草业学报 ›› 2023, Vol. 32 ›› Issue (3): 30-40.DOI: 10.11686/cyxb2022121
王腾飞1,2(), 王斌1,2, 邓建强1,2, 李满有1,2, 倪旺1,2, 冯琴1,2, 妥昀昀3, 兰剑1,2()
收稿日期:
2022-03-17
修回日期:
2022-04-13
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
兰剑
作者简介:
E-mail: ndlanjian@163.com基金资助:
Teng-fei WANG1,2(), Bin WANG1,2, Jian-qiang DENG1,2, Man-you LI1,2, Wang NI1,2, Qin FENG1,2, Yun-yun TUO3, Jian LAN1,2()
Received:
2022-03-17
Revised:
2022-04-13
Online:
2023-03-20
Published:
2022-12-30
Contact:
Jian LAN
摘要:
采用合理的种植方式能够有效缓解宁夏干旱区饲草产量低、品质差问题,本研究在滴灌条件下设置不同播种量(S0:0 kg·hm-2,S1:16.5 kg·hm-2,S2:33.0 kg·hm-2,S3:49.5 kg·hm-2,S4:66.0 kg·hm-2)拉巴豆与甜高粱混播,对甜高粱农艺性状和混播草地生产性能以及牧草营养品质进行综合分析。2年试验结果表明,拉巴豆播种量对甜高粱株高、茎粗、茎秆1~4节强度和茎秆5~7节强度及混播草地干草产量、粗蛋白产量、粗蛋白含量、中性洗涤纤维含量、酸性洗涤纤维含量和相对饲喂价值有显著影响(P<0.05),其中甜高粱株高、茎粗、混播草地干草产量和粗蛋白产量随拉巴豆播种量的增加呈先增加后降低趋势,草地总干草产量、粗蛋白产量和相对饲喂价值均在S3处理下达到最大,分别为32.12 t·hm-2、4.13 t·hm-2和117.30;混合牧草粗蛋白含量在S4处理下最大,达到12.31%。经主成分(PCA)综合分析可知,拉巴豆与甜高粱混播草地的株高、茎粗、粗蛋白产量、总干草产量、茎秆1~4节强度和相对饲喂价值贡献率较大,综合排名由高到低为S3>S2>S4>S1>S0。综合混播草地生产性能与营养品质,建议在宁夏干旱区滴灌条件下拉巴豆与甜高粱混播的最佳播种量为49.5 kg·hm-2。
王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40.
Teng-fei WANG, Bin WANG, Jian-qiang DENG, Man-you LI, Wang NI, Qin FENG, Yun-yun TUO, Jian LAN. Effect of sowing rate on yield and forage quality of a Dolichos lablab-Sorghum bicolor mixture under drip irrigation in arid areas of Ningxia[J]. Acta Prataculturae Sinica, 2023, 32(3): 30-40.
材料名称 Material name | 品种 Variety | 纯净度 Purity (%) | 发芽率 Germination rate (%) | 千粒重 Thousand seed weight (g) | 来源Source |
---|---|---|---|---|---|
甜高粱S. bicolor | 绿巨人Lvjuren | 99 | 98 | 29.74 | 北京百斯特草业有限公司 Beijing Best grass industry co. Ltd |
拉巴豆D. lablab | 润高Rongai | 98 | 85 | 189.50 |
表1 供试材料信息
Table 1 Information of test materials
材料名称 Material name | 品种 Variety | 纯净度 Purity (%) | 发芽率 Germination rate (%) | 千粒重 Thousand seed weight (g) | 来源Source |
---|---|---|---|---|---|
甜高粱S. bicolor | 绿巨人Lvjuren | 99 | 98 | 29.74 | 北京百斯特草业有限公司 Beijing Best grass industry co. Ltd |
拉巴豆D. lablab | 润高Rongai | 98 | 85 | 189.50 |
处理Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 茎秆1~4节强度 Stem 1-4 knot strength (N) | 茎秆5~7节强度 Stem 5-7 knot strength (N) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
S0 | 270.99±3.02c | 252.00±6.34b | 14.02±0.15c | 13.92±0.23b | 46.54±1.18a | 44.97±4.35a | 24.93±1.21c | 24.29±2.11b |
S1 | 277.02±3.52c | 258.54±11.33b | 15.85±0.26a | 15.23±0.34a | 47.28±0.61a | 45.30±5.46a | 27.56±1.76b | 25.87±3.21ab |
S2 | 313.48±4.21a | 293.92±11.23a | 15.01±0.17b | 14.36±0.45b | 46.47±1.19a | 44.85±6.41a | 23.05±1.82c | 21.38±3.45b |
S3 | 304.58±4.34b | 286.88±9.87a | 15.06±0.18b | 14.41±0.67b | 47.36±0.59a | 46.28±3.44a | 32.32±1.49a | 30.21±4.23a |
S4 | 304.81±2.26b | 286.54±12.56a | 13.82±0.09c | 13.20±0.32c | 39.58±1.54b | 37.60±4.32b | 23.32±1.58c | 21.36±2.55b |
表2 不同处理间甜高粱株高、茎粗、茎秆1~4节强度和茎秆5~7节强度的比较
