草业学报 ›› 2025, Vol. 34 ›› Issue (9): 121-133.DOI: 10.11686/cyxb2024404
• 研究论文 • 上一篇
邹苇鹏(
), 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳(
), 朱慧森(
), 许涛
收稿日期:2024-10-17
修回日期:2024-12-25
出版日期:2025-09-20
发布日期:2025-07-02
通讯作者:
岑慧芳,朱慧森
作者简介:zhuhuisen@126.com基金资助:
Wei-peng ZOU(
), Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN(
), Hui-sen ZHU(
), Tao XU
Received:2024-10-17
Revised:2024-12-25
Online:2025-09-20
Published:2025-07-02
Contact:
Hui-fang CEN,Hui-sen ZHU
摘要:
NAC(NAM、ATAF1/2、CUC1/2)转录因子是植物特有的转录因子,在调控植物生长发育、激素信号转导及胁迫响应等过程中发挥重要作用。紫花苜蓿是世界范围内重要的豆科牧草之一,营养丰富,品质优良。为探究紫花苜蓿NAC053基因功能,利用SnapGene及NCBI设计特异性引物并利用PCR技术克隆MsNAC053基因,利用生物信息学软件分析其蛋白质理化性质、二级结构和亚细胞定位情况等,并使用实时荧光定量PCR(qRT-PCR)分析MsNAC053基因在紫花苜蓿不同组织中的表达模式及对不同非生物胁迫的响应情况,利用农杆菌介导法将DNA酶切及连接构建的亚细胞定位载体导入烟草叶片进行亚细胞定位。结果表明:MsNAC053基因编码区全长903 bp,编码300个氨基酸,其蛋白相对分子量为34.62 kDa,脂溶指数为73.82,理论等电点为7.05,平均亲水性为-0.604,不稳定系数为47.28,为不稳定的亲水性蛋白,不具备跨膜结构,具有响应冷胁迫及脱落酸等的顺式作用元件。亚细胞定位结果显示其定位于细胞核中,系统进化树和氨基酸序列分析表明MsNAC053与蒺藜苜蓿、长柔毛野豌豆等豆科植物亲缘关系较近。qRT-PCR结果表明,MsNAC053基因表达具有组织特异性,在幼叶中表达量最高,在子叶中表达量最低;干旱、盐及脱落酸(ABA)处理均能诱导MsNAC053基因的表达,表明MsNAC053基因参与紫花苜蓿应对干旱、盐胁迫响应。本研究为紫花苜蓿抗逆分子育种提供了理论依据及候选基因。
邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133.
Wei-peng ZOU, Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN, Hui-sen ZHU, Tao XU. Cloning of MsNAC053 from alfalfa and analysis of its transcript profile in response to abiotic stresses[J]. Acta Prataculturae Sinica, 2025, 34(9): 121-133.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| NAC053-F | ATGGCATCAATGGAGGACATCAAC |
| NAC053-R | TTAAAAATTCAGGATATTAGTGTAAGCACTCC |
| qNAC053-F | ACGCATAATCGGGTTGAGGAAG |
| qNAC053-R | TAGGCAAGGGGCTATTGTCAGG |
| ACTIN-F | CAAAAGATGGCAGATGCTGAGGAT |
| ACTIN-R | CATGACACCAGTATGACGAGGTCG |
表1 MsNAC053基因PCR及荧光定量PCR引物
Table 1 The primer sequence of MsNAC053 gene in PCR and qRT-PCR
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| NAC053-F | ATGGCATCAATGGAGGACATCAAC |
| NAC053-R | TTAAAAATTCAGGATATTAGTGTAAGCACTCC |
| qNAC053-F | ACGCATAATCGGGTTGAGGAAG |
| qNAC053-R | TAGGCAAGGGGCTATTGTCAGG |
| ACTIN-F | CAAAAGATGGCAGATGCTGAGGAT |
| ACTIN-R | CATGACACCAGTATGACGAGGTCG |
软件名称 The name of software | 分析项目 The item analyzed | 网址 Website |
|---|---|---|
| NCBI-Blast | 序列比对Sequence alignment | https://blast.ncbi.nlm.nih.gov/ |
| Evolview | 系统进化树美化Phylogenetic tree beautification | https://www.evolgenius.info/evolview/ |
| SMART | 保守结构域分析Conservative domain analysis | https://smart.embl.de/ |
| NCBI-conserved domain | 保守结构域分析Conservative domain analysis | https://www.ncbi.nlm.nih.gov/Structure/cdd/ |
| PlantCARE | 顺式作用元件分析Cis-acting element analysis | https://bioinformatics.psb.ugent.be/ |
| ExPasy | 蛋白理化性质分析The characteristic analysis of physical and chemical of protein | https://www.expasy.org/ |
| TMHMM | 蛋白跨膜结构分析Protein transmembrane structure analysis | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| SOPMA | 蛋白二级结构分析Secondary structure analysis of protein | https://npsa-prabi.ibcp.fr/ |
