草业学报 ›› 2021, Vol. 30 ›› Issue (11): 108-121.DOI: 10.11686/cyxb2021219
• 研究论文 • 上一篇
收稿日期:
2021-06-01
修回日期:
2021-07-05
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
赵桂琴
作者简介:
Corresponding author. E-mail: zhaogq@gsau.edu.cn基金资助:
Dou-dou LIN(), Gui-qin ZHAO(), Ze-liang JU, Wen-long GONG
Received:
2021-06-01
Revised:
2021-07-05
Online:
2021-10-19
Published:
2021-10-19
Contact:
Gui-qin ZHAO
摘要:
为了研究干旱胁迫对不同燕麦材料苗期生理特性的影响以及评价不同材料的抗旱性,采用营养液砂培法,于两叶一心期对15份燕麦材料施加15% PEG胁迫,分别于胁迫0、7和14 d测定供试材料的抗氧化酶活性、丙二醛含量、渗透调节物质含量、叶绿素含量、水分利用率和相对电导率。利用相关性和主成分分析筛选燕麦抗旱性鉴定指标,通过聚类分析和隶属函数法对15份材料进行抗旱性综合评价。结果表明:干旱胁迫下,供试燕麦的抗氧化酶活性随胁迫时间的延长呈现“先升后降”的趋势;丙二醛含量、渗透调节物质含量和相对电导率均随胁迫时间的延长而增加,水分利用率及叶绿素含量显著下降(P<0.05)。10个抗旱性指标之间具有较好的相关性,相关系数最高达0.97。主成分分析结果表明,干旱胁迫下燕麦的质膜系统因子、光合因子、渗透调节因子可作为抗旱性评价的综合指标,通过第一主成分可将15份燕麦材料清晰地划分为抗旱性不同的两个独立类群;聚类分析进一步将供试材料划分为抗旱性不同的4个亚组,其中6份材料(蒙燕1号、青引1号、定燕2号、DA92-2F4、青燕1号、巴燕5号)属于抗旱种质。抗旱隶属函数综合评价值(D)显示,抗旱性较强的燕麦材料有青燕1号(0.829)、青引1号(0.744)和DA92-2F4(0.728),而陇燕3号(0.208)、坝燕6号(0.240)和张燕4号(0.241)抗旱性相对较弱。利用多方法关联分析的综合评价方法所得结果更加准确,可靠性较高。研究结果为燕麦抗旱性评价及抗旱种质筛选提供了参考。
蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121.
Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage[J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121.
编号Number | 品种Varieties | 来源Source | 编号Number | 品种Varieties | 来源Source |
---|---|---|---|---|---|
Y1 | 青引1号Qingyin No.1 | 青海Qinghai | Y9 | DA92-2F4 | 甘肃Gansu |
Y2 | 青引2号Qingyin No.2 | 青海Qinghai | Y10 | 陇燕3号Longyan No.3 | 甘肃Gansu |
Y3 | 青燕1号Qingyan No.1 | 青海Qinghai | Y11 | 蒙燕1号Mengyan No.1 | 内蒙古Inner Mongolia |
Y4 | 加燕2号Jiayan No.2 | 青海Qinghai | Y12 | 坝燕6号Bayan No.6 | 河北Hebei |
Y5 | 巴燕5号Bayan No.5 | 青海Qinghai | Y13 | 张燕4号Zhangyan No.4 | 河北Hebei |
Y6 | 青海444 Qinghai 444 | 青海Qinghai | Y14 | 白燕7号Baiyan No.7 | 吉林Jilin |
Y7 | 甜燕麦Tianyanmai | 青海Qinghai | Y15 | AC-Rigdon | 加拿大Canada |
Y8 | 定燕2号Dingyan No.2 | 甘肃Gansu |
表1 15份燕麦种质来源
Table 1 The origin of 15 accessions of oats
编号Number | 品种Varieties | 来源Source | 编号Number | 品种Varieties | 来源Source |
---|---|---|---|---|---|
Y1 | 青引1号Qingyin No.1 | 青海Qinghai | Y9 | DA92-2F4 | 甘肃Gansu |
Y2 | 青引2号Qingyin No.2 | 青海Qinghai | Y10 | 陇燕3号Longyan No.3 | 甘肃Gansu |
Y3 | 青燕1号Qingyan No.1 | 青海Qinghai | Y11 | 蒙燕1号Mengyan No.1 | 内蒙古Inner Mongolia |
Y4 | 加燕2号Jiayan No.2 | 青海Qinghai | Y12 | 坝燕6号Bayan No.6 | 河北Hebei |
Y5 | 巴燕5号Bayan No.5 | 青海Qinghai | Y13 | 张燕4号Zhangyan No.4 | 河北Hebei |
Y6 | 青海444 Qinghai 444 | 青海Qinghai | Y14 | 白燕7号Baiyan No.7 | 吉林Jilin |
Y7 | 甜燕麦Tianyanmai | 青海Qinghai | Y15 | AC-Rigdon | 加拿大Canada |
Y8 | 定燕2号Dingyan No.2 | 甘肃Gansu |
图1 干旱胁迫下15份燕麦材料的抗氧化酶活性和丙二醛含量不同大写字母代表同一材料不同处理间差异显著(P<0.05);不同小写字母表示同一处理下不同材料间差异显著。下同。Different capital letters represent the significant difference of the same materials under the different treatment at 0.05 level; Different small letters represent the significant difference of different materials under the same treatment at 0.05 level. The same below.