Table 2 Comparison of plant height, stem diameter, stem 1-4 knot strength and stem 5-7 knot strength among different treatments of S. bicolor
处理Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 茎秆1~4节强度 Stem 1-4 knot strength (N) | 茎秆5~7节强度 Stem 5-7 knot strength (N) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
S0 | 270.99±3.02c | 252.00±6.34b | 14.02±0.15c | 13.92±0.23b | 46.54±1.18a | 44.97±4.35a | 24.93±1.21c | 24.29±2.11b |
S1 | 277.02±3.52c | 258.54±11.33b | 15.85±0.26a | 15.23±0.34a | 47.28±0.61a | 45.30±5.46a | 27.56±1.76b | 25.87±3.21ab |
S2 | 313.48±4.21a | 293.92±11.23a | 15.01±0.17b | 14.36±0.45b | 46.47±1.19a | 44.85±6.41a | 23.05±1.82c | 21.38±3.45b |
S3 | 304.58±4.34b | 286.88±9.87a | 15.06±0.18b | 14.41±0.67b | 47.36±0.59a | 46.28±3.44a | 32.32±1.49a | 30.21±4.23a |
S4 | 304.81±2.26b | 286.54±12.56a | 13.82±0.09c | 13.20±0.32c | 39.58±1.54b | 37.60±4.32b | 23.32±1.58c | 21.36±2.55b |
图2 不同处理间总干草产量、拉巴豆干草产量和甜高粱干草产量的比较不同小写字母表示处理间差异显著(P<0.05)。Different lowercase letters iindicate significant differences among treatments (P<0.05).
Fig.2 Comparison of total hay yield, D. lablab hay yield and S. bicolor hay yield among different treatments
处理 Treatment | 粗蛋白 Crude protein (%) | 中性洗涤纤维 Neutral detergent fiber (%) | 酸性洗涤纤维 Acid detergent fiber (%) | 相对饲喂价值 Relative feed value | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
S0 | 9.30±0.22e | 9.21±0.31d | 59.41±0.43a | 59.41±1.23a | 32.64±1.56a | 33.35±0.84a | 99.35±1.19b | 109.38±3.25bc |
S1 | 10.65±0.16d | 10.64±0.24c | 56.38±0.69bc | 55.25±0.25b | 32.87±0.89a | 31.19±0.25bc | 104.47±2.16b | 109.38±3.68bc |
S2 | 11.16±0.26c | 11.24±0.56bc | 58.48±0.55ab | 57.97±0.55a | 32.25±1.52a | 30.38±0.98c | 101.45±0.21b | 105.23±4.56c |
S3 | 11.65±0.21b | 11.68±0.22ab | 54.29±0.69cd | 54.07±0.65bc | 26.66±0.87b | 26.90±0.34d | 116.79±2.65a | 117.82±6.78a |
S4 | 12.41±0.25a | 12.21±0.89a | 52.49±0.97d | 53.09±0.98c | 31.89±1.21a | 32.11±0.50b | 113.64±2.71a | 112.54±5.68b |
表3 不同处理间粗蛋白、中性洗涤纤维和酸性洗涤纤维含量及相对饲喂价值的比较
Table 3 Comparison of crude protein, neutral detergent fiber and acid detergent fiber content and relative feed value among different treatments
处理 Treatment | 粗蛋白 Crude protein (%) | 中性洗涤纤维 Neutral detergent fiber (%) | 酸性洗涤纤维 Acid detergent fiber (%) | 相对饲喂价值 Relative feed value | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
S0 | 9.30±0.22e | 9.21±0.31d | 59.41±0.43a | 59.41±1.23a | 32.64±1.56a | 33.35±0.84a | 99.35±1.19b | 109.38±3.25bc |
S1 | 10.65±0.16d | 10.64±0.24c | 56.38±0.69bc | 55.25±0.25b | 32.87±0.89a | 31.19±0.25bc | 104.47±2.16b | 109.38±3.68bc |
S2 | 11.16±0.26c | 11.24±0.56bc | 58.48±0.55ab | 57.97±0.55a | 32.25±1.52a | 30.38±0.98c | 101.45±0.21b | 105.23±4.56c |
S3 | 11.65±0.21b | 11.68±0.22ab | 54.29±0.69cd | 54.07±0.65bc | 26.66±0.87b | 26.90±0.34d | 116.79±2.65a | 117.82±6.78a |
