草业学报 ›› 2022, Vol. 31 ›› Issue (11): 147-157.DOI: 10.11686/cyxb2021436
收稿日期:
2021-11-26
修回日期:
2022-02-24
出版日期:
2022-11-20
发布日期:
2022-10-01
通讯作者:
赵桂琴
作者简介:
赵桂琴(1970-),女,甘肃天水人,教授,博士。E-mail:zhaogq@gsau. edu. cn E-mail: zhaogq@gsau.edu.cn基金资助:
Gui-qin ZHAO(), Ze-liang JU, Ji-kuan CHAI
Received:
2021-11-26
Revised:
2022-02-24
Online:
2022-11-20
Published:
2022-10-01
Contact:
Gui-qin ZHAO
摘要:
燕麦是青藏高原及其周边地区主要的一年生饲草,鉴于秋季收获时雨水较多,燕麦更适宜制作青贮而非干草。但在这类地区海拔高度和品种对燕麦青贮前的产量、品质和表面附着微生物的影响尚不明确。为此,本试验用4个燕麦品种(陇燕3号、陇燕5号、白燕2号、坝莜3号)在湟中(2295 m)、天祝(2797 m)、山丹(2860 m)、合作(2957 m)、海晏(3052 m)、玛曲(3474 m)、玛沁(3765 m)和称多(4217 m)共8个不同海拔地区进行了田间试验,对燕麦灌浆期鲜草产量、干物质(DM)、水溶性碳水化合物(WSC)、粗蛋白(CP)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和乳酸菌(LAB)、霉菌、酵母菌、好气性细菌等进行了测定和分析。结果表明:海拔、品种及二者互作对灌浆期鲜草产量、营养成分含量及附着微生物数量影响非常显著。鲜草产量、WSC、NDF含量及附着LAB数量随海拔上升总体呈增加趋势(P<0.05),在称多试验点比在湟中分别平均高出284.00%、15.49%、10.81%和11.60%;而DM、CP含量、酵母菌和霉菌数量随海拔上升明显下降(P<0.001),在称多比湟中分别降低了15.67%、36.27%、23.53%和7.75%。4个品种中,陇燕5号在称多试验点的鲜草产量、WSC和NDF含量最高,分别为75605 kg·hm-2、201.4 g·kg-1 DM和604.2 g·kg-1 DM,其次为陇燕3号;白燕2号在湟中试验点CP含量(119.7 g·kg-1 DM)和霉菌数量(4.12 lg cfu·g-1 FM)最高,坝莜3号在玛沁和称多试验点的LAB和酵母菌数量最高。总体而言,陇燕3号和陇燕5号在海拔3000 m以上地区表现更优,3000 m以下地区4个品种均可用于青贮生产。
赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157.
Gui-qin ZHAO, Ze-liang JU, Ji-kuan CHAI. Effects of altitude and variety on nutrient levels and epiphytes of oats[J]. Acta Prataculturae Sinica, 2022, 31(11): 147-157.
项目 Item | 月份Month | 湟中 Huangzhong | 海晏 Haiyan | 玛沁 Maqin | 称多 Chengduo | 山丹 Shandan | 天祝 Tianzhu | 合作 Hezuo | 玛曲Maqu |
---|---|---|---|---|---|---|---|---|---|
海拔Altitude (m) | 2295 | 3052 | 3765 | 4217 | 2860 | 2797 | 2957 | 3474 | |
气温Temperature (℃) | 3 | -0.2 | -2.6 | -1.0 | 0.5 | -1.6 | 0.6 | -1.3 | -1.8 |
4 | 5.5 | 3.3 | 3.9 | 4.3 | 5.3 | 7.3 | 3.7 | 2.5 | |
5 | 9.9 | 7.7 | 8.0 | 8.2 | 11.0 | 12.4 | 7.8 | 6.1 | |
6 | 13.1 | 10.8 | 11.2 | 11.5 | 15.2 | 16.0 | 11.1 | 9.3 | |
7 | 15.2 | 12.9 | 13.2 | 13.3 | 16.8 | 18.0 | 13.3 | 11.4 | |
8 | 14.2 | 12.1 | 12.5 | 12.5 | 15.3 | 17.0 | 12.5 | 10.7 | |
9 | 9.9 | 8.2 | 9.4 | 9.6 | 11.0 | 12.4 | 8.9 | 7.4 | |
10 | 4.5 | 2.2 | 3.9 | 4.2 | 4.2 | 6.1 | 3.6 | 2.4 | |
降水量Precipitation (mm) | 3 | 19.2 | 13.7 | 14.6 | 4.3 | 14.3 | 11.2 | 14.3 | 13.3 |
4 | 31.3 | 26.5 | 32.3 | 17.5 | 28.5 | 24.7 | 19.5 | 22.7 | |
5 | 71.1 | 70.2 | 71.0 | 47.5 | 53.8 | 47.6 | 39.8 | 41.0 | |
6 | 83.8 | 106.1 | 86.6 | 72.4 | 66.4 | 52.2 | 47.9 | 53.2 | |
7 | 108.8 | 125.2 | 105.8 | 101.7 | 88.8 | 68.6 | 61.6 | 72.6 | |
8 | 87.6 | 102.3 | 100.5 | 95.6 | 85.2 | 84.8 | 66.6 | 65.1 | |
9 | 72.3 | 88.0 | 80.0 | 72.3 | 59.0 | 45.4 | 48.8 | 49.5 | |
10 | 40.9 | 42.8 | 30.9 | 19.1 | 35.2 | 29.9 | 24.1 | 18.7 |
表1 试验点海拔及气候信息
Table 1 Altitude and climate of each study area
项目 Item | 月份Month | 湟中 Huangzhong | 海晏 Haiyan | 玛沁 Maqin | 称多 Chengduo | 山丹 Shandan | 天祝 Tianzhu | 合作 Hezuo | 玛曲Maqu |
---|---|---|---|---|---|---|---|---|---|
海拔Altitude (m) | 2295 | 3052 | 3765 | 4217 | 2860 | 2797 | 2957 | 3474 | |
气温Temperature (℃) | 3 | -0.2 | -2.6 | -1.0 | 0.5 | -1.6 | 0.6 | -1.3 | -1.8 |
4 | 5.5 | 3.3 | 3.9 | 4.3 | 5.3 | 7.3 | 3.7 | 2.5 | |
