草业学报 ›› 2025, Vol. 34 ›› Issue (1): 226-237.DOI: 10.11686/cyxb2024070
• 研究论文 • 上一篇
收稿日期:
2024-03-05
修回日期:
2024-05-08
出版日期:
2025-01-20
发布日期:
2024-11-04
通讯作者:
程云湘
作者简介:
E-mail: chengyx@imu.edu.cn基金资助:
Zhen-hao ZHANG1(), Zi-yu JIA1, Xin-yu LI1, Yun-xiang CHENG1,2()
Received:
2024-03-05
Revised:
2024-05-08
Online:
2025-01-20
Published:
2024-11-04
Contact:
Yun-xiang CHENG
摘要:
荒漠草原混合放牧家畜的行为特征对草地资源的可持续利用具有重要意义。本研究在内蒙古自治区锡林郭勒盟镶黄旗的荒漠草原牛羊混合放牧牧场开展。试验选取了畜群中的4头牛与8只羊,通过分别佩戴载有三轴加速度传感器的GPS定位项圈,分析了混牧牛羊放牧时间(GTIME)与放牧活动水平(GODBA)的时间动态,并探讨了牛羊放牧行为特征对草地资源月份变化的响应模式。结果表明,荒漠草原混牧牛羊的GTIME与GODBA呈显著正相关关系(R2>0.60),且牛羊的GODBA对草地资源的响应模式存在差异。其中,牛受到地上生物量的正向调控(P<0.05),受到Shannon指数的负向调控(P<0.01)。而羊则受到地上生物量与毒杂草重要值的负向调控(P<0.001),以及Shannon指数与牧草粗蛋白含量的正向调控(P<0.001)。并且,混牧牛羊24 h的行为模式均表现出“多峰”特征,且随月份变化有收缩的趋势。同时,牛羊不同行为之间的活动水平存在显著差异,且羊的活动水平整体高于牛(P<0.05)。
张振豪, 贾子玉, 李鑫宇, 程云湘. 荒漠草原混牧牛羊的放牧行为特征[J]. 草业学报, 2025, 34(1): 226-237.
Zhen-hao ZHANG, Zi-yu JIA, Xin-yu LI, Yun-xiang CHENG. Grazing behavior traits of cattle and sheep on mixed pasture in desert steppe[J]. Acta Prataculturae Sinica, 2025, 34(1): 226-237.
图1 研究区位置与家畜分布该图基于自然资源部标准地图服务网站蒙S(2020)030号标准地图制作,底图无修改。b为2021-2022年试验期内的日均气温变化。c为试验区海拔分布格局。d为2021-2022年生长季混牧牛羊在牧场内的空间分布;色带表示牛羊在牧场内出现的频率(0~100%),数值越大表示出现频率越高。The Figure is based on standard map No. MengS(2020)030 of the standard map service website of the Ministry of Natural Resources. The base map is not modified. b shows the daily mean air temperature change during the experimental period in 2021 and 2022. c shows the distribution pattern of altitude in the experimental area. d shows the spatial distribution of cattle and sheep in the mixed pasture during the growing seasons of 2021 and 2022. The color band represents the frequency of cattle and sheep in the pasture (0-100%), and the larger the value, the higher the frequency.
Fig.1 Location of the study area and livestock distribution
物种 Species | 分类类别 Classification types | 模型精度Accuracy | ||
---|---|---|---|---|
XGBoost | SVM | CART | ||
牛Cattle | 二分类Binary classification | 96.44 | 95.80 | 93.86 |
多分类Multiple classification | 77.00 | 73.00 | 74.70 | |
羊Sheep | 二分类Binary classification | 94.16 | 96.27 | 93.52 |
多分类Multiple classification | 75.61 | 72.85 | 73.58 |
表1 机器学习模型分类精确度
Table 1 Classification accuracy of machine learning model (%)
物种 Species | 分类类别 Classification types | 模型精度Accuracy | ||
---|---|---|---|---|
XGBoost | SVM | CART | ||
牛Cattle | 二分类Binary classification | 96.44 | 95.80 | 93.86 |
多分类Multiple classification | 77.00 | 73.00 | 74.70 | |
羊Sheep | 二分类Binary classification | 94.16 | 96.27 | 93.52 |
多分类Multiple classification | 75.61 | 72.85 | 73.58 |
图2 混牧牛羊不同行为下的活动水平G:重力加速度单位(9.80 m·s-2)。不同大写字母表示同一放牧行为不同物种间差异显著(P<0.05),不同小写字母表示同一物种不同放牧行为间差异显著(P<0.05)。G: Gravitational acceleration unit (9.80 m·s-2). Different uppercase letters indicate significant difference between different species of the same grazing behaviors (P<0.05), and different lowercase letters indicate significant differences among different grazing behaviors of the same species (P<0.05).