S4 | 12.41±0.25a | 12.21±0.89a | 52.49±0.97d | 53.09±0.98c | 31.89±1.21a | 32.11±0.50b | 113.64±2.71a | 112.54±5.68b |
图4 拉巴豆与甜高粱混播草地10个指标间的相关性A:总干草产量;B:株高;C:茎秆1~4节强度;D:茎秆5~7节强度;E:茎粗;F:粗蛋白产量;G:粗蛋白;H:中性洗涤纤维;I:酸性洗涤纤维;J:相对饲喂价值。*表示在0.01水平下极显著相关(P<0.01)。A: Total hay yield; B: Plant height; C: Stem 1-4 knot strength; D: Stem 5-7 knot strength; E: Stem diameter; F: Crude protein yield; G: Crude protein; H: Neutral detergent fiber; I: Acid detergent fiber; J: Relative feed value. * represents extremely significant differences at 0.01 level (P<0.01).
Fig.4 Correlation between 10 indexes of mixed grassland of D. lablab and S. bicolor
项目 Items | 主成分Principal component | ||
---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |
株高Plant height | 0.33 | -0.15 | 0.51 |
茎粗Stem diameter | 0.17 | 0.49 | -0.39 |
茎秆1~4节强度Stem 1-4 knot strength | -0.11 | 0.56 | 0.20 |
茎秆5~7节强度Stem 5-7 knot strength | -0.01 | 0.47 | 0.24 |
总干草产量Total hay yield | 0.38 | 0.14 | 0.33 |
粗蛋白产量Crude protein yield | 0.42 | -0.03 | 0.13 |
粗蛋白Crude protein | 0.39 | -0.21 | 0.11 |
中性洗涤纤维Neutral detergent fiber | -0.36 | 0.15 | 0.36 |
酸性洗涤纤维Acid detergent fiber | -0.34 | -0.33 | 0.03 |
相对饲喂价值Relative feed value | 0.37 | 0.04 | -0.47 |
特征值Eigenvalue | 5.456 | 2.764 | 1.174 |
方差贡献率Variance contribution rate (%) | 54.556 | 27.642 | 11.743 |
累积贡献率Cumulative contribution rate (%) | 54.556 | 82.198 | 93.941 |
表4 各因子特征向量与主成分特征值和累计贡献率
Table 4 Feature vector of each factor, principal component eigenvalue and cumulative contribution rate
项目 Items | 主成分Principal component | ||
---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |
株高Plant height | 0.33 | -0.15 | 0.51 |
茎粗Stem diameter | 0.17 | 0.49 | -0.39 |
茎秆1~4节强度Stem 1-4 knot strength | -0.11 | 0.56 | 0.20 |
茎秆5~7节强度Stem 5-7 knot strength | -0.01 | 0.47 | 0.24 |
总干草产量Total hay yield | 0.38 | 0.14 | 0.33 |
粗蛋白产量Crude protein yield | 0.42 | -0.03 | 0.13 |
粗蛋白Crude protein | 0.39 | -0.21 | 0.11 |
中性洗涤纤维Neutral detergent fiber | -0.36 | 0.15 | 0.36 |
酸性洗涤纤维Acid detergent fiber | -0.34 | -0.33 | 0.03 |
相对饲喂价值Relative feed value | 0.37 | 0.04 | -0.47 |
特征值Eigenvalue | 5.456 | 2.764 | 1.174 |
方差贡献率Variance contribution rate (%) | 54.556 | 27.642 | 11.743 |
累积贡献率Cumulative contribution rate (%) | 54.556 | 82.198 | 93.941 |
处理 Treatment | F1 | F2 | F3 | Y | 排名Ranking |
---|---|---|---|---|---|
S0 | -3.24 | 0.01 | -0.64 | -1.96 | 5 |
S1 | -0.97 | 1.06 | -0.26 | -0.28 | 4 |
S2 | -0.17 | -0.20 | 1.92 | 0.08 | 2 |
S3 | 2.85 | 1.74 | -0.46 | 2.11 | 1 |
S4 | 1.53 | -2.61 | -0.57 | 0.05 | 3 |
表5 不同处理公因子值及综合排名
Table 5 Common factor values and comprehensive ranking of different treatments
处理 Treatment | F1 | F2 | F3 | Y | 排名Ranking |
---|---|---|---|---|---|
S0 | -3.24 | 0.01 | -0.64 | -1.96 | 5 |
S1 | -0.97 | 1.06 | -0.26 | -0.28 | 4 |
S2 | -0.17 | -0.20 | 1.92 | 0.08 | 2 |
S3 | 2.85 | 1.74 | -0.46 | 2.11 | 1 |
S4 | 1.53 | -2.61 | -0.57 | 0.05 | 3 |
