草业学报 ›› 2024, Vol. 33 ›› Issue (6): 187-202.DOI: 10.11686/cyxb2023259
• 综合评述 • 上一篇
亓雯雯1,2(), 马红媛1(), 李亚晓1, 杜艳3, 孙梦丹1, 武海涛1
收稿日期:
2023-07-24
修回日期:
2023-09-22
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
马红媛
作者简介:
E-mail: mahongyuan@iga.ac.cn基金资助:
Wen-wen QI1,2(), Hong-yuan MA1(), Ya-xiao LI1, Yan DU3, Meng-dan SUN1, Hai-tao WU1
Received:
2023-07-24
Revised:
2023-09-22
Online:
2024-06-20
Published:
2024-03-20
Contact:
Hong-yuan MA
摘要:
作为草食家畜最优良和天然的饲料,牧草是草食畜牧业发展的基础和保障,是大食物观下重要的粮食资源。牧草新品种的选育是草牧业可持续发展的重要基础,在促进畜产品稳产保供能力提升及草牧业高质量发展中起着重要作用。随着对优质牧草新品种需求增加,牧草育种技术从常规育种手段进入分子育种时代,牧草新品种培育取得重大突破。本研究对国内外近100年来的牧草育种技术进行了系统的综述,包括驯化育种、杂交育种、诱变育种、倍性育种等常规育种技术,转基因、分子设计育种等基因工程育种技术,以及近年来发展起来的基因编辑技术,同时阐述了不同育种技术取得的成就和存在的问题,并对今后的牧草育种工作提出了以下展望:1)深入挖掘牧草自然资源,加强种质资源收集利用;2)以需求为导向丰富牧草新品种的育种目标,注重牧草品质的改良和抗性品种培育,充分发挥牧草的生产、生态和生活等“三生”功能;3)将常规育种手段与现代生物技术相结合,突破牧草育种瓶颈,加强优质牧草特别是羊草和苜蓿等新品种选育。旨在推动我国进入生物育种新时代,为牧草种质资源创新和优质牧草新品种选育提供参考,为建立优质高产人工草地提供技术支持,从而满足我国畜牧业日益增长的饲草需求。
亓雯雯, 马红媛, 李亚晓, 杜艳, 孙梦丹, 武海涛. 优质牧草新品种选育方法研究进展[J]. 草业学报, 2024, 33(6): 187-202.
Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties[J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202.
类别 Type | 数量(占比) Quantity (proportion) | 物种 Species | 数量(占比)Quantity (proportion) |
---|---|---|---|
育成品种 Improved variety | 251(37.58%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 121(48.2%) 95(37.8%) 35(14.0%) |
野生栽培品种 Wild culture variety | 159(23.81%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 82(51.6%) 37(23.3%) 40(25.1%) |
引进品种 Introduced variety | 191(28.59%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 99(51.8%) 71(37.2%) 21(11.0%) |
地方品种 Local variety | 67(10.03%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 16(23.9%) 39(58.2%) 12(17.9%) |
表1 我国1987-2022年经全国草品种审定委员会审定通过的牧草品种
Table 1 Forage varieties approved by the National Grass Variety Approval Committee from 1987 to 2022 in China
类别 Type | 数量(占比) Quantity (proportion) | 物种 Species | 数量(占比)Quantity (proportion) |
---|---|---|---|
育成品种 Improved variety | 251(37.58%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 121(48.2%) 95(37.8%) 35(14.0%) |
野生栽培品种 Wild culture variety | 159(23.81%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 82(51.6%) 37(23.3%) 40(25.1%) |
引进品种 Introduced variety | 191(28.59%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 99(51.8%) 71(37.2%) 21(11.0%) |
地方品种 Local variety | 67(10.03%) | 禾本科Poaceae 豆科Fabaceae 其他科Other families | 16(23.9%) 39(58.2%) 12(17.9%) |
杂交方式 | 亲本组合 Parental combination | 优势 Advantage | 育成品种/品系 Cultivated varieties/ strains |
---|---|---|---|
正反交 Reciprocal cross | 两个亲本互为父母本杂交。The two varieties/materials were crossed with each other. | 能够明确不同亲本个体和杂交组合的配合力。To clarify the combining ability of different parent individuals and hybrid combinations[ | 黄花苜蓿与驯鹿苜蓿杂交组合。Medicago falcata cv. Hulunbeier & M. sativa cv. AC Caribou[ |
多父本杂交 Multi-parent crossover | 多个父本与同一母本杂交。Multiple male parents crossed with the same female parent. | 同时可获得多个单交组合的混合后代,分离种类较单交丰富,益于挑选。The mixed progenies of multiple single cross combinations can be obtained, and the separated species are more abundant than single crossing, which is beneficial to selection at the same time. | 图牧2号紫花苜蓿。M. sativa cv. Tumu No.2[ |
多元杂交 Polycross | 两个以上亲本混合杂交。Mixed crossing of more than two parents. | 一次性获得多杂交组合的配合力及配合力的遗传特点,将多个亲本的优良性状集成到一个后代。The combining ability and genetic characteristics of multi-hybrid combinations were obtained at one time, and the excellent characters of multiple parents were integrated into one progeny[ | 甘农系列,中兰系列,中苜系列等苜蓿品种。Gannong series, Zhonglan series, Zhongmu series and other alfalfa varieties[ |
远缘杂交 Distant hybridization | 不同种、属或亲缘关系更远的物种作为杂交亲本互交。Different species, genera or more closely related species interbreed as hybrid parents. | 打破种族隔离,表现出较强的杂种优势,尤其是在抗逆性方面。Break apartheid and show strong heterosis, especially in stress resistance. | 南农1号羊茅黑麦草、龙牧系列3个苜蓿品种。Nannong No.1 fescue ryegrass[ |