5 | 9.9 | 7.7 | 8.0 | 8.2 | 11.0 | 12.4 | 7.8 | 6.1 | |
6 | 13.1 | 10.8 | 11.2 | 11.5 | 15.2 | 16.0 | 11.1 | 9.3 | |
7 | 15.2 | 12.9 | 13.2 | 13.3 | 16.8 | 18.0 | 13.3 | 11.4 | |
8 | 14.2 | 12.1 | 12.5 | 12.5 | 15.3 | 17.0 | 12.5 | 10.7 | |
9 | 9.9 | 8.2 | 9.4 | 9.6 | 11.0 | 12.4 | 8.9 | 7.4 | |
10 | 4.5 | 2.2 | 3.9 | 4.2 | 4.2 | 6.1 | 3.6 | 2.4 | |
降水量Precipitation (mm) | 3 | 19.2 | 13.7 | 14.6 | 4.3 | 14.3 | 11.2 | 14.3 | 13.3 |
4 | 31.3 | 26.5 | 32.3 | 17.5 | 28.5 | 24.7 | 19.5 | 22.7 | |
5 | 71.1 | 70.2 | 71.0 | 47.5 | 53.8 | 47.6 | 39.8 | 41.0 | |
6 | 83.8 | 106.1 | 86.6 | 72.4 | 66.4 | 52.2 | 47.9 | 53.2 | |
7 | 108.8 | 125.2 | 105.8 | 101.7 | 88.8 | 68.6 | 61.6 | 72.6 | |
8 | 87.6 | 102.3 | 100.5 | 95.6 | 85.2 | 84.8 | 66.6 | 65.1 | |
9 | 72.3 | 88.0 | 80.0 | 72.3 | 59.0 | 45.4 | 48.8 | 49.5 | |
10 | 40.9 | 42.8 | 30.9 | 19.1 | 35.2 | 29.9 | 24.1 | 18.7 |
项目 Item | 湟中 Huangzhong | 海晏 Haiyan | 玛沁 Maqin | 称多 Chengduo | 山丹 Shandan | 天祝 Tianzhu | 合作 Hezuo | 玛曲 Maqu |
---|---|---|---|---|---|---|---|---|
有机质Organic matter (g·kg-1) | 25.8 | 32.8 | 35.8 | 37.1 | 32.9 | 26.3 | 30.5 | 28.6 |
全氮Total nitrogen (g·kg-1) | 1.6 | 2.1 | 2.2 | 2.4 | 1.6 | 1.8 | 2.1 | 1.9 |
速效氮Available nitrogen (mg·kg-1) | 136.1 | 145.3 | 161.3 | 121.5 | 125.2 | 139.5 | 156.1 | 146.5 |
速效磷Available phosphorus (mg·kg-1) | 32.2 | 20.8 | 31.5 | 27.0 | 54.1 | 34.1 | 40.0 | 33.6 |
速效钾Available potassium (mg·kg-1) | 138.5 | 164.0 | 231.3 | 136.5 | 243.6 | 146.7 | 223.4 | 210.4 |
土壤pH Soil pH | 7.8 | 7.2 | 6.8 | 6.9 | 7.4 | 7.3 | 7.4 | 7.2 |
表2 各试验点土壤养分概况
Table 2 Soil nutrients of each test site
项目 Item | 湟中 Huangzhong | 海晏 Haiyan | 玛沁 Maqin | 称多 Chengduo | 山丹 Shandan | 天祝 Tianzhu | 合作 Hezuo | 玛曲 Maqu |
---|---|---|---|---|---|---|---|---|
有机质Organic matter (g·kg-1) | 25.8 | 32.8 | 35.8 | 37.1 | 32.9 | 26.3 | 30.5 | 28.6 |
全氮Total nitrogen (g·kg-1) | 1.6 | 2.1 | 2.2 | 2.4 | 1.6 | 1.8 | 2.1 | 1.9 |
速效氮Available nitrogen (mg·kg-1) | 136.1 | 145.3 | 161.3 | 121.5 | 125.2 | 139.5 | 156.1 | 146.5 |
速效磷Available phosphorus (mg·kg-1) | 32.2 | 20.8 | 31.5 | 27.0 | 54.1 | 34.1 | 40.0 | 33.6 |
速效钾Available potassium (mg·kg-1) | 138.5 | 164.0 | 231.3 | 136.5 | 243.6 | 146.7 | 223.4 | 210.4 |
土壤pH Soil pH | 7.8 | 7.2 | 6.8 | 6.9 | 7.4 | 7.3 | 7.4 | 7.2 |
项目 Item | 自由度 df | 鲜草 产量 Fresh yield | 干物质 Dry matter (DM) | 水溶性碳水化合物 Water soluble carbohydrate (WSC) | 粗蛋白 Crude protein (CP) | 中性洗涤纤维 Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) | 乳酸菌 Lactic acid bacteria (LAB) | 好气性细菌 Aerobic bacteria | 霉菌 Mold | 酵母菌 Yeast |
---|---|---|---|---|---|---|---|---|---|---|---|
海拔Altitude | 7 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
品种Variety | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.028 | <0.001 | <0.001 | 0.033 | <0.001 |
海拔×品种Altitude×variety | 21 | <0.001 | 0.984 | 0.581 | <0.001 | 0.821 | 0.004 | 0.004 | 0.986 | 0.983 | 0.011 |
标准误Standard error of mean (SEM) | 58.89 | 0.90 | 0.63 | 0.19 | 1.08 | 0.98 | 0.11 | 0.14 | 0.11 | 0.11 |
表3 海拔和品种交互作用下各指标的P值
Table 3 P value of each factor under different altitudes and varieties