1 | Zheng W, Zhu J Z, Jianaerguli. A comprehensive evaluation of the productive performance of legume-grass mixtures under different mixed sowing patterns. Acta Prataculturae Sinica, 2012, 21(6): 242-251. |
郑伟, 朱进忠, 加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价. 草业学报, 2012, 21(6): 242-251. | |
2 | Michael P R. Nitrogen cycling in pasture and range. Journal of Production Agriculture, 1990, 5(1): 13-23. |
3 | Zhang H H, Shi S L, Wu B, et al. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
张辉辉, 师尚礼, 武蓓, 等. 苜蓿与3种多年生禾草混播效应研究. 草业学报, 2022, 31(2): 159-170. | |
4 | Eriksen J, Askegaard M, Søegaard K. Residual effect and nitrate leaching in grass-arable rotations: effect of grassland proportion, sward type and fertilizer history. Soil Use and Management, 2008, 24(4): 373-382. |
5 | Wang B, Dong X, Li M Y, et al. Effects of mixed planting of Dolichos lablab with different sowing rates and silage corn on grassland productivity and forage quality. Acta Agrestia Sinica, 2021, 29(4): 828-834. |
王斌, 董秀, 李满有, 等. 不同播量拉巴豆与青贮玉米混播对草地生产性能及牧草品质的影响. 草地学报, 2021, 29(4): 828-834. | |
6 | Zhang L M, Liu Z Q, Chen B X, et al. Current status and application prospects of sweet sorghum breeding in China. Journal of China Agricultural University, 2012, 17(6): 76-82. |
张丽敏, 刘智全, 陈冰嬬, 等. 我国能源甜高粱育种现状及应用前景. 中国农业大学学报, 2012, 17(6): 76-82. | |
7 | Dong Z X, He R H, Kuang J Y, et al. Effects of intercropping Dolichos lablab with silage maize on the yield and quality of mixed forage in the Chengdu Plain, China. Pratacultural Science, 2021, 38(8): 1587-1595. |
董志晓, 何润濠, 况鉴洋, 等. 成都平原青贮玉米间作拉巴豆对混合饲草产量及品质的影响. 草业科学, 2021, 38(8): 1587-1595. | |
8 | Li Y J, Ma P J, Wu J H, et al. Effects of interplanting with Dolichos lablab on agronomic traits and yield of two varieties of silage maize. Acta Prataculturae Sinica, 2019, 28(9): 209-216. |
李亚娇, 马培杰, 吴佳海, 等. 不同品种青贮玉米与拉巴豆套种对青贮玉米农艺性状及产量的影响. 草业学报, 2019, 28(9): 209-216. | |
9 | Xie K Y, Cao K, Wan J C, et al. Change in productivity of swards of different forage legume and grass species monocultures and combinations in the semi-arid region of Xinjiang Province. Acta Prataculturae Sinica, 2020, 29(4): 29-40. |
谢开云, 曹凯, 万江春, 等. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究. 草业学报, 2020, 29(4): 29-40. | |
10 | Yang F, Liu Z, Han X B, et al. Effects of mixed planting of Lablab purpureus (L.) sweet and Sorghum dochna (Forssk.) Snowden on grassland yield and quality of forage grass in Ningxia rain fed region. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(5): 24-30. |
杨帆, 刘卓, 韩旭彪, 等. 宁夏雨养区拉巴豆与甜高粱混播对草地产量和牧草品质的影响. 西北农林科技大学学报(自然科学版), 2021, 49(5): 24-30. | |
11 | Xi X Y, Yan H Y, Li C X. Effects of mixed sowing types and cutting time of sweet sorghum and legumes on grass yield on irrigated and dry land in Qinghai Province. Acta Agrestia Sinica, 2019, 27(5): 1400-1409. |
席杏媛, 闫慧颖, 李春喜. 青海水、旱地甜高粱与豆科混播及其刈割对草产量的影响. 草地学报, 2019, 27(5): 1400-1409. | |