回交 Backcross | 杂交后代与其两个亲本之一再次杂交。The hybrid offspring crossed again with one of its two parents. | 在纯合品种选育进程方面要优于自交,并且因其核置换理论其后代基本拥有轮回亲本的全部核基因组成。It is better than self-crossing in the breeding process of homozygous varieties, and because of its nuclear replacement theory, its offspring basically have all the nuclear gene composition of recurrent parents. | Caliyerde、Saranac、Iroguois和Apalacheem抗性苜蓿品种。Resistant alfalfa varieties of Caliyerde, Saranac, Iroguois and Apalacheem[ |
雄性不育系杂交 Male sterile line hybridization | 以可遗传的雄性不育系作为母本与具有恢复育性基因的正常父本杂交。Heritable male sterile lines as female parents crossed with normal male parents with restoring fertility genes. | 适用于异花授粉植物大田杂交制种,充分利用杂种优势,弥补去雄困难、杂交种获得效率低的缺点,成本低。Suitable for field hybrid seed production of cross-pollinated plants, making full use of heterosis, making up for the difficulties of castration and low efficiency of hybrid seed acquisition, low cost. | Hybriforce-620苜蓿品种;蜀草1号高丹草等。Hybriforce-620 alfalfa [ |
表2 国内外牧草杂交育种技术及育成品种
Table 2 Hybrid breeding techniques and varieties of forage at home and abroad
杂交方式 | 亲本组合 Parental combination | 优势 Advantage | 育成品种/品系 Cultivated varieties/ strains |
---|---|---|---|
正反交 Reciprocal cross | 两个亲本互为父母本杂交。The two varieties/materials were crossed with each other. | 能够明确不同亲本个体和杂交组合的配合力。To clarify the combining ability of different parent individuals and hybrid combinations[ | 黄花苜蓿与驯鹿苜蓿杂交组合。Medicago falcata cv. Hulunbeier & M. sativa cv. AC Caribou[ |
多父本杂交 Multi-parent crossover | 多个父本与同一母本杂交。Multiple male parents crossed with the same female parent. | 同时可获得多个单交组合的混合后代,分离种类较单交丰富,益于挑选。The mixed progenies of multiple single cross combinations can be obtained, and the separated species are more abundant than single crossing, which is beneficial to selection at the same time. | 图牧2号紫花苜蓿。M. sativa cv. Tumu No.2[ |
多元杂交 Polycross | 两个以上亲本混合杂交。Mixed crossing of more than two parents. | 一次性获得多杂交组合的配合力及配合力的遗传特点,将多个亲本的优良性状集成到一个后代。The combining ability and genetic characteristics of multi-hybrid combinations were obtained at one time, and the excellent characters of multiple parents were integrated into one progeny[ | 甘农系列,中兰系列,中苜系列等苜蓿品种。Gannong series, Zhonglan series, Zhongmu series and other alfalfa varieties[ |
远缘杂交 Distant hybridization | 不同种、属或亲缘关系更远的物种作为杂交亲本互交。Different species, genera or more closely related species interbreed as hybrid parents. | 打破种族隔离,表现出较强的杂种优势,尤其是在抗逆性方面。Break apartheid and show strong heterosis, especially in stress resistance. | 南农1号羊茅黑麦草、龙牧系列3个苜蓿品种。Nannong No.1 fescue ryegrass[ |
回交 Backcross | 杂交后代与其两个亲本之一再次杂交。The hybrid offspring crossed again with one of its two parents. | 在纯合品种选育进程方面要优于自交,并且因其核置换理论其后代基本拥有轮回亲本的全部核基因组成。It is better than self-crossing in the breeding process of homozygous varieties, and because of its nuclear replacement theory, its offspring basically have all the nuclear gene composition of recurrent parents. | Caliyerde、Saranac、Iroguois和Apalacheem抗性苜蓿品种。Resistant alfalfa varieties of Caliyerde, Saranac, Iroguois and Apalacheem[ |
雄性不育系杂交 Male sterile line hybridization | 以可遗传的雄性不育系作为母本与具有恢复育性基因的正常父本杂交。Heritable male sterile lines as female parents crossed with normal male parents with restoring fertility genes. | 适用于异花授粉植物大田杂交制种,充分利用杂种优势,弥补去雄困难、杂交种获得效率低的缺点,成本低。Suitable for field hybrid seed production of cross-pollinated plants, making full use of heterosis, making up for the difficulties of castration and low efficiency of hybrid seed acquisition, low cost. | Hybriforce-620苜蓿品种;蜀草1号高丹草等。Hybriforce-620 alfalfa [ |
诱变技术 Mutagenic technology | 诱变源 Mutagenic source | 应用 Application | 特点 Characteristic |
---|---|---|---|
物理诱变 Physical mutagenesis | 60Co-γ射线60Co-γ-rays | 紫花苜蓿,羊草等 M. sativa[ | 突变谱广,方向不定,可有效改良单一性状,提高抗逆性,打破远缘杂交不亲和性。The mutation spectrum is wide and the direction is uncertain, which can effectively improve the single character, improve the stress resistance and break the distant cross incompatibility. |