Fig.2 ODBA under different behaviors of mixed-grazing cattle and sheep
图3 混牧牛羊行为特征的时间动态a,b分别表示牛和羊活动水平(ODBA)的24 h动态。c,d分别表示牛和羊放牧活动水平(GODBA)的月份动态,同一颜色不同小写字母表示家畜不同月份间差异显著(P<0.05)。e,f分别表示牛和羊放牧时间(GTIME)的月份动态,R表示家畜放牧时间与时间序列的相关系数,P表示相关系数显著性。a and b represent the 24 hours overall dynamic body acceleration (ODBA) dynamics of cattle and sheep, respectively. c and d represent the montly dynamics of grazing overall dynamic body acceleration (GODBA) of cattle and sheep, respectively. The same color lowercase letters indicate significant differences among different months of the same livestock (P<0.05). e and f represent the monthly dynamics of grazing time (GTIME) of cattle and sheep, respectively. R denotes the correlation coefficient of grazing time and time series, and P denotes the correlation coefficient significance.
Fig.3 Temporal dynamics of behavioral characteristics of mixed-grazing cattle and sheep
指标 Indexes | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |
地上生物量Above ground biomass (AGB, g·m-2) | 40.12±4.96a | 50.72±9.55a | 58.02±8.52a | 41.07±6.35ab | 50.56±5.07a | 37.26±6.03b |
粗脂肪Ether extract (EE, g·100 g-1) | 2.27±0.15a | 2.65±0.16a | 2.44±0.04a | 1.81±0.07a | 2.02±0.08a | 1.91±0.10a |
粗蛋白Crude protein (CP, g·100 g-1) | 16.46±0.98a | 17.75±0.86a | 17.25±1.12a | 16.05±1.18b | 19.52±1.15a | 16.26±1.09b |
中性洗涤纤维Neutral detergent fibre (NDF, g·100 g-1) | 54.74±0.40b | 56.70±0.26a | 57.01±0.42a | 38.66±1.56ab | 36.64±1.39b | 41.48±1.26a |
酸性洗涤纤维Acid detergent fibre (ADF, g·100 g-1) | 36.55±0.27a | 37.00±0.30a | 37.16±0.23a | 32.91±1.72a | 32.83±1.28a | 34.68±1.24a |
香农指数Shannon index | 2.12±0.055a | 2.28±0.071a | 2.25±0.060a | 2.00±0.046a | 1.96±0.059ab | 1.83±0.047b |
均匀度指数Pielou index | 0.89±0.005a | 0.88±0.013ab | 0.86±0.009b | 0.85±0.009a | 0.85±0.011a | 0.84±0.011a |
禾本科重要值Graminae important value | 0.251±0.11a | 0.235±0.08a | 0.248±0.06a | 0.180±0.08b | 0.195±0.11ab | 0.243±0.12a |
百合科重要值Liliaceae important value | 0.252±0.16a | 0.280±0.15a | 0.261±0.13a | 0.218±0.15ab | 0.261±0.18a | 0.177±0.16b |
豆科重要值Leguminosae important value | 0.154±0.10a | 0.138±0.08a | 0.177±0.10a | 0.130±0.11a | 0.085±0.10a | 0.108±0.16a |
旋花科重要值Convolvulaceae important value | 0.148±0.09a | 0.083±0.07ab | 0.062±0.09b | 0.116±0.13a | 0.091±0.09a | 0.140±0.15a |
菊科重要值Compositae important value | 0.060±0.06a | 0.007±0.02b | 0.014±0.02b | 0.022±0.03a | 0.011±0.02a | 0.011±0.02a |