12 | Dong Z X, He R H, Kuang J Y, et al. Effects of sweet sorghum intercropping with Lablab purpureus on yield and quality of mixed forage in Chengdu Plain, China. Acta Agrestia Sinica, 2021, 29(7): 1578-1583. |
董志晓, 何润濠, 况鉴洋, 等. 成都平原甜高粱间作拉巴豆对混合饲草产量及品质的影响. 草地学报, 2021, 29(7): 1578-1583. | |
13 | Li C X, Feng H S, Yan H Y, et al. Nutrient content of sweet sorghum and corns in different altitude regions and sweet sorghum in different clipping frequency. Acta Agrestia Sinica, 2016, 24(2): 425-432. |
李春喜, 冯海生, 闫慧颖, 等. 不同海拔生态区甜高粱和玉米及甜高粱不同刈割次数的养分含量. 草地学报, 2016, 24(2): 425-432. | |
14 | Horwitz W. Official methods of analysis of the association of official analytical chemists. Journal of Pharmaceutical Sciences, 1971, 60(2): 334. |
15 | Liu P Q. Quality inspection methods and quality management of feed and feed additives. Chinese Animal Husbandry and Veterinary Digest, 2017, 33(8): 228. |
刘沛钦. 饲料及饲料添加剂质量检测方法与品质管理. 中国畜牧兽医文摘, 2017, 33(8): 228. | |
16 | Wang B, Li M Y, Wang X P, et al. Combined ploughing and tilling to improve degraded alfalfa (Medicago sativa) stands in a semi-arid region. Acta Prataculturae Sinica, 2022, 31(1): 107-117. |
王斌, 李满有, 王欣盼, 等. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究. 草业学报, 2022, 31(1): 107-117. | |
17 | Ban Q, Wu J H, Su S, et al. Main agronomic traits and yield performance of sweet sorghum intercropped with Dolichos lablab. Guizhou Agricultural Sciences, 2020, 48(6): 6-9. |
班骞, 吴佳海, 苏生, 等. 甜高粱套种拉巴豆的主要农艺性状及产量表现. 贵州农业科学, 2020, 48(6): 6-9. | |
18 | Wang H Y, Yu L F. Photosynthetic characteristics of three species of liana seedlings in different light environments. Journal of Zhejiang Forestry College, 2010, 27(6): 858-864. |
王海艳, 喻理飞. 不同光环境下3种藤本植物幼苗的光合特性. 浙江林学院学报, 2010, 27(6): 858-864. | |
19 | Wang H L, Yan X, Zuo Y C, et al. Breeding progress and feeding value of Sorghum bicolor×S. sudanense. Pratacultural Science, 2018, 35(12): 2940-2950. |
王红林, 严旭, 左艳春, 等. 高粱×苏丹草杂交种品种选育与饲用价值. 草业科学, 2018, 35(12): 2940-2950. | |
20 | Ma Q M, Xu Y Y, Zhao M A, et al. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes. Plant Physiology Journal, 2019, 55(8): 1123-1132. |
马青美, 许莹莹, 赵美爱, 等. 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析. 植物生理学报, 2019, 55(8): 1123-1132. | |
21 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
22 | Zhang Y L, Yu T F, Hao F, et al. Effects of fertilization and legume-grass ratio on forage yield and NPK utilization efficiency. Acta Prataculturae Sinica, 2020, 29(11): 91-101. |
张永亮, 于铁峰, 郝凤, 等. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响. 草业学报, 2020, 29(11): 91-101. | |
23 | Armstrong K L, Albrecht K A. Effect of plant density on forage yield and quality of intercropped corn and lablab bean. Crop Science, 2008, 48(2): 814-822. |
24 | Yong T W, Chen P, Liu X M, et al. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agronomica Sinica, 2018, 44(10): 1485-1495. |