快中子Fast neutrons | 羊草L. chinensis[ | ||
离子束注入Ion beam implantation | 紫花苜蓿M. sativa[ | ||
宇宙的辐射Cosmic radiation | 紫花苜蓿M. sativa[ | ||
化学诱变 Chemical mutagenesis | 甲基磺酸乙酯Ethyl methylsulfone(EMS) | 缘毛雀麦,扁蓿豆,羊草Bromus ciliates, Melilotoides ruthenicus[ | 诱发DNA点突变,效率高,易操作,但高效低毒诱变剂较少。DNA point mutation can be induced with high efficiency and easy operation, but there are few mutagens with high efficiency and low toxicity. |
硫酸二乙酯Diethyl sulfate(DES) | 大麦H. vulgare[ | ||
叠氮化钠Sodium azide(NaN3) | 黑麦草 Secale cereale[ | ||
复合诱变 Compound mutagenesis | 盐胁迫+组织培养Salt stress+plant tissue culture | 高羊茅 Festuca elata[ | 提高突变率,改变分离纯化速度和缩短育种周期。Increase the mutation rate, change the separation and purification speed and shorten the breeding cycle. |
NaN3+盐胁迫+组织培养NaN3+salt stress+plant tissue culture | 紫花苜蓿M. sativa[ | ||
60Co-γ射线+甲基磺酸乙酯60Co-γ-rays+EMS | 山黧豆Lathyrus quinquenervius[ | ||
快中子+盐胁迫+组织培养Fast neutrons+salt stress+plant tissue culture | 红豆草Onobrychis viciifolia[ | ||
叠氮化钠+紫外线+盐/旱胁迫+组织培养NaN3+UV+salt/dry stress+plant tissue culture | 紫花苜蓿M. sativa[ |
表3 诱变技术在牧草育种工作中的应用
Table 3 Application of mutagenesis technique in forage breeding
诱变技术 Mutagenic technology | 诱变源 Mutagenic source | 应用 Application | 特点 Characteristic |
---|---|---|---|
物理诱变 Physical mutagenesis | 60Co-γ射线60Co-γ-rays | 紫花苜蓿,羊草等 M. sativa[ | 突变谱广,方向不定,可有效改良单一性状,提高抗逆性,打破远缘杂交不亲和性。The mutation spectrum is wide and the direction is uncertain, which can effectively improve the single character, improve the stress resistance and break the distant cross incompatibility. |
快中子Fast neutrons | 羊草L. chinensis[ | ||
离子束注入Ion beam implantation | 紫花苜蓿M. sativa[ | ||
宇宙的辐射Cosmic radiation | 紫花苜蓿M. sativa[ | ||
化学诱变 Chemical mutagenesis | 甲基磺酸乙酯Ethyl methylsulfone(EMS) | 缘毛雀麦,扁蓿豆,羊草Bromus ciliates, Melilotoides ruthenicus[ | 诱发DNA点突变,效率高,易操作,但高效低毒诱变剂较少。DNA point mutation can be induced with high efficiency and easy operation, but there are few mutagens with high efficiency and low toxicity. |
硫酸二乙酯Diethyl sulfate(DES) | 大麦H. vulgare[ | ||
叠氮化钠Sodium azide(NaN3) | 黑麦草 Secale cereale[ | ||
复合诱变 Compound mutagenesis | 盐胁迫+组织培养Salt stress+plant tissue culture | 高羊茅 Festuca elata[ | 提高突变率,改变分离纯化速度和缩短育种周期。Increase the mutation rate, change the separation and purification speed and shorten the breeding cycle. |
NaN3+盐胁迫+组织培养NaN3+salt stress+plant tissue culture | 紫花苜蓿M. sativa[ | ||
60Co-γ射线+甲基磺酸乙酯60Co-γ-rays+EMS | 山黧豆Lathyrus quinquenervius[ | ||
快中子+盐胁迫+组织培养Fast neutrons+salt stress+plant tissue culture | 红豆草Onobrychis viciifolia[ | ||
叠氮化钠+紫外线+盐/旱胁迫+组织培养NaN3+UV+salt/dry stress+plant tissue culture | 紫花苜蓿M. sativa[ |
基因工程技术 Genetic engineering technology | 应用 Application | 参考文献 References |
---|---|---|
分子标记辅助选择育种Molecular mark assisted breeding | 野生牧草种质资源、品种区分鉴定Differentiation and identification of wild forage germplasm resources and varieties | 狗牙根,紫花苜蓿C. dactylon[ |
突变体性状、突变植株筛选鉴定Screening and identification of mutant characters and mutant plants | 黑麦草 S. cereale[ | |
与基因组学结合进行目的基因挖掘Target gene mining in combination with genomics | 黑麦草,紫花苜蓿S. cereale[ | |
转基因育种Transgenic breeding | 抗除草剂Herbicide resistance | 紫花苜蓿M. sativa[ |
抗病Disease resistance | 高羊茅F. elata[ | |
耐盐Salt resistance | 紫花苜蓿M. sativa[ | |
抗旱Drought resistance | 百脉根Lotus corniculatus[ | |
低木质素Low lignin | 黑麦草S. cereale[ | |
基因编辑育种Gene editing breeding | 低木质素,抗旱Low lignin, drought resistance | 紫花苜蓿M. sativa[ |
表4 基因工程育种技术在牧草育种中的应用
Table 4 Application of genetic engineering breeding technology in forage breeding
基因工程技术 Genetic engineering technology | 应用 Application | 参考文献 References |
---|---|---|
分子标记辅助选择育种Molecular mark assisted breeding | 野生牧草种质资源、品种区分鉴定Differentiation and identification of wild forage germplasm resources and varieties | 狗牙根,紫花苜蓿C. dactylon[ |