项目 Item | 自由度 df | 鲜草 产量 Fresh yield | 干物质 Dry matter (DM) | 水溶性碳水化合物 Water soluble carbohydrate (WSC) | 粗蛋白 Crude protein (CP) | 中性洗涤纤维 Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) | 乳酸菌 Lactic acid bacteria (LAB) | 好气性细菌 Aerobic bacteria | 霉菌 Mold | 酵母菌 Yeast |
---|---|---|---|---|---|---|---|---|---|---|---|
海拔Altitude | 7 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
品种Variety | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.028 | <0.001 | <0.001 | 0.033 | <0.001 |
海拔×品种Altitude×variety | 21 | <0.001 | 0.984 | 0.581 | <0.001 | 0.821 | 0.004 | 0.004 | 0.986 | 0.983 | 0.011 |
标准误Standard error of mean (SEM) | 58.89 | 0.90 | 0.63 | 0.19 | 1.08 | 0.98 | 0.11 | 0.14 | 0.11 | 0.11 |
项目 Item | 品种 Variety | 湟中 Huangzhong | 天祝 Tianzhu | 山丹 Shandan | 合作 Hezuo | 海晏 Haiyan | 玛曲 Maqu | 玛沁 Maqin | 称多 Chengduo |
---|---|---|---|---|---|---|---|---|---|
鲜草产量 Fresh yield (kg·hm-2) | L3 | 17527bH | 44536bE | 70269bB | 25146cF | 54244bD | 20489bG | 64134bC | 72181bA |
L5 | 20028aH | 59255aD | 73014aB | 29812aF | 56640aE | 24228aG | 68107aC | 75605aA | |
B2 | 17368bH | 44493bE | 62375dA | 27591bF | 45994cD | 18437cG | 52905dC | 61120dB | |
B3 | 16491cG | 43657bD | 68504cA | 20400dF | 40857dE | 16974dG | 60440cC | 65325cB | |
干物质 Dry matter (g·kg-1 FM) | L3 | 347.4aA | 327.3aBC | 313.9aCD | 335.5aAB | 303.4aDE | 347.0abA | 305.5aD | 289.5aE |
L5 | 362.4aA | 341.2aBC | 331.7aCD | 351.4aAB | 319.7aDE | 354.4aAB | 317.4aDE | 306.9aE | |
B2 | 355.3aA | 333.6aBC | 322.9aCD | 351.1aAB | 312.0aDE | 339.8bABC | 309.3aDE | 298.3aE | |
B3 | 356.5aA | 343.5aB | 332.0aC | 348.3aAB | 319.4aD | 356.4aA | 312.3aDE | 304.2aE | |
水溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | L3 | 170.6aBC | 179.0aB | 194.7aA | 167.4aC | 191.6abA | 164.1aC | 194.2aA | 194.0bA |
L5 | 166.5aBC | 173.7abB | 192.0aA | 161.0aCD | 198.9aA | 156.0aD | 193.0aA | 201.4aA | |
B2 | 175.8aB | 174.9abB | 201.2aA | 171.1aB | 195.4abA | 162.9aB | 195.4aA | 195.4abA | |
B3 | 163.5aB | 165.6bB | 193.3aA | 159.2aB | 185.7bA | 155.8aB | 190.4aA | 190.4bA | |
粗蛋白 Crude protein (g·kg-1 DM) | L3 | 116.4bA | 93.1bC | 117.7aA | 116.4bA | 85.2cD | 103.9bB | 86.3bD | 71.7bcE |
L5 | 113.5bB | 90.8bC | 118.1aA | 117.9abA | 91.2bC | 110.5aB | 90.9aC | 76.8aD | |
B2 | 119.7aA | 97.2aC | 117.1aA | 119.6aA | 98.5aC | 106.8bB | 87.0bD | 75.2abE | |
B3 | 113.5bA | 90.6bE | 107.4bB | 106.5cB | 94.4abD | 100.2cC | 81.7cF | 71.3cG | |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | L3 | 535.8abD | 538.1abCD | 551.1abBC | 534.9aD | 557.8aB | 520.0abE | 588.6abA | 591.6abA |
L5 | 545.1aAB | 553.2aAB | 567.0aB | 544.9aAB | 546.9abAB | 533.5aB | 602.7aA | 604.2aA | |
B2 | 510.0cC | 523.0bBC | 533.1bB | 510.4bC | 522.1cBC | 494.6cD | 576.1bA | 573.0bA | |
B3 | 519.5bcBC | 521.7bBC | 535.3bB | 506.8bC | 536.4bcB | 508.4bcC | 572.8bA | 569.8bA | |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | L3 | 316.9bCD | 341.3aA | 319.7abBCD | 330.0aABC | 303.1aD | 337.3aAB | 318.7aBCD | 303.1aD |
L5 | 341.3bA | 337.1abA | 328.2abA | 329.4aA | 302.9aB | 335.2aA | 307.2abB | 302.9aB | |
B2 | 328.7abA | 328.1abA | 312.8bB | 336.4aA | 304.4aBC | 327.2aA | 292.1bC | 304.4aBC | |