Fig. 1 Antioxidant enzyme activity and malondialdehyde content of 15 oat materials under drought stress
图2 干旱胁迫下15份燕麦材料的渗透调节物质含量及相对电导率
Fig. 2 Osmotic adjustment substance content and relative electric conductivity of 15 oat materials under drought stress
图4 干旱胁迫下15份燕麦材料各指标相关性分析**表示在P<0.01水平极显著相关,*表示在P<0.05水平显著相关。MDA:丙二醛;Pro:脯氨酸;SP:可溶性蛋白;SS:可溶性糖; SOD:超氧化物歧化酶;POD:过氧化物酶;CAT:过氧化氢酶;Chl:叶绿素; REC:相对电导率;WUE:水分利用率。** means extremely significant correlation at the level of P<0.01, * means significant correlation at the level of P<0.05. MDA: Malondialdehyde; Pro: Proline; SP: Soluble protein; SS: Soluble sugar; SOD: Superoxide dismutase; POD: Peroxidase; CAT: Catalase; Chl: Chlorophyll; REC: Relative electric conductivity; WUE: Water use efficiency.
Fig.4 Correlation analysis of various indicators of 15 oat materious under drought stress
变量 Variable | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | 主成分 4 Principal component 4 |
---|---|---|---|---|
丙二醛 MDA | 0.791 | 0.287 | -0.322 | 0.144 |
脯氨酸 Pro | -0.231 | -0.024 | 0.642 | -0.477 |
可溶性蛋白 SP | 0.709 | -0.527 | 0.409 | 0.177 |
可溶性糖 SS | 0.866 | -0.161 | 0.058 | -0.422 |
超氧化物歧化酶 SOD | 0.233 | -0.582 | 0.075 | 0.664 |
过氧化物酶 POD | 0.664 | 0.062 | -0.492 | -0.142 |
过氧化氢酶 CAT | 0.824 | 0.033 | -0.215 | -0.221 |
叶绿素 Chl | 0.331 | 0.827 | 0.353 | 0.277 |
相对电导率 REC | 0.753 | -0.428 | 0.330 | -0.054 |
水分利用效率WUE | 0.527 | 0.754 | 0.349 | 0.164 |
特征值Eigenvalues | 4.059 | 2.167 | 1.335 | 1.074 |
贡献率Contribution (%) | 40.589 | 21.666 | 13.352 | 10.738 |
累计贡献率Cumulative contribution (%) | 40.589 | 62.255 | 75.607 | 86.346 |
表2 各综合指标系数及贡献率
Table 2 Coefficients and proportion rates of various comprehensive indicators
变量 Variable | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | 主成分 4 Principal component 4 |
---|---|---|---|---|
丙二醛 MDA | 0.791 | 0.287 | -0.322 | 0.144 |
脯氨酸 Pro | -0.231 | -0.024 | 0.642 | -0.477 |
可溶性蛋白 SP | 0.709 | -0.527 | 0.409 | 0.177 |
可溶性糖 SS | 0.866 | -0.161 | 0.058 | -0.422 |
超氧化物歧化酶 SOD | 0.233 | -0.582 | 0.075 | 0.664 |
过氧化物酶 POD | 0.664 | 0.062 | -0.492 | -0.142 |
过氧化氢酶 CAT | 0.824 | 0.033 | -0.215 | -0.221 |
叶绿素 Chl | 0.331 | 0.827 | 0.353 | 0.277 |
相对电导率 REC | 0.753 | -0.428 | 0.330 | -0.054 |
水分利用效率WUE | 0.527 | 0.754 | 0.349 | 0.164 |
特征值Eigenvalues | 4.059 | 2.167 | 1.335 | 1.074 |
贡献率Contribution (%) | 40.589 | 21.666 | 13.352 | 10.738 |
累计贡献率Cumulative contribution (%) | 40.589 | 62.255 | 75.607 | 86.346 |
材料 Materials | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | 主成分4 Principal component 4 | U(X1) | U(X2) | U(X3) | U(X4) | D值 D values | 抗旱性排名 Drought resistance |
---|---|---|---|---|---|---|---|---|---|---|
Y1 | 1.295 | 1.313 | -0.600 | -1.152 | 0.982 | 0.877 | 0.235 | 0.206 | 0.744 | 2 |