| Swiss-Model | 蛋白三级结构分析Tertiary structure analysis of protein | https://swissmodel.expasy.org/ |
| Cell-Ploc 2.0 | 亚细胞定位分析Subcellular localization analysis | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| SignalP 5.0 | 蛋白信号肽分析Signal peptide analysis of protein | https://services.healthtech.dtu.dk/services/SignalP-5.0/ |
| NetPhos 3.1 | 蛋白磷酸化位点分析Phosphorylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetPhos-3.1/ |
| NetGlycate 1.0 | 蛋白糖基化位点分析Glycosylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetGlycate-1.0/ |
| DNAMAN 7.0 | 序列比对Sequence alignment | 本地软件Local software |
| MEGA 6.0 | 系统进化树构建Phylogenetic tree construction | 本地软件Local software |
| SnapGene | 序列比对Sequence alignment | 本地软件Local software |
| TBtools | 系统进化树美化Phylogenetic tree beautification | 本地软件Local software |
表2 生物信息学分析所用软件信息
Table 2 Information on the software used for bioinformatics analysis
软件名称 The name of software | 分析项目 The item analyzed | 网址 Website |
|---|---|---|
| NCBI-Blast | 序列比对Sequence alignment | https://blast.ncbi.nlm.nih.gov/ |
| Evolview | 系统进化树美化Phylogenetic tree beautification | https://www.evolgenius.info/evolview/ |
| SMART | 保守结构域分析Conservative domain analysis | https://smart.embl.de/ |
| NCBI-conserved domain | 保守结构域分析Conservative domain analysis | https://www.ncbi.nlm.nih.gov/Structure/cdd/ |
| PlantCARE | 顺式作用元件分析Cis-acting element analysis | https://bioinformatics.psb.ugent.be/ |
| ExPasy | 蛋白理化性质分析The characteristic analysis of physical and chemical of protein | https://www.expasy.org/ |
| TMHMM | 蛋白跨膜结构分析Protein transmembrane structure analysis | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| SOPMA | 蛋白二级结构分析Secondary structure analysis of protein | https://npsa-prabi.ibcp.fr/ |
| Swiss-Model | 蛋白三级结构分析Tertiary structure analysis of protein | https://swissmodel.expasy.org/ |
| Cell-Ploc 2.0 | 亚细胞定位分析Subcellular localization analysis | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| SignalP 5.0 | 蛋白信号肽分析Signal peptide analysis of protein | https://services.healthtech.dtu.dk/services/SignalP-5.0/ |
| NetPhos 3.1 | 蛋白磷酸化位点分析Phosphorylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetPhos-3.1/ |
| NetGlycate 1.0 | 蛋白糖基化位点分析Glycosylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetGlycate-1.0/ |
| DNAMAN 7.0 | 序列比对Sequence alignment | 本地软件Local software |
| MEGA 6.0 | 系统进化树构建Phylogenetic tree construction | 本地软件Local software |
| SnapGene | 序列比对Sequence alignment | 本地软件Local software |
| TBtools | 系统进化树美化Phylogenetic tree beautification | 本地软件Local software |
图1 紫花苜蓿MsNAC053基因PCR扩增结果1~5为以不同紫花苜蓿叶片cDNA为模板扩增MsNAC053的基因结果。1-5 were the amplification results of MsNAC053 gene with cDNAs of different leaves from alfalfa as templates; CK: 对照Control; M: 2000 bp分子量标记 2000 bp marker.