毒杂草重要值Poisonous weeds important value | 0.065±0.09a | 0.085±0.10a | 0.077±0.10a | 0.069±0.13a | 0.074±0.14a | 0.071±0.15a |
其他杂类草重要值Other forbs important value | 0.073±0.04b | 0.172±0.06a | 0.163±0.09a | 0.202±0.14a | 0.283±0.13a | 0.249±0.15a |
表2 牧草营养品质与群落物种组成的月份动态
Table 2 Monthly dynamics of nutritional quality and community species composition of pasture forages
指标 Indexes | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |
地上生物量Above ground biomass (AGB, g·m-2) | 40.12±4.96a | 50.72±9.55a | 58.02±8.52a | 41.07±6.35ab | 50.56±5.07a | 37.26±6.03b |
粗脂肪Ether extract (EE, g·100 g-1) | 2.27±0.15a | 2.65±0.16a | 2.44±0.04a | 1.81±0.07a | 2.02±0.08a | 1.91±0.10a |
粗蛋白Crude protein (CP, g·100 g-1) | 16.46±0.98a | 17.75±0.86a | 17.25±1.12a | 16.05±1.18b | 19.52±1.15a | 16.26±1.09b |
中性洗涤纤维Neutral detergent fibre (NDF, g·100 g-1) | 54.74±0.40b | 56.70±0.26a | 57.01±0.42a | 38.66±1.56ab | 36.64±1.39b | 41.48±1.26a |
酸性洗涤纤维Acid detergent fibre (ADF, g·100 g-1) | 36.55±0.27a | 37.00±0.30a | 37.16±0.23a | 32.91±1.72a | 32.83±1.28a | 34.68±1.24a |
香农指数Shannon index | 2.12±0.055a | 2.28±0.071a | 2.25±0.060a | 2.00±0.046a | 1.96±0.059ab | 1.83±0.047b |
均匀度指数Pielou index | 0.89±0.005a | 0.88±0.013ab | 0.86±0.009b | 0.85±0.009a | 0.85±0.011a | 0.84±0.011a |
禾本科重要值Graminae important value | 0.251±0.11a | 0.235±0.08a | 0.248±0.06a | 0.180±0.08b | 0.195±0.11ab | 0.243±0.12a |
百合科重要值Liliaceae important value | 0.252±0.16a | 0.280±0.15a | 0.261±0.13a | 0.218±0.15ab | 0.261±0.18a | 0.177±0.16b |
豆科重要值Leguminosae important value | 0.154±0.10a | 0.138±0.08a | 0.177±0.10a | 0.130±0.11a | 0.085±0.10a | 0.108±0.16a |
旋花科重要值Convolvulaceae important value | 0.148±0.09a | 0.083±0.07ab | 0.062±0.09b | 0.116±0.13a | 0.091±0.09a | 0.140±0.15a |
菊科重要值Compositae important value | 0.060±0.06a | 0.007±0.02b | 0.014±0.02b | 0.022±0.03a | 0.011±0.02a | 0.011±0.02a |
毒杂草重要值Poisonous weeds important value | 0.065±0.09a | 0.085±0.10a | 0.077±0.10a | 0.069±0.13a | 0.074±0.14a | 0.071±0.15a |
其他杂类草重要值Other forbs important value | 0.073±0.04b | 0.172±0.06a | 0.163±0.09a | 0.202±0.14a | 0.283±0.13a | 0.249±0.15a |
图4 混牧牛羊放牧行为特征的影响因素a,c为多元线性回归模型。b,d为对数回归模型。R2为模型拟合优度。a and c are multiple linear regression models. b and d are logarithmic regression models. R2 indicates the model goodness-of-fit. ***: P<0.001; **: P<0.01; *: P<0.05.