B3 | 341.4aA | 322.9bBC | 333.2aABC | 342.3aA | 316.3aC | 338.2aAB | 289.7bD | 316.3aC |
表4 海拔和品种对燕麦鲜草产量和营养成分的影响
Table 4 Effects of altitudes and varieties on fresh yield and nutrient composition of oat
项目 Item | 品种 Variety | 湟中 Huangzhong | 天祝 Tianzhu | 山丹 Shandan | 合作 Hezuo | 海晏 Haiyan | 玛曲 Maqu | 玛沁 Maqin | 称多 Chengduo |
---|---|---|---|---|---|---|---|---|---|
鲜草产量 Fresh yield (kg·hm-2) | L3 | 17527bH | 44536bE | 70269bB | 25146cF | 54244bD | 20489bG | 64134bC | 72181bA |
L5 | 20028aH | 59255aD | 73014aB | 29812aF | 56640aE | 24228aG | 68107aC | 75605aA | |
B2 | 17368bH | 44493bE | 62375dA | 27591bF | 45994cD | 18437cG | 52905dC | 61120dB | |
B3 | 16491cG | 43657bD | 68504cA | 20400dF | 40857dE | 16974dG | 60440cC | 65325cB | |
干物质 Dry matter (g·kg-1 FM) | L3 | 347.4aA | 327.3aBC | 313.9aCD | 335.5aAB | 303.4aDE | 347.0abA | 305.5aD | 289.5aE |
L5 | 362.4aA | 341.2aBC | 331.7aCD | 351.4aAB | 319.7aDE | 354.4aAB | 317.4aDE | 306.9aE | |
B2 | 355.3aA | 333.6aBC | 322.9aCD | 351.1aAB | 312.0aDE | 339.8bABC | 309.3aDE | 298.3aE | |
B3 | 356.5aA | 343.5aB | 332.0aC | 348.3aAB | 319.4aD | 356.4aA | 312.3aDE | 304.2aE | |
水溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | L3 | 170.6aBC | 179.0aB | 194.7aA | 167.4aC | 191.6abA | 164.1aC | 194.2aA | 194.0bA |
L5 | 166.5aBC | 173.7abB | 192.0aA | 161.0aCD | 198.9aA | 156.0aD | 193.0aA | 201.4aA | |
B2 | 175.8aB | 174.9abB | 201.2aA | 171.1aB | 195.4abA | 162.9aB | 195.4aA | 195.4abA | |
B3 | 163.5aB | 165.6bB | 193.3aA | 159.2aB | 185.7bA | 155.8aB | 190.4aA | 190.4bA | |
粗蛋白 Crude protein (g·kg-1 DM) | L3 | 116.4bA | 93.1bC | 117.7aA | 116.4bA | 85.2cD | 103.9bB | 86.3bD | 71.7bcE |
L5 | 113.5bB | 90.8bC | 118.1aA | 117.9abA | 91.2bC | 110.5aB | 90.9aC | 76.8aD | |
B2 | 119.7aA | 97.2aC | 117.1aA | 119.6aA | 98.5aC | 106.8bB | 87.0bD | 75.2abE | |
B3 | 113.5bA | 90.6bE | 107.4bB | 106.5cB | 94.4abD | 100.2cC | 81.7cF | 71.3cG | |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | L3 | 535.8abD | 538.1abCD | 551.1abBC | 534.9aD | 557.8aB | 520.0abE | 588.6abA | 591.6abA |
L5 | 545.1aAB | 553.2aAB | 567.0aB | 544.9aAB | 546.9abAB | 533.5aB | 602.7aA | 604.2aA | |
B2 | 510.0cC | 523.0bBC | 533.1bB | 510.4bC | 522.1cBC | 494.6cD | 576.1bA | 573.0bA | |
B3 | 519.5bcBC | 521.7bBC | 535.3bB | 506.8bC | 536.4bcB | 508.4bcC | 572.8bA | 569.8bA | |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | L3 | 316.9bCD | 341.3aA | 319.7abBCD | 330.0aABC | 303.1aD | 337.3aAB | 318.7aBCD | 303.1aD |
L5 | 341.3bA | 337.1abA | 328.2abA | 329.4aA | 302.9aB | 335.2aA | 307.2abB | 302.9aB | |
B2 | 328.7abA | 328.1abA | 312.8bB | 336.4aA | 304.4aBC | 327.2aA | 292.1bC | 304.4aBC | |
B3 | 341.4aA | 322.9bBC | 333.2aABC | 342.3aA | 316.3aC | 338.2aAB | 289.7bD | 316.3aC |
项目 Item | 品种 Variety | 湟中 Huangzhong | 天祝 Tianzhu | 山丹 Shandan | 合作 Hezuo | 海晏 Haiyan | 玛曲 Maqu | 玛沁 Maqin | 称多 Chengduo |
---|---|---|---|---|---|---|---|---|---|
乳酸菌 Lactic acid bacteria | L3 | 4.10abBC | 4.33bA | 4.20cAB | 3.97bC | 4.21cAB | 4.26bAB | 4.31cA | 4.32cA |