Fig.1 PCR amplification results of MsNAC053 gene in alfalfa
氨基酸 Amino acid | 数目 Number | 含量 Content (%) | 氨基酸 Amino acid | 数目 Number | 含量 Content (%) |
|---|---|---|---|---|---|
| 丙氨酸Alanine (Ala, A) | 11 | 3.7 | 赖氨酸Lysine (Lys, K) | 25 | 8.3 |
| 精氨酸Arginine (Arg, R) | 14 | 4.7 | 甲硫氨酸Methionine (Met, M) | 10 | 3.3 |
| 天冬酰胺Asparagine (Asn, N) | 13 | 4.3 | 苯丙氨酸Phenylalanine (Phe, F) | 12 | 4.0 |
| 天冬氨酸Asparticacid (Asp, D) | 18 | 6.0 | 脯氨酸Proline (Pro, P) | 20 | 6.6 |
| 半胱氨酸Cysteine (Cys, C) | 4 | 1.3 | 丝氨酸Serine (Ser, S) | 22 | 7.3 |
| 谷氨酰胺Glutamine (Gln, Q) | 14 | 4.7 | 苏氨酸Threonine (Thr, T) | 20 | 6.6 |
| 谷氨酸Glutamicacid (Glu, E) | 21 | 7.0 | 色氨酸Tryptophan (Trp, W) | 7 | 2.3 |
| 甘氨酸Glycine (Gly, G) | 16 | 5.3 | 酪氨酸Tyrosine (Tyr, Y) | 9 | 3.0 |
| 组氨酸Histidine (His, H) | 7 | 2.3 | 缬氨酸Valine (Val, V) | 15 | 5.0 |
| 异亮氨酸Isoleucine (Ile, I) | 16 | 5.3 | 吡咯酪氨酸Pyrrolysine (Pyl, O) | 0 | 0.0 |
| 亮氨酸Leucine (Leu, L) | 27 | 9.0 | 硒代胱氨酸Selenocysteine (Sec, U) | 0 | 0.0 |
表3 紫花苜蓿MsNAC053氨基酸组成分析
Table 3 Amino acid composition analysis of MsNAC053 in alfalfa
氨基酸 Amino acid | 数目 Number | 含量 Content (%) | 氨基酸 Amino acid | 数目 Number | 含量 Content (%) |
|---|---|---|---|---|---|
| 丙氨酸Alanine (Ala, A) | 11 | 3.7 | 赖氨酸Lysine (Lys, K) | 25 | 8.3 |
| 精氨酸Arginine (Arg, R) | 14 | 4.7 | 甲硫氨酸Methionine (Met, M) | 10 | 3.3 |
| 天冬酰胺Asparagine (Asn, N) | 13 | 4.3 | 苯丙氨酸Phenylalanine (Phe, F) | 12 | 4.0 |
| 天冬氨酸Asparticacid (Asp, D) | 18 | 6.0 | 脯氨酸Proline (Pro, P) | 20 | 6.6 |
| 半胱氨酸Cysteine (Cys, C) | 4 | 1.3 | 丝氨酸Serine (Ser, S) | 22 | 7.3 |
| 谷氨酰胺Glutamine (Gln, Q) | 14 | 4.7 | 苏氨酸Threonine (Thr, T) | 20 | 6.6 |
| 谷氨酸Glutamicacid (Glu, E) | 21 | 7.0 | 色氨酸Tryptophan (Trp, W) | 7 | 2.3 |
| 甘氨酸Glycine (Gly, G) | 16 | 5.3 | 酪氨酸Tyrosine (Tyr, Y) | 9 | 3.0 |
| 组氨酸Histidine (His, H) | 7 | 2.3 | 缬氨酸Valine (Val, V) | 15 | 5.0 |
| 异亮氨酸Isoleucine (Ile, I) | 16 | 5.3 | 吡咯酪氨酸Pyrrolysine (Pyl, O) | 0 | 0.0 |
| 亮氨酸Leucine (Leu, L) | 27 | 9.0 | 硒代胱氨酸Selenocysteine (Sec, U) | 0 | 0.0 |
图3 紫花苜蓿MsNAC053蛋白结构分析A: 保守结构域预测Conserved domain prediction; B: 跨膜结构预测Transmembrane structure prediction; C: 亲疏水性分析Hydrophilic analysis; D: 磷酸化位点预测Phosphorylation site prediction; E: N-糖基化位点预测N-glycosylation sites prediction; F: 信号肽预测Signal peptide prediction; G: 二级结构预测Secondary structure prediction; H: 紫花苜蓿MsNAC053蛋白三级结构预测Tertiary structure prediction of MsNAC053 protein in alfalfa; I: 大豆GmNAC6蛋白三级结构预测Tertiary structure prediction of GmNAC6 protein in soybean.