Fig.4 Factors on grazing behavioral characteristics of mixed-grazing cattle and sheep
1 | d’Alexis S, Sauvant D, Boval M. Mixed grazing systems of sheep and cattle to improve liveweight gain: a quantitative review. The Journal of Agricultural Science, 2014, 152(4): 655-666. |
2 | Acebes P, Traba J, Malo J E. Co-occurrence and potential for competition between wild and domestic large herbivores in a South American desert. Journal of Arid Environments, 2012, 77: 39-44. |
3 | Gullap M K, Erkovan H I, Koc A. Differences in vegetation and soil properties of the highland rangelands grazed with single cattle herd and cattle+sheep herds. Environmental Science, Agricultural and Food Sciences, 2018, 7: 62-66. |
4 | Fraser M D, Vale J E, Dhanoa M S. Alternative upland grazing systems: Impacts on livestock performance and sward characteristics. Agriculture, Ecosystems & Environment, 2013, 175: 8-20. |
5 | Demment M W, Van Soest P J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist, 1985, 125(5): 641-672. |
6 | Illius A W, Gordon I J. The allometry of food intake in grazing ruminants. The Journal of Animal Ecology, 1987, 56(3): 989-999. |
7 | Cuchillo-Hilario M, Wrage-Mönnig N, Isselstein J. Forage selectivity by cattle and sheep co-grazing swards differing in plant species diversity. Grass and Forage Science, 2018, 73(2): 320-329. |
8 | Sanon H O, Kaboré-Zoungrana C, Ledin I. Behaviour of goats, sheep and cattle and their selection of browse species on natural pasture in a Sahelian area. Small Ruminant Research, 2007, 67(1): 64-74. |
9 | Hofmann R R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia, 1989, 78(4): 443-457. |
10 | Norman H C, Freind C, Masters D G, et al. Variation within and between two saltbush species in plant composition and subsequent selection by sheep. Australian Journal of Agricultural Research, 2004, 55(9): 999-1007. |
11 | Xu W X, Xia C J, Lin J, et al. Diet of Gazella subgutturosa (Güldenstaedt, 1780) and food overlap with domestic sheep in Xinjiang, China. Folia Zoologica, 2012, 61(1): 54-60. |
12 | Hou L L, Wang X, Zhang X, et al. The effect of grazing intensity on beef cattle’s behavior. Acta Agrestia Sinica, 2021, 29(9): 1974-1982. |
侯路路, 王旭, 张翔, 等. 放牧强度对肉牛行为的影响. 草地学报, 2021, 29(9): 1974-1982. | |
13 | Xue B, Zhao X Q, Zhang Y S. Dynamic changes of body weight and energy of livestock grazing on natural grassland in Qinghai Tibetan Plateau. Animal Husbandry & Veterinary Medicine, 2005, 37(1): 1-4. |
薛白, 赵新全, 张耀生. 青藏高原天然草场放牧家畜体重和体能量变化动态. 畜牧与兽医, 2005, 37(1): 1-4. | |
14 | Laca E A, Sokolow S, Galli J R, et al. Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 2010, 13(3): 311-320. |
15 | Li H, Yang Y C, Wang X, et al. Response of grazing behavior of typical steppe sheep to grazing intensity. Journal of Inner Mongolia University (Natural Science Edition), 2022, 53(4): 376-382. |
李浩, 杨妍辰, 王旭, 等. 典型草原绵羊牧食行为对放牧强度的响应. 内蒙古大学学报(自然科学版), 2022, 53(4): 376-382. | |
16 | Wang S R N, Han G D, Zhang S W, et al. Analysis of sheep grazing behavior and interaction with grassland environment in desert steppes using 3S. Chinese Journal of Eco-Agriculture, 2015, 23(7): 860-867. |
王萨仁娜, 韩国栋, 张圣微, 等. 基于3S技术的绵羊牧食行为与草地环境相互作用研究. 中国生态农业学报, 2015, 23(7): 860-867. | |
17 | Wan L Q, Chen W W, Li X L, et al. Effect of grazing intensities on foraging behaviors of goats on a cultivated pasture of southern China. Acta Prataculturae Sinica, 2013, 22(4): 275-282. |
万里强, 陈玮玮, 李向林, 等. 放牧强度对山羊采食行为的影响. 草业学报, 2013, 22(4): 275-282. | |