Y2 | -0.048 | -1.385 | -1.195 | -1.977 | 0.467 | 0.000 | 0.037 | 0.000 | 0.225 | 14 |
Y3 | 1.073 | 1.393 | 0.470 | 0.904 | 0.897 | 0.903 | 0.589 | 0.720 | 0.829 | 1 |
Y4 | 0.675 | -1.225 | -0.604 | 2.027 | 0.744 | 0.052 | 0.233 | 1.000 | 0.523 | 7 |
Y5 | -0.003 | 0.515 | 1.231 | 0.186 | 0.484 | 0.618 | 0.841 | 0.540 | 0.580 | 6 |
Y6 | -1.240 | 1.692 | 0.321 | 0.038 | 0.010 | 1.000 | 0.540 | 0.503 | 0.401 | 9 |
Y7 | -0.755 | 0.002 | 0.491 | 0.610 | 0.196 | 0.451 | 0.596 | 0.646 | 0.378 | 10 |
Y8 | 0.683 | 0.268 | 0.536 | -1.264 | 0.748 | 0.537 | 0.611 | 0.178 | 0.603 | 5 |
Y9 | 1.341 | -0.939 | 1.710 | 0.167 | 1.000 | 0.145 | 1.000 | 0.536 | 0.728 | 3 |
Y10 | -1.196 | -1.066 | 1.031 | -0.367 | 0.026 | 0.104 | 0.775 | 0.402 | 0.208 | 15 |
Y11 | 1.111 | 0.168 | -1.308 | -0.118 | 0.912 | 0.505 | 0.000 | 0.464 | 0.613 | 4 |
Y12 | -1.265 | 0.436 | -1.149 | 0.719 | 0.000 | 0.592 | 0.053 | 0.673 | 0.240 | 13 |
Y13 | -1.233 | 0.435 | -0.704 | -0.160 | 0.012 | 0.591 | 0.200 | 0.454 | 0.241 | 12 |
Y14 | 0.263 | -0.784 | -1.100 | 0.914 | 0.586 | 0.195 | 0.069 | 0.722 | 0.425 | 8 |
Y15 | -0.700 | -0.822 | 0.870 | -0.528 | 0.217 | 0.183 | 0.722 | 0.362 | 0.304 | 11 |
权重Weight | 0.470 | 0.251 | 0.155 | 0.124 |
表3 15份燕麦材料苗期各综合指标值、权重、隶属函数值、D值及综合评价
Table 3 The comprehensive indicator values,index weight,membership function value,D values and comprehensive evaluation of 15 oat materials seeding
材料 Materials | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | 主成分4 Principal component 4 | U(X1) | U(X2) | U(X3) | U(X4) | D值 D values | 抗旱性排名 Drought resistance |
---|---|---|---|---|---|---|---|---|---|---|
Y1 | 1.295 | 1.313 | -0.600 | -1.152 | 0.982 | 0.877 | 0.235 | 0.206 | 0.744 | 2 |
Y2 | -0.048 | -1.385 | -1.195 | -1.977 | 0.467 | 0.000 | 0.037 | 0.000 | 0.225 | 14 |
Y3 | 1.073 | 1.393 | 0.470 | 0.904 | 0.897 | 0.903 | 0.589 | 0.720 | 0.829 | 1 |
Y4 | 0.675 | -1.225 | -0.604 | 2.027 | 0.744 | 0.052 | 0.233 | 1.000 | 0.523 | 7 |
Y5 | -0.003 | 0.515 | 1.231 | 0.186 | 0.484 | 0.618 | 0.841 | 0.540 | 0.580 | 6 |
Y6 | -1.240 | 1.692 | 0.321 | 0.038 | 0.010 | 1.000 | 0.540 | 0.503 | 0.401 | 9 |
Y7 | -0.755 | 0.002 | 0.491 | 0.610 | 0.196 | 0.451 | 0.596 | 0.646 | 0.378 | 10 |
Y8 | 0.683 | 0.268 | 0.536 | -1.264 | 0.748 | 0.537 | 0.611 | 0.178 | 0.603 | 5 |
Y9 | 1.341 | -0.939 | 1.710 | 0.167 | 1.000 | 0.145 | 1.000 | 0.536 | 0.728 | 3 |
Y10 | -1.196 | -1.066 | 1.031 | -0.367 | 0.026 | 0.104 | 0.775 | 0.402 | 0.208 | 15 |
Y11 | 1.111 | 0.168 | -1.308 | -0.118 | 0.912 | 0.505 | 0.000 | 0.464 | 0.613 | 4 |
Y12 | -1.265 | 0.436 | -1.149 | 0.719 | 0.000 | 0.592 | 0.053 | 0.673 | 0.240 | 13 |
Y13 | -1.233 | 0.435 | -0.704 | -0.160 | 0.012 | 0.591 | 0.200 | 0.454 | 0.241 | 12 |
Y14 | 0.263 | -0.784 | -1.100 | 0.914 | 0.586 | 0.195 | 0.069 | 0.722 | 0.425 | 8 |