L5 | 3.90cA | 4.08cA | 4.30bcB | 4.04bA | 4.36bcB | 4.36bB | 4.47bcB | 4.48bcB | |
B2 | 3.97bcB | 4.17bcB | 4.55aA | 4.06bB | 4.46abA | 4.42abA | 4.60abA | 4.55abA | |
B3 | 4.21aC | 4.39aB | 4.42abB | 4.29aBC | 4.61aA | 4.59aA | 4.72aA | 4.73aA | |
好气性细菌 Aerobic bacteria | L3 | 6.60aA | 6.24abBC | 6.17bC | 6.39bAB | 6.09aC | 6.47aA | 6.50bA | 6.26aBC |
L5 | 6.59aA | 6.18bDE | 6.14bE | 6.51abAB | 6.24aCDE | 6.34aBCD | 6.42bABC | 6.27aCDE | |
B2 | 6.65aA | 6.25abBC | 6.26abBC | 6.55abAB | 6.20aC | 6.56aAB | 6.56bAB | 6.30aBC | |
B3 | 6.74aA | 6.38aB | 6.39aB | 6.74aA | 6.40aB | 6.62aAB | 6.74aA | 6.43aB | |
霉菌 Mold | L3 | 4.03abA | 3.70aB | 3.65aB | 3.66aB | 3.70aB | 3.62aB | 3.69aB | 3.69aB |
L5 | 3.89bA | 3.66aBC | 3.70aBC | 3.69aBC | 3.60aC | 3.65aBC | 3.71aBC | 3.71aB | |
B2 | 4.12aA | 3.74aB | 3.72aB | 3.81aB | 3.73aB | 3.69aB | 3.75aB | 3.72aB | |
B3 | 3.96abA | 3.65aB | 3.71aB | 3.68aB | 3.66aB | 3.68aB | 3.69aB | 3.65aB | |
酵母菌 Yeast | L3 | 5.10aA | 4.87aA | 4.47aB | 4.37abBC | 4.47aB | 4.18abCD | 4.12aD | 3.97abD |
L5 | 5.02aA | 4.89aA | 4.45aB | 4.14cCD | 4.31bBC | 4.23abCD | 4.12aD | 3.92abE | |
B2 | 5.04aA | 4.90aA | 4.32aB | 4.45aB | 4.28bB | 4.05bC | 3.94aC | 3.72bD | |
B3 | 5.24aA | 4.93aB | 4.52aC | 4.22bcE | 4.50aCD | 4.37aD | 4.14aE | 3.99aF |
表5 海拔和品种对燕麦附着微生物数量的影响
Table 5 Effects of altitudes and varieties on epiphytic microorganisms of oat (lg cfu·g-1 FM)
项目 Item | 品种 Variety | 湟中 Huangzhong | 天祝 Tianzhu | 山丹 Shandan | 合作 Hezuo | 海晏 Haiyan | 玛曲 Maqu | 玛沁 Maqin | 称多 Chengduo |
---|---|---|---|---|---|---|---|---|---|
乳酸菌 Lactic acid bacteria | L3 | 4.10abBC | 4.33bA | 4.20cAB | 3.97bC | 4.21cAB | 4.26bAB | 4.31cA | 4.32cA |
L5 | 3.90cA | 4.08cA | 4.30bcB | 4.04bA | 4.36bcB | 4.36bB | 4.47bcB | 4.48bcB | |
B2 | 3.97bcB | 4.17bcB | 4.55aA | 4.06bB | 4.46abA | 4.42abA | 4.60abA | 4.55abA | |
B3 | 4.21aC | 4.39aB | 4.42abB | 4.29aBC | 4.61aA | 4.59aA | 4.72aA | 4.73aA | |
好气性细菌 Aerobic bacteria | L3 | 6.60aA | 6.24abBC | 6.17bC | 6.39bAB | 6.09aC | 6.47aA | 6.50bA | 6.26aBC |
L5 | 6.59aA | 6.18bDE | 6.14bE | 6.51abAB | 6.24aCDE | 6.34aBCD | 6.42bABC | 6.27aCDE | |
B2 | 6.65aA | 6.25abBC | 6.26abBC | 6.55abAB | 6.20aC | 6.56aAB | 6.56bAB | 6.30aBC | |
B3 | 6.74aA | 6.38aB | 6.39aB | 6.74aA | 6.40aB | 6.62aAB | 6.74aA | 6.43aB | |
霉菌 Mold | L3 | 4.03abA | 3.70aB | 3.65aB | 3.66aB | 3.70aB | 3.62aB | 3.69aB | 3.69aB |
L5 | 3.89bA | 3.66aBC | 3.70aBC | 3.69aBC | 3.60aC | 3.65aBC | 3.71aBC | 3.71aB | |
B2 | 4.12aA | 3.74aB | 3.72aB | 3.81aB | 3.73aB | 3.69aB | 3.75aB | 3.72aB | |
B3 | 3.96abA | 3.65aB | 3.71aB | 3.68aB | 3.66aB | 3.68aB | 3.69aB | 3.65aB | |
酵母菌 Yeast | L3 | 5.10aA | 4.87aA | 4.47aB | 4.37abBC | 4.47aB | 4.18abCD | 4.12aD | 3.97abD |
L5 | 5.02aA | 4.89aA | 4.45aB | 4.14cCD | 4.31bBC | 4.23abCD | 4.12aD | 3.92abE | |
B2 | 5.04aA | 4.90aA | 4.32aB | 4.45aB | 4.28bB | 4.05bC | 3.94aC | 3.72bD | |
B3 | 5.24aA | 4.93aB | 4.52aC | 4.22bcE | 4.50aCD | 4.37aD | 4.14aE | 3.99aF |
1 | Li P. Study on ensiling technology of siberian wildrye and oat in alpine pastoral area of Northwest Sichuan province. Nanjing: Nanjing Agricultural University, 2016. |