18 | Wang S P, Li Y H. Behavior ecology of grazing sheep V. interrelation between ingestion behavior and sward characteristics. Acta Prataculturae Sinica, 1997, 6(4): 31-38. |
汪诗平, 李永宏. 放牧绵羊行为生态学研究 V.采食行为参数与草地状况的关系. 草业学报, 1997, 6(4): 31-38. | |
19 | Miwa M, Oishi K, Nakagawa Y, et al. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: relationship with heart rate. PLoS One, 2015, 10(6): e0128042. |
20 | Wilson R P, White C R, Quintana F, et al. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. Journal of Animal Ecology, 2006, 75(5): 1081-1090. |
21 | Stothart M R, Elliott K H, Wood T, et al. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. Journal of Experimental Biology, 2016, 219(14): 2192-2200. |
22 | Gleiss A C, Wilson R P, Shepard E L. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods in Ecology and Evolution, 2021, 2(1): 23-33. |
23 | Green J A, Halsey L G, Wilson R P, et al. Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique. Journal of Experimental Biology, 2009, 212(4): 471-482. |
24 | Shepard E L C, Wilson R P, Halsey L G, et al. Derivation of body motion via appropriate smoothing of acceleration data. Aquatic Biology, 2008, 4(3): 235-241. |
25 | Arablouei R, Currie L, Kusy B, et al. In-situ classification of cattle behavior using accelerometry data. Computers and Electronics in Agriculture, 2021, 183: 106045. |
26 | Sakai K, Oishi K, Miwa M, et al. Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 2019, 166: 105027. |
27 | Wang J, Bell M, Liu X, et al. Machine-learning techniques can enhance dairy cow estrus detection using location and acceleration data. Animals, 2020, 10(7): 1160. |
28 | Yu H, Klaassen M. R package for animal behavior classification from accelerometer data-rabc. Ecology and Evolution, 2021, 11(18): 12364-12377. |
29 | Putfarken D, Dengler J, Lehmann S, et al. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Applied Animal Behaviour Science, 2008, 111(1/2): 54-67. |
30 | Plaza J, Palacios C, Abecia J A, et al. GPS monitoring reveals circadian rhythmicity in free-grazing sheep. Applied Animal Behaviour Science, 2022, 251: 105643. |
31 | Solanki G S. Grazing behaviour and foraging strategy of goats in semi-arid region in India. Tropical Ecology, 2000, 41(2): 155-160. |
32 | Gwatirisa C, Mudereri B T, Chitata T, et al. Microhabitat and patch selection detection from GPS tracking collars of semi-free ranging Mashona cattle within a semi-arid environment. Livestock Science, 2022, 261: 104963. |
33 | Larson L, Johnson D E, Wilson M, et al. Spatial occupancy patterns and activity of arid rangeland cattle grazing small riparian pastures. Animal Science Journal, 2017, 88(3): 553-558. |
34 | Feed Industry. Determination of crude fat in feeds: GB/T 6433-2006. Beijing: Standards Press of China, 2006: 1-6. |
全国饲料工业标准化技术委员会. 饲料中粗脂肪的测定: GB/T 6433-2006. 北京: 中国标准出版社, 2006: 1-6. | |
35 | Feed Industry. Determination of neutral detergent fiber (NDF) in feeds: GB/T 20806-2022. Beijing: Standards Press of China, 2023: 1-8. |
全国饲料工业标准化技术委员会. 饲料中中性洗涤纤维(NDF)的测定: GB/T 20806-2022. 北京: 中国标准出版社, 2023: 1-8. | |
36 | Animal Husbandry and Veterinary Bureau of Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Feed Industry. Determination of acid detergent fiber (ADF) in feeds: NY/T 1459-2022. Beijing: China Agriculture Press, 2022: 1-4. |
中华人民共和国农业农村部畜牧兽医局, 全国饲料工业标准化技术委员会. 饲料中酸性洗涤纤维的测定: NY/T 1459-2022. 北京: 中国农业出版社, 2022: 1-4. | |
37 | Shipley L A. The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos, 2007, 116(12): 1964-1974. |