Fig.3 Structural analysis of MsNAC053 protein in alfalfa
图5 紫花苜蓿MsNAC053与其他豆科植物NAC氨基酸序列比对分析A~E分别代表5个保守NAM亚结构域。A-E represent the 5 conserved NAM subdomains.
Fig.5 Analysis of amino acid sequence alignment of MsNAC053 with NAC proteins from other leguminous plants
图9 紫花苜蓿MsNAC053基因组织特异性及不同处理响应模式分析A:幼茎Young stem; B: 老茎Old stem; C: 根Root; D: 子叶Cotyledon; E: 真叶True leaf; F:顶芽Terminal bud; G: 幼叶Young leaf; H: 老叶Old leaf; I: 花Flower. 不同字母表示差异显著(P<0.05) Different letters indicate significant differences (P<0.05).
Fig.9 Analysis of tissue specificity of MsNAC053 gene in alfalfa and different treatment response patterns
| [1] | Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| 王少鹏, 刘佳, 洪军, 等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. | |
| [2] | Wang Y, Wang J, Li S X. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
| 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析. 草业学报, 2023, 32(3): 107-117. | |
| [3] | Liu G S, Li H L, Grierson D, et al. NAC transcription factor family regulation of fruit ripening and quality: a review.Cells, 2022, 11(3): 525. |
| [4] | Ren Y, Huang Z Q, Jiang H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. JournalofExperimentalBotany, 2021, 72(8): 2947-2964. |
| [5] | Martín-Pizarro C, Vallarino J G, Osorio S, et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell, 2021, 33(5): 1574-1593. |
| [6] | Han D, Du M, Zhou Z, et al. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(4): 1198. |
| [7] | Qian Y X, Xi Y, Xia L X, et al. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2023, 24(22): 16157. |
| [8] | Zhang M J, Hou X T, Yang H, et al. The NAC gene family in the halophyte Limonium bicolor: identification, expression analysis, and regulation of abiotic stress tolerance. Plant Physiology and Biochemistry, 2024, 208: 108462. |
| [9] | Ling L, Song L L, Wang Y J, et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiology and Molecular Biology of Plants, 2017, 23(2): 343-356. |
| [10] | Li M, Chen R, Jiang Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105(3): 333-345. |
| [11] | Li T T, Fang K, Tie Y, et al. NAC transcription factor ATAF1 negatively modulates the PIF-regulated hypocotyl elongation under a short-day photoperiod. Plant, Cell & Environment, 2024, 47(8): 3253-3265. |
| [12] | Shen J B, Lv B, Luo L Q, et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Scientific Reports, 2017, 7(1): 40641. |
| [13] | Wang J F, Lian W R, Cao Y Y, et al. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports, 2018, 8(1): 13349. |
| [14] | Zhang G Y, Huang S Q, Zhang C, et al. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). Protoplasma, 2020, 258(2): 337-345. |
| [15] | Li S Y. Study on genetic transformation of MsNAC47 gene to alfalfa. Harbin: Harbin Normal University, 2023. |
| 李思宇. MsNAC47基因对紫花苜蓿的遗传转化研究. 哈尔滨: 哈尔滨师范大学, 2023. | |
| [16] | Zou W P, Zhai J X, Li D N, et al. Identification of alfalfa NAC gene family and analysis of their expression patterns under abiotic stress. Acta Agrestia Sinica, 2024, 32(8): 2440-2458. |
| 邹苇鹏, 翟佳兴, 李迪娜, 等. 紫花苜蓿NAC基因家族鉴定及在非生物胁迫下的表达模式分析. 草地学报, 2024, 32(8): 2440-2458. | |
| [17] | Guerin C, Roche J, Allard V, et al. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One, 2019, 14(3): e0213390. |