突变体性状、突变植株筛选鉴定Screening and identification of mutant characters and mutant plants | 黑麦草 S. cereale[ | |
与基因组学结合进行目的基因挖掘Target gene mining in combination with genomics | 黑麦草,紫花苜蓿S. cereale[ | |
转基因育种Transgenic breeding | 抗除草剂Herbicide resistance | 紫花苜蓿M. sativa[ |
抗病Disease resistance | 高羊茅F. elata[ | |
耐盐Salt resistance | 紫花苜蓿M. sativa[ | |
抗旱Drought resistance | 百脉根Lotus corniculatus[ | |
低木质素Low lignin | 黑麦草S. cereale[ | |
基因编辑育种Gene editing breeding | 低木质素,抗旱Low lignin, drought resistance | 紫花苜蓿M. sativa[ |
1 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
2 | Bai W M, Hou L Y, Song S H, et al. Optimal formula feed is a key for efficient transformation of forage to animal products in grass-based livestock husbandry. Chinese Science Bulletin, 2018, 63(17): 1686-1692. |
白文明, 侯龙鱼, 宋世环, 等. 饲草料优化配比是实现草-畜高效转化的关键. 科学通报, 2018, 63(17): 1686-1692. | |
3 | Zheng W, Luan Z H, Zhang H X, et al. Developing grass cultivation, the basis of grass husbandry-the present situation of forage cultivation research in China. Journal of Northeast Agricultural Sciences, 2019, 44(6): 111-114. |
郑伟, 栾志慧, 张红香, 等. 草牧业之根本-我国牧草培育现状分析与发展思考. 东北农业科学, 2019, 44(6): 111-114. | |
4 | Jin J B, Wang T, Cheng Y F, et al. Current situation and prospect of forage breeding in China. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 660-665. |
金京波, 王台, 程佑发, 等. 我国牧草育种现状与展望. 中国科学院院刊, 2021, 36(6): 660-665. | |
5 | Zhou D W. Eating-full and eating-well for sheep feeding on natural grassland. Journal of Grassland and Forage Science, 2004(9): 16-20. |
周道玮. 草地放牧的牛羊需要吃饱也需要吃好. 草学, 2004(9): 16-20. | |
6 | Bouton J. The economic benefits of forage improvement in the United States. Euphytica, 2007, 154: 263-270. |
7 | Zhang X Q, Ma X, Guo Z H, et al. Research advances in breeding of gramineous forage in abroad. Journal of Grassland and Forage Science, 2015(1): 1-7. |
张新全, 马啸, 郭志慧, 等. 国外禾本科草育种研究进展. 草业与畜牧, 2015(1): 1-7. | |
8 | Nan Z B, Wang Y R, He J S, et al. Achievements, challenges and prospets of herbage seeds industry in China. Acta Prataculturae Sinica, 2022, 31(6): 1-10. |
南志标, 王彦荣, 贺金生, 等. 我国草种业的成就、挑战与展望. 草业学报, 2022, 31(6): 1-10. | |
9 | Wang Z Y, Brummer E C. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Annals of Botany, 2012(6): 1317-1325. |
10 | Barros J, Temple S, Dixon R A. Development and commercialization of reduced lignin alfalfa. Current Opinion in Biotechnology, 2019, 56: 48-54. |
11 | Hanson J, Schultze-Kraft R, Peters M, et al. Forage diversity, conservation and use//The impact of the international livestock research institute. UK: CABI, 2020. |
12 | Ma X F, Yan X, Qian C J, et al. De Novo domestication of crops: principles, progress and challenges-an example from Agriophyllum squarrosum. Journal of Nantong University (Natural Science Edition), 2021, 20(2): 19-30. |
马小飞, 燕霞, 钱朝菊, 等. 作物的从头驯化:原理、进展与挑战—以野生植物沙米的驯化为例. 南通大学学报(自然科学版), 2021, 20(2): 19-30. | |
13 | Li X T, Yan X B, Wang C Z, et al. Discussion on introduction of pasture and turf-grasses and biolgical invasion. Acta Agriculturae Jiangxi, 2009, 21(12): 86-89, 94. |
李晓涛, 严学兵, 王成章, 等. 我国牧草及草坪草引种与生物入侵探讨. 江西农业学报, 2009, 21(12): 86-89, 94. | |
14 | Purugganan M D, Fuller D Q. The nature of selection during plant domestication. Nature, 2009, 457: 843-848. |
15 | Zhang T Z. Crop breeding general. Beijing: China Agriculture Press, 2022. |
张天真. 作物育种学总论. 北京: 中国农业出版社, 2022. | |
16 | Lin M. The development course and industrialization countermeasure of agricultural biological breeding technology. Current Biotechnology, 2021, 11(4): 405-417. |
林敏. 农业生物育种技术的发展历程及产业化对策. 生物技术进展, 2021, 11(4): 405-417. | |
17 | Vasil I K. A history of plant biotechnology: from the cell theory of schleiden and schwann to biotech crops. Plant Cell Reports, 2008, 27(9): 1423-1440. |
18 | Yang J. Selection of parents of Medicago hybridization and analysis of growth superiority in F1 seedling stage. Hohhot: Inner Mongolia Agricultural University, 2021. |