Y15 | -0.700 | -0.822 | 0.870 | -0.528 | 0.217 | 0.183 | 0.722 | 0.362 | 0.304 | 11 |
权重Weight | 0.470 | 0.251 | 0.155 | 0.124 |
1 | Shi J J. Evaluation of productive performance and nutritional value of oat germplasm resources. Daqing: Heilongjiang Bayi Agricultural University, 2019. |
史京京. 燕麦种质资源生产性能与营养价值评价. 大庆: 黑龙江八一农垦大学, 2019. | |
2 | Jing M L. Establishment of high yield and quality cultivation system of oat forage and its drought resistance evaluation. Chengdu: Sichuan Agricultural University, 2018. |
景孟龙. 燕麦饲草高产优质栽培体系创建及其抗旱性评价. 成都: 四川农业大学, 2018. | |
3 | Subrahmanyam D, Subash N, Haris A, et al. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006, 44(1): 125. |
4 | Wu B, Zheng D S, Yan W K, et al. Advances in molecular breeding of oats. Journal of Plant Genetic Resources, 2019, 20(3): 485-495. |
吴斌, 郑殿升, 严威凯, 等. 燕麦分子育种研究进展. 植物遗传资源学报, 2019, 20(3): 485-495. | |
5 | Wang P, Wang P, Sun W B, et al. Comprehensive evaluation of drought resistance of eight Elymus germplasms at seedling stage. Acta Agrestia Sinica, 2020, 28(2): 397-404. |
王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价. 草地学报, 2020, 28(2): 397-404. | |
6 | Xu C, Huang B. Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in kentucky bluegrass. Journal of Plant Growth Regulation, 2012, 31(1): 25-37. |
7 | Sengupta D, Kannan M, Reddy A R. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Walczak. Planta, 2011, 233(6): 1111-1127. |
8 | Ma L L, Li Z P, Wang W C, et al. Research progress on hybrid forage irrigation in alpine desert areas. Science and Technology of Qinghai Agriculture and Forestry, 2020(1): 63-67. |
马利利, 李正鹏, 汪文成, 等. 高寒荒漠区饲草混播模式节水灌溉研究进展. 青海农林科技, 2020(1): 63-67. | |
9 | Castilla F, Rispail N, Tejera O G, et al. Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environmental and Experimental Botany, 2021, 182(5): 104333. |
10 | Wang X X, Li Y, Zhang B, et al. Effects of drought stress and rehydration on root growth and physiological characteristics of oats. Acta Agrestia Sinica, 2020, 28(6): 1588-1596. |
王晓雪, 李越, 张斌, 等. 干旱胁迫及复水对燕麦根系生长及生理特性的影响. 草地学报, 2020, 28(6): 1588-1596. | |
11 | Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular & Molecular Life Sciences Cmls, 2015, 72(4): 673. |
12 | Wang D, Chen Q Y, Chen W W, et al. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environmental and Experimental Botany, 2020, 181, DOI:10.1016/j.envexpbot.2020.104291. |
13 | Liu F F. Functional analysis of a LRR receptor-like kinase gene OsRK2 involved in drought and salt stress tolerance in rice. Jinan: Shandong University, 2020. |
刘芳菲. 水稻LRR-RLK基因OsRK2耐受干旱及盐胁迫的功能研究. 济南: 山东大学, 2020. | |
14 | Lian D, Zhang Y X, Zhu A M, et al. Physiological characteristics of drought resistance of different seed oat varieties at seedling stage. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2018, 33(5): 427-434. |