| [18] | Diao W P, Snyder J, Wang S B, et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. International Journal of Molecular Sciences, 2018, 19(4): 1028. |
| [19] | Satheesh V, Jagannadham P T K, Chidambaranathan P, et al. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea [Cajanus cajan (L.) Millsp.]. Molecular Biology Reports, 2014, 41(12): 7763-7773. |
| [20] | Li W H, Zeng Y L, Yin F L, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Scientific Reports, 2021, 11(1): 19865. |
| [21] | Zhou L, Shi K, Cui X R, et al. Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco. Environmental and Experimental Botany, 2023, 205: 105143. |
| [22] | Shang X G, Yu Y J, Zhu L J, et al. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis.Plant Science, 2020, 296: 110498. |
| [23] | Yang Y L, Zhang H X, Wang S S, et al. Cloning, bioinformatics analysis of transcription factor NAC62 in industrial hemp (Cannabis sativa) and its response analysis to drought stress. Journal of Agricultural Biotechnology, 2024, 32(1): 107-114. |
| 杨宇蕾, 张涵雪, 王珊珊, 等. 转录因子NAC62在工业大麻中的克隆、生信分析及其干旱胁迫响应分析. 农业生物技术学报, 2024, 32(1): 107-114. | |
| [24] | Sun L, Liu L P, Wang Y Z, et al. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. |
| [25] | Kong J Y, Yang N, Luo W, et al. Identification of NAC transcription factor genes CsNAC79 and CsNAC9 in tea plant and their response to different abiotic stresses. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 572-581. |
| 孔洁玙, 杨妮, 罗微, 等. 茶树NAC转录因子基因CsNAC79和CsNAC9鉴定及其对非生物胁迫的响应. 西北植物学报, 2024, 44(4): 572-581. | |
| [26] | Cao L H, Wang J Y, Ren S J, et al. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. Frontiers in Plant Science, 2024, 15: 1474589. |
| [27] | Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(13): 3225. |
| [28] | Ao C W, Xiang G J, Wu Y F, et al. OsNAC15 regulates drought and salt tolerance in rice. Physiology and Molecular Biology of Plants, 2024, 30(11): 1909-1919. |
| [29] | Xu Z. Cloning and characteristic analysis of MfNAC63 gene in Medicago falcata. Hohhot: Inner Mongolia University, 2019. |
| 徐哲. 黄花苜蓿MfNAC63基因的克隆及特性分析. 呼和浩特: 内蒙古大学, 2019. |
| [1] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [2] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [3] | 赵媛媛, 蒲小剑, 徐成体, 王伟, 傅云洁. 蒺藜苜蓿MtBMI1基因克隆及抗旱性分析[J]. 草业学报, 2025, 34(6): 139-153. |
| [4] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [5] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [6] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [7] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [8] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [9] | 左志芳, 李永龙, 魏雨佳, 周生辉, 李岩, 杨国锋. 结缕草DREB基因家族的鉴定及非生物胁迫下的表达模式分析[J]. 草业学报, 2025, 34(5): 74-88. |
| [10] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [11] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [12] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [13] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| [14] | 陈彩锦, 包明芳, 王文虎, 尚继红, 曾燕霞, 沙晓弟, 朱新忠, 王学敏, 刘文辉. 紫花苜蓿抗旱育种研究现状及展望[J]. 草业学报, 2025, 34(3): 204-223. |
| [15] | 胡鹏飞, 叶雨浓, 王通锐, 王晶, 王星, 伏兵哲, 高雪芹. 紫花苜蓿半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2025, 34(3): 85-96. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||