杨婕. 苜蓿杂交亲本选择及其杂种F1苗期生长优势分析. 呼和浩特: 内蒙古农业大学, 2021. | |
19 | Yi D X, Li C, Pang Y Z. Early maturing and high yield pea variety Zhongwan No.10. China Seed Industry, 2023(1): 113-115. |
仪登霞, 李聪, 庞永珍. 早熟、丰产型豌豆品种中豌10号. 中国种业, 2023(1): 113-115. | |
20 | Zhang B J, Chen Q Z, Zhou F, et al. Development of plant breeding selection technology and its theoretical basis. Journal of Anhui Agricultural Sciences, 2008(19): 8050-8051, 8061. |
张边江, 陈全战, 周峰, 等. 植物育种选择技术的发展及其理论基础. 安徽农业科学, 2008(19): 8050-8051, 8061. | |
21 | Casler M D. Phenotypic recurrent selection methodology for reducing fiber concentration in smooth bromegrass. Crop Science, 1999, 39(2): 381-390. |
22 | Wang H Q, Li H X, Guo A H, et al. Breeding of a fodder beet variety Zhongsitian201 with high productivity. Sugar Crops of China, 2006(1): 8-11. |
王红旗, 李红侠, 郭爱华, 等. 高生产力饲用甜菜-中饲甜201的选育. 中国糖料, 2006(1): 8-11. | |
23 | National Grass Variety Approval Committee. China approved and registered grass variety collection 1987-2022. Beijing: China Agriculture Press, 2022. |
全国草品种审定委员会. 中国审定登记草品种集1987-2020. 北京: 中国农业出版社, 2022. | |
24 | Li Z Z, Yun J F, Yu Z, et al. Studies on cytogenetics of Elymus dahuricus, Hordeum brevisubulatum and their hybrid F1 and BC1. Acta Agrestia Sinica, 2004, 13(4): 269-273. |
李造哲, 云锦凤, 于卓, 等. 披碱草和野大麦杂种F1与BC1代细胞遗传学研究. 草地学报, 2004, 13(4): 269-273. | |
25 | Hou J H, Yun J F. Biological characters of Leymus chinensis and Leymus cinereus and their hybrid. Acta Agrestia Sinica, 2005, 13(3): 175-179. |
侯建华, 云锦凤. 羊草、灰色赖草及其杂种F1生物学特性. 草地学报, 2005, 13(3): 175-179. | |
26 | Jia R, Yu H Z, Xu A K. The research progress of alfalfa male sterile line application. Journal of Grassland and Forage Science, 2013(6): 56-59. |
贾瑞, 于洪柱, 徐安凯. 苜蓿雄性不育系应用的研究进展. 草业与畜牧, 2013(6): 56-59. | |
27 | Li H, Shi F L, Cui X P, et al. Observations on the morphological structure of style and stigma of male sterile line of Medicago varia Martin. cv. Acta Scientiarum Naturalium Universitatis Neimongol, 2003(6): 671-673. |
李红, 石凤翎, 崔秀萍, 等. 苜蓿雄性不育系花柱与柱头形态结构观察研究. 内蒙古大学学报(自然科学版), 2003(6): 671-673. | |
28 | Zhuang L F, Qi Z J. Recent advances in inducing and application of plant chromosome aberrations. Journal of Nanjing Agricultural University, 2018, 41(1): 3-17. |
庄丽芳, 亓增军. 植物染色体诱变研究与应用进展. 南京农业大学学报, 2018, 41(1): 3-17. | |
29 | Yun J F. Seize the opportunity, renew the idea and speed up the process of grass variety breeding. Grassland and Prataculturae, 2015, 27(1): 1-2. |
云锦凤. 抓住机遇, 更新理念, 加快草品种育种进程. 草原与草业, 2015, 27(1): 1-2. | |
30 | Yang W G, Li H, Mao X T, et al. Preliminary study on intervarietal hybridization between Medicago falcata cv. Hulunbeier and Medicago sativa and screening. Grassland and Turf, 2015, 35(1): 53-57. |
杨伟光, 李红, 毛小桃, 等. 呼伦贝尔黄花苜蓿与紫花苜蓿杂交及优异单株选育研究. 草原与草坪, 2015, 35(1): 53-57. | |
31 | Wang X, Li Z P, Sun J J, et al. Progress of alfalfa breeding in China. Pratacultural Science, 2014, 31(3): 512-518. |
王雪, 李志萍, 孙建军, 等. 中国苜蓿品种的选育与研究. 草业科学, 2014, 31(3): 512-518. | |
32 | Wang H, Shi S L, Zhang X Y, et al. Determination of general combining ability and estimation of genetic parameters for yield and quality in alfalfa. Acta Prataculturae Sinica, 2016, 25(3): 126-134. |
王虹, 师尚礼, 张旭业, 等. 紫花苜蓿多元杂交后代产量和品质一般配合力分析及遗传参数的估算. 草业学报, 2016, 25(3): 126-134. | |
33 | Li H, Luo X Y, Wang D K. The breeding report of new alfalfa varieties “Longmu 801” and “Longmu 803”. Modern Animal Husbandry Science & Technology, 1996(1): 3-7. |
李红, 罗新义, 王殿魁. “龙牧801号”与“龙牧803号”苜蓿新品种选育报告. 黑龙江畜牧科技, 1996(1): 3-7. | |
34 | Yun J F. Grass and feed crop breeding. Beijing: China Agriculture Press, 2001. |
云锦凤. 牧草及饲料作物育种学. 北京: 中国农业出版社, 2001. | |
35 | Jin X P, Chen C J, Yang Z K, et al. Research progress of male sterile line of Medicago sativa. Journal of Anhui Agricultural Sciences, 2019, 47(6): 16-19. |
金学平, 陈彩锦, 杨治科, 等. 紫花苜蓿雄性不育系研究进展. 安徽农业科学, 2019, 47(6): 16-19. | |
