
| 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2006. | |
| [22] | Song X, Zhang K K, Huang C C, et al. Selection of nitrogen-efficient wheat varieties based on principal component analysis. Journal of Henan Agricultural Sciences, 2020, 49(12): 10-16. |
| 宋晓, 张珂珂, 黄晨晨, 等.基于主成分分析的氮高效小麦品种的筛选. 河南农业科学, 2020, 49(12): 10-16. | |
| [23] | Wu Z S, Luo C P, Li H, et al. Screening of high-quality conventional rice varieties with high nitrogen efficiency. Journal of Southern Agriculture, 2021, 52(1): 63-69. |
| 吴子帅, 罗翠萍, 李虎, 等.氮高效型优质常规稻品种筛选. 南方农业学报, 2021, 52(1): 63-69. | |
| [24] | Zhou N N. The research on the nitrogen's effect on rapeseed yield and quality and relevant analysis. Wuhan: Huazhong Agricultural University, 2005. |
| 周年年. 氮素对油菜产量和品质的影响及相关分析研究. 武汉: 华中农业大学, 2005. | |
| [25] | Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279(5349): 407-409. |
| [26] | Hou Y P, Kong L L, Li Q, et al. Effects of nitrogen fertilizer management on nitrogen absorption, utilization and soil inorganic nitrogen content under film mulch drip irrigation of maize. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1378-1387. |
| 侯云鹏, 孔丽丽, 李前, 等.覆膜滴灌条件下氮肥运筹对玉米氮素吸收利用和土壤无机氮含量的影响. 中国生态农业学报, 2018, 26(9): 1378-1387. | |
| [27] | Liu L H, Fan T F, Shi D X, et al. Coding-sequence identification and transcriptional profiling of nine AMTs and four NRTs from tobacco revealed their differential regulation by developmental stages, nitrogen nutrition, and photoperiod. Frontiers in Plant Science, 2018, 9: 210. |
| [28] | Huang M, Wu J Z, Li Y J, et al. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219. |
| 黄明, 吴金芝, 李友军, 等. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响. 中国农业科学, 2021, 54(24): 5206-5219. | |
| [29] | Sun M, Yan A, Li J Y, et al. Effects of different water and nitrogen treatments on growth, quality and water and fertilizer use efficiency of alfalfa. Xinjiang Agricultural Sciences, 2024, 61(6): 1512-1526. |
| 孙萌, 颜安, 李靖言, 等. 不同水氮处理对紫花苜蓿生长发育、品质及水肥利用效率的影响. 新疆农业科学, 2024, 61(6): 1512-1526. | |
| [30] | Liu D M, Liu Q, Rong X M, et al. Studies on relationship between the characteristics of root and coefficient of nitrogen use efficiency of oilseed rape. Hunan Agricultural Sciences, 2008(2): 64-66, 70. |
| 刘德明, 刘强, 荣湘民, 等. 油菜根系特性与氮效率系数的关系研究. 湖南农业科学, 2008(2): 64-66, 70. | |
| [31] | Qu Y L, Xie C, Liu X Y, et al. Effect of nitrogen fertilizer reduction on peanut yield and nitrogen use efficiency. Chinese Journal of Oil Crop Sciences, 2023, 45(2): 1-8. |
| 曲艳丽, 谢畅, 刘欣宇, 等. 氮肥减施对花生氮素利用效率及产量的影响. 中国油料作物学报, 2023, 45(2): 1-8. | |
| [32] | Singh P, Kumar K, Jha A K, et al. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Scientific Reports, 2022, 12(1): 18. |
| [33] | Huang G B, Zhang E H, Hu H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Journal of Plant Nutrition and Fertilizer, 2001, 7(3): 293-297. |
| 黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001, 7(3): 293-297. | |
| [34] | Zhang R Z, Zhang E H, Sun C Z. Study different genotype maize variety on diversity of nitrogen nutrition efficience. Journal of Jilin Agricultural University, 2003, 25(2): 183-186. |