连东, 张玉霞, 朱爱民, 等. 不同饲用燕麦品种苗期抗旱生理特性研究. 内蒙古民族大学学报(自然科学版), 2018, 33(5): 427-434. | |
15 | Lv Y C. Study on drought resistance of oat seedlings with different genotypes. Modern Rural Science and Technology, 2020(9): 68-70. |
吕亚慈. 不同基因型燕麦苗期抗旱性研究. 现代农村科技, 2020(9): 68-70. | |
16 | Zhang L K. Evaluation of drought resistance and physiological characteristics of oat cultivars. Hohhot: Inner Mongolia Agricultural University, 2020. |
张立坤. 燕麦品种抗旱性评价及生理特性研究. 呼和浩特: 内蒙古农业大学, 2020. | |
17 | Lu Z J, Zhang Y Q, Zhang C, et al. Comprehensive evaluation and indicators of the drought resistance of different genotypes of Fagopyrum tataricum at seedling stage. Scientia Agricultura Sinica, 2017, 50(17): 3311-3322. |
路之娟, 张永清, 张楚, 等. 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017, 50(17): 3311-3322. | |
18 | Luo X Y, Li Y P, Chen S Y, et al. Effects of drought stress on growth of oat seedlings. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1811-1816. |
罗兴雨, 李亚萍, 陈仕勇, 等. 高寒燕麦苗期抗旱性研究. 西南农业学报, 2018, 31(9): 1811-1816. | |
19 | Wang J, Zhang Y X, Cong B M, et al. Screening of drought resistance in 10 feeding oat varieties at seed germination stage. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2019, 34(4): 315-320. |
王瑾, 张玉霞, 丛百明, 等. 10个饲用燕麦品种种子萌发期抗旱性筛选. 内蒙古民族大学学报(自然科学版), 2019, 34(4): 315-320. | |
20 | Liu L L, Zhang L J, Ma M C, et al. Correlation analysis of drought resistance and biological characteristics of oat germplasms. Journal of Shanxi Agricultural Sciences, 2015, 43(4): 388-390. |
刘龙龙, 张丽君, 马名川, 等. 燕麦种质抗旱性与生物学性状相关性分析. 山西农业科学, 2015, 43(4): 388-390. | |
21 | Li C Y, Zhang H, Ma L, et al. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the seedling stage. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 523-530. |
李春艳, 张宏, 马龙, 等. 冬小麦苗期氮素吸收利用生理指标的综合评价. 植物营养与肥料学报, 2012, 18(3): 523-530. | |
22 | Zhou S Y. Genome-wide association analysis (GWAS) of drought resistance traits in maize seedling stage and expression analysis of candidate genes. Shenyang: Shenyang Agricultural University, 2020. |
周思雅. 玉米苗期抗旱性状全基因组关联分析(GWAS)及候选基因表达量分析. 沈阳: 沈阳农业大学, 2020. | |
23 | Sun A, Deng H F, Li K Y, et al. Effects of PEG stress on enzyme activity of oat seedling. Acta Ecologiae Animal Domastici, 2012, 33(1): 50-52. |
孙鏖, 邓荟芬, 李科云, 等. PEG胁迫对燕麦苗期保护酶的影响. 家畜生态学报, 2012, 33(1): 50-52. | |
24 | Xia D. Research progress and breeding of plant drought resistance physiology. Xiandai Horticulture, 2020, 43(12): 221-222. |
夏丹. 植物抗旱生理研究进展与育种. 现代园艺, 2020, 43(12): 221-222. | |
25 | Niu K J, Jin X Y, Li H P, et al. Identification and evaluation of wild Poa pratensis varieties from Gansu for drought resistance during germination stage. Acta Agrestia Sinica, 2016, 24(5): 1041-1049. |