36 | Zhu Y Q, Li X Y, Xu W Z, et al. Standardized cultivation techniques of a new variety of gaodan grass, Shucao No.1. Sichuan Agricultural Science and Technology, 2021(6): 32-33. |
朱永群, 李祥艳, 许文志, 等. 蜀草1号高丹草新品种标准化栽培技术. 四川农业科技, 2021(6): 32-33. | |
37 | Ahloowalia B S, Maluszynski M. Induced mutations-a new paradigm in plant breeding. Euphytica, 2001, 118(2): 167-173. |
38 | Han W B, Zhang Y X, Tang F L, et al. Research advances in pasture mutation breeding in China. Journal of Nuclear Agricultural Sciences, 2010, 24(1): 62-66. |
韩微波, 张月学, 唐凤兰, 等. 我国牧草诱变育种研究进展. 核农学报, 2010, 24(1): 62-66. | |
39 | Wang X L, Li H, Yang W G, et al. The research progress of radiation mutation breeding of forage and turfgrass in China. Feed Review, 2015(8): 13-15. |
王晓龙, 李红, 杨伟光, 等. 我国牧草及草坪草辐射诱变育种研究进展. 饲料博览, 2015(8): 13-15. | |
40 | Beyaz R, Yildiz M. The use of gamma irradiation in plant mutation breeding//Plant engineering. Croatia: InTech, 2017. |
41 | Liu R Y, Jin W J, Qu Y, et al. Application of heavy ion beam irradiation mutagenesis technology in plant breeding. Guangxi Sciences, 2020, 27(1): 20-26. |
刘瑞媛, 金文杰, 曲颖, 等. 重离子束辐射诱变技术在植物育种中的应用. 广西科学, 2020, 27(1): 20-26. | |
42 | Powell J B, Burton G W, Young J R. Mutations induced in vegetatively propagated turf bermudagrasses by gamma radiation 1. Crop Science, 1974, 14(2): 327-330. |
43 | Broertjes C, Roest S, Bokelmann G. Mutation breeding of Chrysanthemum morifolium Ram. using in vivo and in vitro adventitious bud techniques. Euphytica, 1976, 25(1): 11-19. |
44 | Xie H M, Hao J F, Wei Z Q, et al. Improvement of herbage by heavy ion beams. Journal of Radiation Research and Radiation Processing, 2004(1): 61-64. |
颉红梅, 郝冀方, 卫增泉, 等. 重离子束对牧草的改良. 辐射研究与辐射工艺学报, 2004(1): 61-64. | |
45 | Erika O K, Shibata S, Magori S, et al. Phenotypic characterization of novel, root-regulated hypernodulation mutants of Lotus japonicus. England: Oxford University Press, 2007. |
46 | Zhang L, Zhang H X, Zhou D W. Analyzation of forage breeding research between China and foreign regions. Soils and Crops, 2018, 7(3): 324-330. |
张亮, 张红香, 周道玮. 中国与国外饲草育种研究现状分析. 土壤与作物, 2018, 7(3): 324-330. | |
47 | Bai H Y, Yang W, Wu B. Study on EMS mutagenic treatment of sorghum seeds. China Seed Industry, 2018(3): 57-59. |
白鸿雁, 杨伟, 武擘. 高粱种子EMS诱变处理的研究. 中国种业, 2018(3): 57-59. | |
48 | Dollinger E J, Singleton W R. Cytogenetic analysis of a spontaneous premeiotic mutation in maize. Particle Systems Characterization, 1954, 19(5): 269-276. |
49 | Nilan R A, Muir C E. Registration of Luther Barley1 (Reg. No. 92). Crop Science, 1967, 7(3): 278. |
50 | Qi X L, Xu Z B, Pei H C, et al. Construction and functional evaluation of an EMS-induced mutant population in barley. Journal of Triticeae Crops, 2012, 32(5): 846-852. |
齐新丽, 徐智斌, 裴洪翠, 等. 大麦EMS突变群体的创建及功能评价. 麦类作物学报, 2012, 32(5): 846-852. | |
51 | Zhang Y, Shi F L, Zhao H X. Study on the seed germination of the Bromus inermis L. seed mutation induced by EMS. Seed, 2018, 37(12): 70-72. |
张玥, 石凤翎, 赵海霞. EMS处理对无芒雀麦种子萌发的研究. 种子, 2018, 37(12): 70-72. | |
52 | Wang J, Fu B Z. Research progress on chromosome doubling of grass based on bibliometric analysis. Acta Agrestia Sinica, 2021, 29(3): 413-424. |
王晶, 伏兵哲. 基于文献计量分析的禾本科牧草染色体加倍研究进展. 草地学报, 2021, 29(3): 413-424. | |
53 | Zhang F S, Wang Q. Research progresses in the plant breeding of radiation mutation. Journal of Henan Normal University (Natural Science Edition), 2020, 48(6): 39-49, 32. |
张丰收, 王青. 植物辐射诱变育种的研究进展. 河南师范大学学报(自然科学版), 2020, 48(6): 39-49, 32. | |
54 | Cheng Y H, Zhao R X, Dong K H. Research progress on selection of herbage salt-tolerant mutant. Pratacultural Science, 2008(11): 28-35. |
程钰宏, 赵瑞雪, 董宽虎. 牧草耐盐突变体筛选的研究进展. 草业科学, 2008(11): 28-35. | |
55 | Dong W K, Lu X P, Jiang H Y, et al. EMS mutagenesis and drought tolerant evaluation of Loium perenne L. Journal of Nuclear Agricultural Sciences, 2018, 32(10): 1889-1897. |