李平. 改善川西北高寒牧区老芒麦和燕麦青贮发酵品质的研究. 南京: 南京农业大学, 2016. | |
2 | Yang J, Liu W H, Liang G L, et al. Traits correlated with lodging resistance of oat strains in the alpine region. Acta Prataculturae Sinica, 2020, 29(12): 50-60. |
杨晶, 刘文辉, 梁国玲, 等. 高寒地区不同燕麦品系抗倒伏相关性状分析. 草业学报, 2020, 29(12): 50-60. | |
3 | Ju Z L, Zhao G Q, Chai J K, et al. Comprehensive evaluation of nutritional value and silage fermentation quality of different oat varieties in central Gansu Province. Acta Prataculturae Sinica, 2019, 28(9): 77-86. |
琚泽亮, 赵桂琴, 柴继宽, 等. 不同燕麦品种在甘肃中部的营养价值及青贮发酵品质综合评价. 草业学报, 2019, 28(9): 77-86. | |
4 | Zhao G Q, Shi S L. The current situation of oat research and production, problems and strategy in Tibetan Plateau. Pratacultural Science, 2004, 21(11): 17-21. |
赵桂琴, 师尚礼. 青藏高原饲用燕麦研究与生产现状、存在问题与对策. 草业科学, 2004, 21(11): 17-21. | |
5 | Yang Y G, Cheng T L, Yang X J, et al. Effect of different growth stages of three oat cultivars on the nutritive value of silage. Acta Agrestia Sinica, 2013, 21(4): 683-688. |
杨云贵, 程天亮, 杨雪娇, 等. 3个燕麦品种不同收获期对青贮饲草营养价值的影响. 草地学报, 2013, 21(4): 683-688. | |
6 | Chen L, Guo G, Yu C, et al. The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Animal Science Journal, 2015, 86(1): 69-76. |
7 | Guo G, Yuan X, Li L, et al. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassland Science, 2014, 60(4): 240-246. |
8 | Yuan X, Wen A, Wang J, et al. Effects of ethanol, molasses and Lactobacillus plantarum on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silages in the Tibetan Plateau of China. Animal Science Journal, 2016, 87(5): 681-689. |
9 | Ju Z L, Zhao G Q, Qin F C, et al. Effects of fermentation interval and additives on the quality of baled oat and common vetch mixture silage in an alpine area. Acta Prataculturae Sinica, 2016, 25(6): 148-157. |
琚泽亮, 赵桂琴, 覃方锉, 等. 青贮时间及添加剂对高寒牧区燕麦-箭筈豌豆混播捆裹青贮发酵品质的影响. 草业学报, 2016, 25(6): 148-157. | |
10 | Shao T, Shimojo M, Wang T, et al. Effect of additives on the fermentation quality and residual mono- and di- saccharides compositions of forage oats (Avena sativa L.) and Italian ryegrass (Lolium multiflorum Lam.) silages. Asian Australasian Journal of Animal Sciences, 2005, 18(11): 1582-1588. |
11 | Ju Z L, Zhao G Q, Qin F C, et al. Effect of different moisture contents on fermentation quality of baling silage of monoculture oat and oat and common vetch mixture. Pratacultural Science, 2016, 33(7): 1426-1433. |
琚泽亮, 赵桂琴, 覃方锉, 等. 含水量对燕麦及燕麦+箭筈豌豆裹包青贮品质的影响. 草业科学, 2016, 33(7): 1426-1433. | |
12 | Azim A, Nadeem M A, Khan A G. Effect of urea supplementation on the nutritive value of oat silage. Asian Australasian Journal of Animal Sciences, 1992, 5(1): 51-54. |
13 | Zhou H T. Effect of environment on the nutrient quality traits of naked oat cultivars. Beijing: Chinese Academy of Agricultural Sciences, 2014. |
周海涛. 不同生态环境对裸燕麦籽实营养品质影响的研究. 北京: 中国农业科学院, 2014. | |
14 | Buxton D R, Casler M D. Environmental and genetic effects on cell wall composition and digestibility. Forage Cell Wall Structure and Digestibility, 1993, 1(1): 685-714. |