牛奎举, 金小煜, 李慧萍, 等. 甘肃野生草地早熟禾萌发期抗旱性鉴定与评. 草地学报, 2016, 24(5): 1041-1049. | |
26 | Wang W, Chen C, Zhang X Y, et al. Drought resistance identification and evaluation of some wheat varieties in Gansu Province at germination stage. China Seed Industry, 2020(10): 56-59. |
王炜, 陈琛, 张晓洋, 等. 甘肃部分小麦品种萌发期抗旱性鉴定及评价. 中国种业, 2020(10): 56-59. | |
27 | Yang W J. Genome-wide association analysis and comprehensive evaluation of drought resistance in wheat at seedling stage. Tai’an: Shandong Agricultural University, 2020. |
杨婉君. 小麦苗期抗旱性的GWAS分析及综合评价. 泰安: 山东农业大学, 2020. | |
28 | Wu R X, Li Y, You Y L, et al. Study on drought resistance identification and evaluation methods of alfalfa during whole growth period. Acta Agrestia Sinica, 2020, 28(5): 1444-1453. |
武瑞鑫, 李源, 游永亮, 等. 紫花苜蓿全生育期抗旱性鉴定评价方法探讨. 草地学报, 2020, 28(5): 1444-1453. | |
29 | Li D, Jin K P, Li X X, et al. Research progress on identification method and evaluation criterion of soybean drought resistance. Journal of Northern Agriculture, 2020, 48(4): 48-53. |
李丹, 靳鲲鹏, 李小霞, 等. 大豆抗旱性鉴定、评价方法研究进展. 北方农业学报, 2020, 48(4): 48-53. | |
30 | Chen C Z, Ma Z J, Meng Y X, et al. Evaluation and screening of wheat germplasm resources for drought and salt tolerance. Molecular Plant Breeding, 2021(14): 4820-4835. |
陈春舟, 马占军, 孟亚雄, 等. 小麦种质资源抗旱耐盐性评价及种质筛选. 分子植物育种, 2021(14): 4820-4835. | |
31 | Dejan D, Miroslav Z, Vesna, et al. Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance. Plant Breeding, 2012, 131(3), DOI: 10.1111/j.1439-0523.2011.01941.x. |
32 | Niu T X, Zheng G P, Li Z B, et al. Selection and evaluation of drought resistance of rice germplasm resources at seedling stage in cold region. Anhui Agricultural Science Bulletin, 2020, 26(13): 21-24. |
牛同旭, 郑桂萍, 李志彬, 等. 寒地水稻种质资源苗期抗旱性筛选与评价. 安徽农学通报, 2020, 26(13): 21-24. | |
33 | Zhuang K Z, Hu X J, Wu R H, et al. Evaluation of drought resistance of 18 maize hybrids during germination. Seed, 2020, 39(3): 68-71, 85. |
庄克章, 胡晓君, 吴荣华, 等. 18个玉米杂交种萌发期抗旱性评价. 种子, 2020, 39(3): 68-71, 85. | |
34 | Zhou F P, Shi H M, Zhang H Y, et al. Identification and evaluation of drought resistance of different sorghum lines at filling stage. Journal of Shanxi Agricultural Sciences, 2019, 47(11): 1907-1912, 1929. |
周福平, 史红梅, 张海燕, 等. 不同高粱品系灌浆期抗旱性鉴定及评价. 山西农业科学, 2019, 47(11): 1907-1912, 1929. | |
35 | Zhang Y. Influence of mowing time on yield and quality of spring and autumn sown oat hay. Xianyang: Northwest A & F University, 2016. |
张莹. 不同刈割期对春播、秋播燕麦干草产量和品质的影响. 咸阳: 西北农林科技大学, 2016. | |
36 | Hu K J. Evaluation and screening of oat resistance to BYDV. Lanzhou: Gansu Agricultural University, 2010. |
胡凯军. 抗红叶病燕麦种质评价与筛选. 兰州: 甘肃农业大学, 2010. | |
37 | Zhang L, Jia Z G. Effects of low temperature on physiological characteristics of naked oat seeds in different germination states. Jiangsu Agricultural Sciences, 2016, 44(6): 161-164. |