董文科, 路旭平, 姜寒玉, 等. 多年生黑麦草EMS诱变与耐旱性评价. 核农学报, 2018, 32(10): 1889-1897. | |
56 | Li H, Li B, Yang Z, et al. Effect of 60Co-γ ray radiation on seedling growth and activity of two antioxidant enzymes in alfalfa seedlings. Acta Agrestia Sinica, 2018, 26(1): 216-221. |
李红, 李波, 杨曌, 等. 60Co-γ射线辐射对苜蓿幼苗生长和两种抗氧化酶活性的影响. 草地学报, 2018, 26(1): 216-221. | |
57 | Han W B, Liu J L, Zhu R F, et al. Breeding of a new Leymus chinensis variety Jingmu 3 by 60Co-γ mutagenesis. Heilongjiang Animal Science and Veterinary Medicine, 2019(1): 111-113. |
韩微波, 刘杰淋, 朱瑞芬, 等. 60Co-γ射线诱变处理选育羊草新品种菁牧3号. 黑龙江畜牧兽医, 2019(1): 111-113. | |
58 | Pan D F, Zhang Y X, Shen Z B, et al. Effects of fast neutron irradiation on seed germination and seedling growth of Leymus chinensis, Bromus inermis and Elymus sibiricus. Pratacultural Science, 2012, 29(8): 1240-1244. |
潘多锋, 张月学, 申忠宝, 等. 快中子辐射对3种禾草种子萌发及幼苗生长的影响. 草业科学, 2012, 29(8): 1240-1244. | |
59 | Zhang J J, Jin X, Mao P H, et al. Preliminary study on argon ion implantation mediated Glycyrrhiza uralensis genome DNA transformation into Agonguin alfafa. Seed, 2008(4): 57-59. |
张建军, 金湘, 毛培宏, 等. 氩离子注入介导甘草总DNA在阿尔冈金紫花苜蓿中转化的初步研究. 种子, 2008(4): 57-59. | |
60 | Yang H S, Chang G Z, Zhou X H. Performance of Hangmu No.1 afalfa in the Lanzhou region. Acta Prataculturae Sinica, 2015, 24(9): 138-145. |
杨红善, 常根柱, 周学辉. 航天诱变航苜1号紫花苜蓿兰州品种比较试验. 草业学报, 2015, 24(9): 138-145. | |
61 | Qiao Y, Shi F L, Xiong M, et al. Effect of EMS mutagenesis on seed germination of Bromus ciliatus L. and Medicago ruthenica (L.) Sojak.cv. Zhilixing. Seed, 2016, 35(3): 98-100. |
乔雨, 石凤翎, 熊梅, 等. EMS诱变对缘毛雀麦和直立型扁蓿豆种子萌发的影响. 种子, 2016, 35(3): 98-100. | |
62 | Zang H, Wu Z N, Kong L Q, et al. Effect of ethyl methane sulfonate (EMS) mutagenesis on seed germination and seedling growth of Leymus chinensis. Molecular Plant Breeding, 2018, 16(17): 5765-5769. |
臧辉, 武自念, 孔令琪, 等. 甲基磺酸乙酯(EMS)诱变对羊草种子萌发及幼苗生长的影响. 分子植物育种, 2018, 16(17): 5765-5769. | |
63 | Li J Q, Wang L H, Zhan Q W, et al. In vitro mutation induction by NaN3 in ryegrass variety “Blue Heaven” and RAPD analysis for its variation. Acta Prataculturae Sinica, 2013, 22(1): 276-281. |
李杰勤, 王丽华, 詹秋文, 等. 蓝天堂黑麦草的NaN3诱变及其RAPD分析. 草业学报, 2013, 22(1): 276-281. | |
64 | Han X G, Xue Z Y, Zhi D Y, et al. High-efficiency inducement and salt-tolerant mutant selection of embryonic calli of Festuca arandinacea. Acta Prataculturae Sinica, 2005(6): 112-118. |
韩晓光, 薛哲勇, 支大英, 等. 高羊茅胚性愈伤组织的高效诱导及其耐盐突变体筛选. 草业学报, 2005(6): 112-118. | |
65 | Li B, Wu T T. Effects of NaN3 mutagenesis and saline-alkali stress on growth and physiological characteristics of alfalfa callus. Agricultural Research in the Arid Areas, 2019, 37(2): 130-135, 143. |
李波, 邬婷婷. NaN3诱变和盐碱胁迫对苜蓿愈伤组织生长和生理特性的影响. 干旱地区农业研究, 2019, 37(2): 130-135, 143. | |
66 | Qin X C, Wang F, Wang X J, et al. Effect of combined treatment of 60Co-γ and EMS on antioxidase activity and ODAP content in Lathyrus sativus. Chinese Journal of Applied Ecology, 2000(6): 957-958. |
覃新程, 王飞, 王晓娟, 等. 60Co-γ射线与EMS复合处理对山黧豆抗氧化酶活力及ODAP含量的影响. 应用生态学报, 2000(6): 957-958. | |
67 | Gu Z P, Zheng G C. Selection for salt-tolerant callus of sainfoin by radiation of fast neutron and culture on medium containing salt. Chinese Journal of Biotechnology, 1991, 7(1): 72-76. |
谷祝平, 郑国锠. 快中子辐射诱变和盐培养基选择红豆草耐盐愈伤组织变异系的研究. 生物工程学报, 1991, 7(1): 72-76. | |
68 | Li B, Lin H, Wu T T, et al. Effects of NaN3 and UV combined mutagenesis on the growth of alfalfa callus under drought and salt stress. Agricultural Research in the Arid Areas, 2018, 36(4): 187-192. |
李波, 林浩, 邬婷婷, 等. NaN3和紫外线复合诱变对苜蓿愈伤组织在干旱和盐胁迫下生长的影响. 干旱地区农业研究, 2018, 36(4): 187-192. | |
69 | Prigge V, Xu X, Li L, et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012, 190(2): 781-793. |
70 | Thompson K. Homozygous diploid lines from naturally occurring haploids. Germany: Konradin Industrieverlag Gmbh, 1974. |
71 | Stanford E H, Clement W M. Cytology and crossing behavior of a haploid alfalfa plant. Agronomy Journal, 1958, 50(10): 589-592. |