| 张瑞珍, 张恩和, 孙长占.不同基因型玉米品种氮素营养效率差异的研究. 吉林农业大学学报, 2003, 25(2): 183-186. | |
| [35] | Bittsanszky A, Pilinszky K, Gyulai G, et al. Overcoming ammonium toxicity. Plant Science, 2015, 231: 184-190. |
| [36] | Pradhan S, Chopra U K, Bandyopadhyay K K, et al. Effect of water and nitrogen management on water productivity and nitrogen use efficiency of wheat in a semi-arid environment. International Journal of Agriculture and Food Science Technology, 2013, 4(7): 727-732. |
| [37] | Ye T, Ma J, Zhang P, et al. Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain. Agricultural Water Management, 2022, 271: 12. |
| [38] | Cui Z, Zhang F, Chen X, et al. Using in-season nitrogen management and wheat cultivars to improve nitrogen use efficiency. Soil Science Society of America Journal, 2011, 75(3): 976-983. |
| [39] | Si Z Y. Effects of water and nitrogen on yield and water and nitrogen utilization of winter wheat-summer cotton. Beijing: Chinese Academy of Agricultural Sciences, 2017. |
| 司转运. 水氮对冬小麦-夏棉花产量和水氮利用的影响. 北京: 中国农业科学院, 2017. | |
| [40] | Ma Y M, Feng Z Y, Wang W, et al. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits. Acta Agronomica Sinica, 2020, 46(12): 1997-2007. |
| 马艳明, 冯智宇, 王威, 等. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46(12): 1997-2007. | |
| [41] | Li S S, Fu C, Sun J, et al. Effects of nitrogen amount on root physiological activity and grain protein quality in spring wheat. Journal of Triticeae Crops, 2012, 32(6): 1139-1143. |
| 李双双, 付驰, 孙继, 等. 施氮量对春小麦根系生理活性及籽粒蛋白品质的影响. 麦类作物学报, 2012, 32(6): 1139-1143. | |
| [42] | Stahl A, Pfeifer M, Frisch M, et al. Recent genetic gains in nitrogen use efficiency in oilseed rape. Frontiers in Plant Science, 2017, 8: 13. |
| [1] | 李建建, 徐夕雯, 张源, 王欢, 王浩然, 李晓慧, 沈会权, 沈绍斌, 宗俊勤, 郭海林. 南京地区饲用大麦主要农艺性状与营养品质评价[J]. 草业学报, 2026, 35(3): 114-127. |
| [2] | 张世超, 崔国文, 张德鹏, 韩福迎, 丁叮, 吕向丽, 林硕, 陈乐然, 李吉儒, 才华. 紫花苜蓿非组培遗传转化体系创建及在耐盐基因功能鉴定与基因编辑中的应用[J]. 草业学报, 2026, 35(3): 223-234. |
| [3] | 童玉花, 王晓彤, 马永龙, 杨金辉, 余冬雯, 李淑霞. 壳聚糖浸种对盐碱胁迫下紫花苜蓿种子萌发的影响[J]. 草业学报, 2026, 35(3): 245-256. |
| [4] | 陈丽娟, 高荣, 王建喜, 马晖玲. 紫花苜蓿与红豆草在不同生长时期缩合单宁合成差异的比较研究[J]. 草业学报, 2026, 35(2): 221-236. |
| [5] | 李瑒琨, 本转林, 张筠钰, 杨惠敏. 不同气候和土壤条件下施肥类型影响紫花苜蓿种子产量的整合分析[J]. 草业学报, 2026, 35(2): 54-67. |
| [6] | 张继元, 安海全, 潘靖一, 刘畅, 龙思思, 赵丽丽. 7个紫花苜蓿品种种子萌发及幼苗生长的抗旱性评价[J]. 草业学报, 2026, 35(2): 68-82. |
| [7] | 张颖, 贺善睦, 何傲蕾, 李昌宁, 姚拓. 微生物菌剂与有机钙蛋白配施对紫花苜蓿生长和土壤酶活性的影响[J]. 草业学报, 2026, 35(1): 25-39. |
| [8] | 俞鸿千, 马雪鹏, 曾翰国, 单晓艳, 李曼莉, 王占军. 地下滴灌时期和水量对紫花苜蓿种子生产的影响[J]. 草业学报, 2026, 35(1): 53-64. |
| [9] | 傅俊士, 南丽丽, 张泽龙, 吴世文. 21份猫尾草种质不同生育时期光合特性综合评价[J]. 草业学报, 2026, 35(1): 93-106. |
| [10] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [11] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [12] | 刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214. |
| [13] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [14] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [15] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||