张丽, 贾志国. 低温对不同萌发状态裸燕麦种子生长生理特性的影响. 江苏农业科学, 2016, 44(6): 161-164. | |
38 | Si R G L, Zhang Y X, Ma Q, et al. Comprehensive evaluation of salt tolerance of 8 forage oat varieties. Grassland and Turf, 2020, 40(6): 118-123. |
斯日古楞, 张玉霞, 马群, 等. 8个饲用燕麦品种萌发期耐盐性综合评价. 草原与草坪, 2020, 40(6): 118-123. | |
39 | Zhang Y J, Zhao L L, Wang P C, et al. Construction and comprehensive evaluation of drought resistance index system in oat during germination. Journal of Nuclear Agricultural Sciences, 2017, 31(11): 2236-2242. |
张宇君, 赵丽丽, 王普昶, 等. 燕麦萌发期抗旱指标体系构建及综合评价. 核农学报, 2017, 31(11): 2236-2242. | |
40 | Zhang J P, Mu L H, Du Y P, et al. Drought resistance evaluation of 7 oat cultivars in south mountainous areas of Ningxia. Gansu Agricultural Science and Technology, 2018(3): 74-78. |
张久盘, 穆兰海, 杜燕萍, 等. 7个燕麦品种在宁南地区的抗旱性评价. 甘肃农业科技, 2018(3): 74-78. | |
41 | Wang M M, Zhou X R, Liang G L, et al. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
王苗苗, 周向睿, 梁国玲, 等. 5份燕麦材料苗期耐盐性综合评价. 草业学报, 2020, 29(8): 143-154. | |
42 | Wang J, Zhao G Q, Chai J K, et al. Effects of BYDV infection on total phenol and osmotic adjustment substances in oat. Grassland and Turf, 2020, 40(5): 29-35. |
王军, 赵桂琴, 柴继宽, 等. BYDV侵染对燕麦总酚和渗透调节物质含量的影响. 草原与草坪, 2020, 40(5): 29-35. | |
43 | Bai X R. Identification of drought resistance of wheat at seedling stage and selection of drought resistant varieties. Baoding: Hebei Agricultural University, 2010. |
白旭瑞. 小麦苗期抗旱性鉴定及抗旱品种筛选. 保定: 河北农业大学, 2021. | |
44 | Li L, Liu M, Liang W W, et al. Physiological and biochemical responses of wild oats to water stress. Grass-Feeding Livestock, 2020(3): 22-27. |
李莉, 刘梦, 梁维维, 等. 野燕麦对水分胁迫的生理生化响应. 草食家畜, 2020(3): 22-27. | |
45 | Yang B B, Zhao D D, Ren Y Z, et al. Drought resistance of different wheat cultivars and physiological response to drought stress. Journal of Henan Agricultural University, 2017, 51(2): 131-139. |
杨贝贝, 赵丹丹, 任永哲, 等. 不同小麦品种对干旱胁迫的形态生理响应及抗旱性分析. 河南农业大学学报, 2017, 51(2): 131-139. | |
46 | Song X Y, Wu S, Zhang H S, et al. Effect of soil water stress on physiological characteristics in different winter wheat cultivars. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 174-180. |
宋新颖, 邬爽, 张洪生, 等. 土壤水分胁迫对不同品种冬小麦生理特性的影响. 华北农学报, 2014, 29(2): 174-180. | |
47 | Peng Y Y, Yan H H, Guo L C, et al. Evaluation and selection on drought-resistance of germplasm resources of Avena species with different types of ploidy. Acta Ecologica Sinica, 2011, 31(9): 2478-2491. |
彭远英, 颜红海, 郭来春, 等. 燕麦属不同倍性种质资源抗旱性状评价及筛选. 生态学报, 2011, 31(9): 2478-2491. | |
48 | Zhang L L. Comprehensive analysis of drought resistance from three new wheat cultivars. Xianyang: Northwest A & F University, 2016. |
张龙龙. 三个小麦新品种抗旱性的综合评价. 咸阳: 西北农林科技大学, 2016. | |