15 | Buxton D R. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Animal Feed Science and Technology, 1996, 59(1): 37-49. |
16 | Gong Y X, Xu H, Shi H M, et al. Effects of altitude yield and quality of different oat varieties. China Cattle Science, 2019, 45(2): 9-11. |
宫玉霞, 徐海, 石红梅, 等. 海拔对不同燕麦品种产量及品质的影响. 中国牛业科学, 2019, 45(2): 9-11. | |
17 | Zhang H M. The fermentation properties of ensiled Elymus nutans from different altitude regions on the Tibetan Plateau and screening of lactic acid bacteria for low temperature fermentation. Lanzhou: Lanzhou University, 2016. |
张红梅. 青藏高原不同海拔区垂穗披碱草发酵特性及耐低温乳酸菌筛选研究. 兰州: 兰州大学, 2016. | |
18 | Chai J K, Zhao G Q, Shi S L. Adaptability evaluation of seven oat varieties in cool semi-humid area of Huajialing, Gansu Province. Grassland and Turf, 2011, 31(2): 1-6. |
柴继宽, 赵桂琴, 师尚礼. 7个燕麦品种在甘肃二阴区的适应性评价. 草原与草坪, 2011, 31(2): 1-6. | |
19 | Zhao G Q, Ju Z L, Chai J K, et al. Effects of silage additives and varieties on fermentation quality, aerobic stability, and nutritive value of oat silage. Journal of Animal Science, 2018, 96(8): 3151-3160. |
20 | Yang S. Feed analysis and quality testing technology. Beijing: Beijing Agricultural University Press, 1993. |
杨胜. 饲料分析及饲料质量检测技术. 北京: 北京农业大学出版社, 1993. | |
21 | Zhou C F, Wang S P, Zhang B Z, et al. Effects of hydrothermal treatment on in vitro fermentation, methanogenesis and microbiota of soybean straw. Acta Prataculturae Sinica, 2022, 31(2): 171-181. |
周承福, 汪水平, 张佰忠, 等. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响. 草业学报, 2022, 31(2): 171-181. | |
22 | Zhang H M, Jing P X, Ke W C, et al. Effect of lactic acid bacteria isolated from Tibetan Plateau on silage fermentation quality of Elymus nutans. Acta Microbiologica Sinica, 2015, 55(10): 1291-1297. |
张红梅, 荆佩欣, 柯文灿, 等. 青藏高原乳酸菌对垂穗披碱草青贮饲料发酵品质的影响. 微生物学报, 2015, 55(10): 1291-1297. | |
23 | Weinberg Z G, Muck R E. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 1996, 19(1): 53-68. |
24 | Wang L, Sun Q Z, Zhang H J. A study on quality of mixed silage of alfalfa and corn. Acta Prataculturae Sinica, 2011, 20(4): 202-209. |
王林, 孙启忠, 张慧杰. 苜蓿与玉米混贮质量研究. 草业学报, 2011, 20(4): 202-209. | |
25 | Yan Y H, Li J L, Guo X S, et al. A study on fermentation quality of Italian ryegrass and soybean straw mixed silage. Acta Prataculturae Sinica, 2014, 23(4): 94-99. |
闫艳红, 李君临, 郭旭生, 等. 多花黑麦草与大豆秸秆混合青贮发酵品质的研究. 草业学报, 2014, 23(4): 94-99. | |
26 | Cajarville C, Britos A, Garciarena D, et al. Temperate forages ensiled with molasses or fresh cheese whey: Effects on conservation quality, effluent losses and ruminal degradation. Animal Feed Science and Technology, 2012, 171(1): 14-19. |
27 | Li X L, Zhang X Y, Tang Y G, et al. Effect of concentrate-forage ratio in diet on liveweight gain of stall-fed goats. Acta Prataculturae Sinica, 2008, 17(2): 85-91. |
李向林, 张新跃, 唐一国, 等. 日粮中精料和牧草比例对舍饲山羊增重的影响. 草业学报, 2008, 17(2): 85-91. | |
28 | Buxton D R, Muck R E, Harrison J H, et al. Preharvest plant factors affecting ensiling. Silage Science and Technology, 2003, 1(1): 199-250. |
29 | Deinum B, Beyer, Nordfeldt P H, et al. Quality of herbage at different latitudes. Netherlands Journal of Agricultural Science, 1981, 29(2): 141-150. |