雍太文, 陈平, 刘小明, 等. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响. 作物学报, 2018, 44(10): 1485-1495. | |
25 | Xie K Y, Zhao Y, Li X L, et al. Relationships between grasses and legumes in mixed grassland. Acta Prataculturae Sinica, 2013, 22(3): 284-296. |
谢开云, 赵云, 李向林, 等. 豆-禾混播草地种间关系研究进展. 草业学报, 2013, 22(3): 284-296. | |
26 | Anil L, Park J, Phipps R H. The potential of forage-maize intercrops in ruminant nutrition. Animal Feed Science and Technology, 2000, 86(3): 157-164. |
27 | Ajayi F T, Jacob B O, Taiwo A A. Mineral solubility of Panicum maximum with four herbaceous forage legume mixtures incubated in the rumen of N' Dama steers. Animal Science Journal, 2009, 80(3): 250-257. |
28 | An H Y, Wang H, Jia Q M, et al. Effects of gramineae-legume mixed sowing and deficit irrigation on yield, quality and water use of forage grass in Hexi region. Pratacultural Science, 2021, 38(1): 122-135. |
安昊云, 王皓, 贾倩民, 等. 禾豆混播与调亏灌溉对河西地区饲草产量、品质和水分利用的影响. 草业科学, 2021, 38(1): 122-135. | |
29 | Tian Y X, Ma P J, Li Y J, et al. Effects of silage maize and Dolichos lablab intercropping on quality and yield of silage maize. Pratacultural Science, 2019, 36(5): 1457-1465. |
田应学, 马培杰, 李亚娇, 等. 青贮玉米与拉巴豆套种对青贮玉米品质及产量的影响. 草业科学, 2019, 36(5): 1457-1465. | |
30 | Xie K Y, Meng X, Xu Z Z, et al. Study on forage yield and nutritional value of mixed-culture grassland of different legume and grass forage in semi-arid area of Xinjiang. Acta Agrestia Sinica, 2021, 29(8): 1835-1842. |
谢开云, 孟翔, 徐珍珍, 等. 新疆半干旱地区不同种类混播草地的牧草产量和营养价值研究. 草地学报, 2021, 29(8): 1835-1842. |
[1] | 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响[J]. 草业学报, 2023, 32(3): 13-29. |
[2] | 姚露花, 綦才, 杨建峰, 郭彦军. 种子引发对甜高粱角质层蜡质及其抗性的影响[J]. 草业学报, 2022, 31(7): 185-196. |
[3] | 赵娟娟, 车大璐, 郭玮婷, 张伟涛, 刘连超, 赵俐辰, 高玉红, 孙新胜, 李雪梅, 王媛. 复方中药对热应激条件下杂交小尾寒羊生产性能、生理参数和血液理化指标的影响[J]. 草业学报, 2022, 31(5): 178-189. |
[4] | 杨德智, 王晨, 侯明杰, 王虎成. 饲用甜高粱和全株玉米青贮对肉羊前胃微生态的影响[J]. 草业学报, 2022, 31(4): 145-154. |
[5] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[6] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[7] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[8] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[9] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[10] | 刘丽英, 贾玉山, 范文强, 尹强, 成启明, 王志军. 影响苜蓿自然干燥的主要环境因子研究[J]. 草业学报, 2022, 31(2): 121-132. |
[11] | 韩重阳, 王栓, 左粟田, 闫三博, 汪阳, 蔡家邦, 马骢毓, 张新全, 聂刚. 10个白三叶品种在成都平原的生产性能评价[J]. 草业学报, 2022, 31(11): 105-117. |
[12] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[13] | 常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价[J]. 草业学报, 2022, 31(11): 61-74. |
[14] | 李俊年, 康绍华, 杨冬梅, 何纤, 李双, 陶双伦. 葛藤草粉替代苜蓿草粉对波杂山羊血清生化指标、养分表观消化率和生产性能的影响[J]. 草业学报, 2021, 30(8): 146-153. |
[15] | 徐强, 田新会, 杜文华. 高寒牧区黑麦和箭筈豌豆混播对草产量和营养品质的影响研究[J]. 草业学报, 2021, 30(8): 49-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||