38 | Bremm C, Laca E A, Fonseca L, et al. Foraging behaviour of beef heifers and ewes in natural grasslands with distinct proportions of tussocks. Applied Animal Behaviour Science, 2012, 141(3/4): 108-116. |
39 | Calviello R F, Titto C G, Amadeu C C B, et al. Assessment of behavior of ewes under pasture over 24 hours. Revista Brasileira de Zoociências, 2013, 15(1/2/3): 139-145. |
40 | Jochims F, Soares É M, De Oliveira L B, et al. Timing and duration of observation periods of foraging behavior in natural grasslands. Frontiers in Veterinary Science, 2020, 7: 519698. |
41 | Molle G, Cannas A, Gregorini P. A review on the effects of part-time grazing herbaceous pastures on feeding behaviour and intake of cattle, sheep and horses. Livestock Science, 2022, 263: 104982. |
42 | Bai H S, Zhou D W. Observations on the behavioral characteristics of grazing cattle groups. Animal Husbandry & Veterinary Medicine, 2005, 37(7): 32-33. |
白哈斯, 周道玮. 放牧牛群体行为特性的观察. 畜牧与兽医, 2005, 37(7): 32-33. | |
43 | Chen Y S, Che Z B, Cao J M, et al. Spatial and temporal characteristics of sheep displacement during grazing. Pratacultural Science, 2019, 36(12): 3175-3181. |
陈乙实, 车昭碧, 曹佳敏, 等. 绵羊放牧过程中的位移时空特征. 草业科学, 2019, 36(12): 3175-3181. | |
44 | Utsumi S A, Cangiano C A, Galli J R, et al. Resource heterogeneity and foraging behaviour of cattle across spatial scales. BMC Ecology, 2009, 9(1): 1-10. |
45 | Lefcourt A M, Schmidtmann E T. Body temperature of dry cows on pasture: environmental and behavioral effects. Journal of Dairy Science, 1989, 72(11): 3040-3049. |
46 | Moyano J J C, Moyano T J, Vera Y V A. Relationships of illumination and temperature with rumination, resting and grazing of Merinos on supplemented dry pasture. Archivos de Zootecnia, 1992, 41(151): 27-39. |
47 | Gregorini P. Diurnal grazing pattern: its physiological basis and strategic management. Animal Production Science, 2012, 52(7): 416-430. |
48 | Waldron B L, Davenport B W, Malechek J C, et al. Relative cattle preference of 24 forage kochia (Kochia prostrata) entries and its relation to forage nutritive value and morphological characteristics. Crop Science, 2010, 50(5): 2112-2123. |
49 | Wang S P. The dietary composition of fine wool sheep and plant diversity in Inner Mongolia steppe. Acta Ecologica Sinica, 2000, 20(6): 951-957. |
汪诗平. 不同放牧季节绵羊的食性及食物多样性与草地植物多样性间的关系. 生态学报, 2000, 20(6): 951-957. |
[1] | 贺世龙, 叶贺, 李静, 张雅玲, 德海山, 红梅. 不同时限氮沉降和降水变化对荒漠草原中小型土壤节肢动物群落结构与多样性的影响[J]. 草业学报, 2024, 33(9): 140-154. |
[2] | 曹颖, 聂明鹤, 沈艳, 胡艳, 马登宝, 李东, 候腾思, 方鹏, 王学琴. 宁夏干旱风沙区荒漠草原不同退化阶段植被土壤变化特征及其相关性[J]. 草业学报, 2024, 33(8): 1-14. |
[3] | 候腾思, 沈艳, 马红彬, 方鹏, 曹颖. 柠条平茬对荒漠草原土壤水分特征及水量平衡的影响[J]. 草业学报, 2024, 33(8): 15-24. |
[4] | 佘洁, 沈爱红, 石云, 赵娜, 张风红, 何洪源, 吴涛, 李红霞, 马益婷, 朱晓雯. 基于无人机遥感影像和面向对象技术的荒漠草原植被分类[J]. 草业学报, 2024, 33(7): 1-14. |
[5] | 姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28. |
[6] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
[7] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[8] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
[9] | 鲍平安, 季波, 孙果, 张娜, 吴旭东, 何建龙, 王占军, 田英. 光伏电站建设对植物群落与土壤特征的影响[J]. 草业学报, 2024, 33(12): 23-33. |
[10] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
[11] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[12] | 邢虎成, 王贤芳, 周清, 闫景彩, 揭雨成. 湖南52县草地资源的类型、等级及利用现状分析[J]. 草业学报, 2023, 32(8): 91-103. |
[13] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[14] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[15] | 高婕, 赵新全, 刘文亭, 杨晓霞, 张春平, 俞旸, 曹铨, 刘玉祯, 张雪, 董全民. 基于供给—消耗关系的青海省高寒草地承载力时空变化分析[J]. 草业学报, 2023, 32(5): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||