30 | Walgenbach R P, Marten G C, Blake G R. Release of soluble protein and nitrogen in alfalfa. I. Influence of growth temperature and soil moisture. Crop Science, 1981, 21(6): 843-849. |
31 | Deinum B, Knoppers J. The growth of maize in the cool temperate climate of the Netherlands: Effect of grain filling on production of dry matter and on chemical composition and nutritive value. Netherlands Journal of Agricultural Science, 1979, 27(2): 116-130. |
32 | Deinum B, Es A V, Soest P V. Climate, nitrogen and grass. 2. The influence of light intensity, temperature and nitrogen on vivo digestibility of grass and the prediction of these effects from some chemical procedures. Netherlands Journal of Agricultural Science, 1968, 16(3): 217-223. |
33 | Guo H, Mao Z Q, Liu X L. Research progress of interaction between plant and microorganism. Chinese Agricultural Science Bulletin, 2011, 27(9): 28-33. |
国辉, 毛志泉, 刘训理. 植物与微生物互作的研究进展. 中国农学通报, 2011, 27(9): 28-33. | |
34 | Xu D M, Zhang P, Ke W C, et al. Research process in silage microorganism and its effects on silage quality. Acta Agrestia Sinica, 2017, 25(3): 460-465. |
许冬梅, 张萍, 柯文灿, 等. 青贮微生物及其对青贮饲料发酵品质影响的研究进展. 草地学报, 2017, 25(3): 460-465. | |
35 | Shi Q P, Xu Z H, Zhang J G. Comparison of ten corn varieties as silage material in Guangzhou. Acta Prataculturae Sinica, 2017, 26(3): 175-182. |
施清平, 徐赵红, 张建国. 十个玉米品种在广州种植和青贮的潜力研究. 草业学报, 2017, 26(3): 175-182. | |
36 | Moran J P, O’kiely P, Wilson R K. Enumeration of lactic acid bacteria on grass and the effects of added bacteria on silage fermentation. Irish Grassland & Animal Production Association Journal, 1990, 24(1): 46-55. |
37 | Muck R E, Moser L E, Pitt R E. Postharvest factors affecting ensiling. Silage Science and Technology, 2003, 1(1): 251-304. |
[1] | 田吉鹏, 刘蓓一, 顾洪如, 丁成龙, 程云辉, 玉柱. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2022, 31(8): 157-166. |
[2] | 南志标, 王彦荣, 贺金生, 胡小文, 刘志鹏, 李春杰, 聂斌, 夏超. 我国草种业的成就、挑战与展望[J]. 草业学报, 2022, 31(6): 1-10. |
[3] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[4] | 赵朋波, 邱开阳, 谢应忠, 刘王锁, 李小伟, 陈林, 王继飞, 孟文芬, 黄业芸, 李小聪, 杨浩楠. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 2022, 31(6): 79-90. |
[5] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[6] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[7] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[8] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[9] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[10] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[11] | 杨克彤, 陈国鹏, 鲜骏仁, 俞筱押, 张金武, 王立. 甘肃省扎尕梁北坡头花杜鹃枝叶性状特征[J]. 草业学报, 2022, 31(2): 111-120. |
[12] | 刘丽英, 贾玉山, 范文强, 尹强, 成启明, 王志军. 影响苜蓿自然干燥的主要环境因子研究[J]. 草业学报, 2022, 31(2): 121-132. |
[13] | 李海萍, 关皓, 贾志锋, 刘文辉, 马祥, 刘勇, 汪辉, 马力, 周青平. 抗冻融乳酸菌的筛选及其对燕麦青贮品质和有氧稳定性的影响[J]. 草业学报, 2022, 31(12): 158-170. |
[14] | 常单娜, 马晓彤, 周国朋, 高嵩涓, 刘蕊, 曹卫东. 不同根瘤菌与紫云英主栽品种的共生匹配性[J]. 草业学报, 2022, 31(12): 171-180. |
[15] | 王星宇, 程静, 高生, 李默涵, 杨满霞, 葛军勇, 周海涛, 李云霞, 臧华栋, 左文博. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性[J]. 草业学报, 2022, 31(12): 76-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||