49 | Liu J. Effects of water stress on photosynthetic physiological characteristics and quality of alfalfa to water stress. Lanzhou: Gansu Agricultural University, 2020. |
刘军. 水分胁迫对紫花苜蓿光合生理特性及品质的影响. 兰州: 甘肃农业大学, 2020. | |
50 | Li J H, Liu X Q, Lv J Y, et al. Drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs. Acta Agrestia Sinica, 2020, 28(5): 1319-1328. |
李佳欢, 刘希强, 吕进英, 等. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价. 草地学报, 2020, 28(5): 1319-1328. | |
51 | Wang L. QTL mapping and comprehensive evaluation of drought resistance in wheat RIL population at seedling stage. Tai’an: Shandong Agricultural University, 2020. |
王璐. 小麦RIL群体苗期抗旱性的QTL分析及综合评价. 泰安: 山东农业大学, 2020. | |
52 | Zhang J. Analysis on drought and cold resistance of main parent Xiaoyan 22 and its genetic contribution to derived lines. Xianyang: Northwest A & F University, 2014. |
张军. 小麦骨干亲本小偃22抗旱耐寒适应性分析及对其衍生品种的遗传贡献. 咸阳: 西北农林科技大学, 2014. | |
53 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
54 | Liang X D, Zeng C W, Li J J. Evaluation and selection of drought-resistance of oat varieties. Xinjiang Agricultural Sciences, 2014, 51(11): 2150-2155. |
梁晓东, 曾潮武, 李建疆. 燕麦育成品种抗旱性评价及筛选. 新疆农业科学, 2014, 51(11): 2150-2155. | |
55 | Zhao B P, Wang Y F, Zhao M L, et al. Evaluation and screening of drought resistance characteristics of different oat cultivars. Journal of Inner Mongolia Normal University (Natural Science Edition), 2014, 43(6): 771-775. |
赵宝平, 王玉芬, 赵萌莉, 等. 不同饲用燕麦品种抗旱性评价与筛选研究. 内蒙古师范大学学报(自然科学汉文版), 2014, 43(6): 771-775. | |
56 | Zhang N. Drought resistance of different oat cultivars to water stress. Hohhot: Inner Mongolia Agricultural University, 2012. |
张娜. 不同抗旱性燕麦品种对水分胁迫的生理响应机制研究. 呼和浩特: 内蒙古农业大学, 2012. |
[1] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[2] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[3] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
[4] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[5] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[6] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[7] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[8] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[9] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[10] | 畅志鹏, 孙莹莹, 李佳阳, 龚春梅. 柠条CkCAD基因的克隆转化及其抗旱功能分析[J]. 草业学报, 2021, 30(3): 68-80. |
[11] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[12] | 旦增塔庆, Chapagain Purna Bhadra, Pant Shankar Raj, 杰布, 格桑顿珠, 陈少锋. 不同燕麦品种在尼泊尔北部山区的生长特性及其营养品质的研究[J]. 草业学报, 2021, 30(10): 73-82. |
[13] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
[14] | 姜慧新, 柏杉杉, 吴波, 宋静怡, 王国良. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价[J]. 草业学报, 2021, 30(1): 140-149. |
[15] | 郭剑波, 赵国强, 贾书刚, 董俊夫, 陈龙, 王淑平. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9): 85-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||