72 | Ma R, Guo Y D, Pulli S. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell, 2004, 76(2): 147-157. |
73 | Wang N, Jiang T, Wang B X, et al. Advances in haploid breeding technology and its application in alfalfa and other legume forages. Chinese Bulletin of Botany, 2022, 57(6): 756-763. |
王娜, 姜腾, 王彬锡, 等. 单倍体育种技术研究进展及其在苜蓿等豆科牧草中的应用. 植物学报, 2022, 57(6): 756-763. | |
74 | Ferraz M E, Fonsêca A, Pedrosa-Harand A. Multiple and independent rearrangements revealed by comparative cytogenetic mapping in the dysploid leptostachyus group (Phaseolus L., Leguminosae). Chromosome Research, 2020, 28(3/4): 395-405. |
75 | Guo Y, Mizukami Y, Yamada T. Genetic characterization of androgenic progeny derived from Lolium perenne×Festuca pratensis cultivars. New Phytologist, 2005, 166(2): 455-464. |
76 | Niu K J, Ma H L. Research progress in protoplast culture and fusion technologies of gramineous forage and turfgrass plants. Acta Agrestia Sinica, 2016, 24(4): 738-746. |
牛奎举, 马晖玲. 禾本科牧草及草坪草原生质体培养与融合技术研究进展. 草地学报, 2016, 24(4): 738-746. | |
77 | Xia G. Progress of chromosome engineering mediated by asymmetric somatic hybridization. Journal of Genetics, 2009, 36(9): 547-556. |
78 | Dai X M, Huang T D, Sun A H, et al. Advances in plant protoplast fusion and its application in breeding. Chinese Journal of Tropical Crops, 2012, 33(8): 1516-1521. |
戴雪梅, 黄天带, 孙爱花, 等. 植物原生质体融合研究进展及其在育种中的应用. 热带作物学报, 2012, 33(8): 1516-1521. | |
79 | Cai Y, Xiang F, Zhi D, et al. Genotyping of somatic hybrids between Festuca arundinacea Schreb. and Triticum aestivum L. Plant Cell Reports, 2007, 26(10): 1809-1819. |
80 | Li Y Z, Shi S L. Protoplasts culture and asymmetric somatic hybridization between Medicago sativa and Lotus corniculatus. Journal of Nuclear Agricultural Sciences, 2015, 29(1): 40-48. |
李玉珠, 师尚礼. 紫花苜蓿与百脉根原生质体培养及不对称体细胞杂交. 核农学报, 2015, 29(1): 40-48. | |
81 | Zhao X Q, Ma H L, Zhou W H, et al. Protoplasts culture and fusion from callus of Poa pratensis L. Journal of Nuclear Agricultural Sciences, 2010, 24(4): 737-743. |
赵小强, 马晖玲, 周万海, 等. 草地早熟禾原生质体培养与融合. 核农学报, 2010, 24(4): 737-743. | |
82 | Zhou X, Xia Y, Ren X, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 2014, 15(1): 351. |
83 | Fang C, Han J G. Qutline to genetic linkage maps construction of pastures. Acta Agrestia Sinica, 2006(3): 287-291. |
方程, 韩建国. 牧草遗传连锁图谱构建研究概述. 草地学报, 2006(3): 287-291. | |
84 | Bagge M, Xia X, Lübberstedt T. Functional markers in wheat. Current Opinion in Plant Biology, 2007, 10(2): 211-216. |
85 | Koebner R, Summers R. The impact of molecular markers on the wheat breeding paradigm. Cellular & Molecular Biology Letters, 2002, 7(2B): 695-702. |
86 | Jin J B, Liang C Z. Research advances in forage grass genomics. Chinese Bulletin of Botany, 2022, 57(6): 732-741. |
金京波, 梁承志. 饲草基因组学研究进展. 植物学报, 2022, 57(6): 732-741. | |
87 | Xu C B, Wang Y, Zhao L X, et al. Research progress of forage germplasm resources innovation in China. Journal of Plant Genetic Resources, 2013, 14(5): 809-815. |
徐春波, 王勇, 赵来喜, 等. 我国牧草种质资源创新研究进展. 植物遗传资源学报, 2013, 14(5): 809-815. | |
88 | Horn M, Shillito R, Conger B, et al. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Reports, 1988, 7(7): 469-472. |
89 | Li M F, Xu C T. Research progress of transgenic forage grass. China Animal Industry, 2012, 357(6): 59-60. |
李明福, 徐传涛. 转基因牧草研究进展. 中国畜牧业, 2012, 357(6): 59-60. | |
90 | Liu Z P, Zhou Q, Liu W X, et al. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. |
刘志鹏, 周强, 刘文献, 等. 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193. | |
91 | Yu H, Lin T, Meng X, et al. A route to De novo domestication of wild allotetraploid rice. Cell, 2021, 184: 1156-1170, 1114. |
92 | Deng X, Li T, Cao X F. Application and prospect of gene editing in forage grass breeding. Chinese Bulletin of Botany, 2023, 58(2): 233-240. |
邓娴, 李彤, 曹晓风. 基因编辑在饲草育种中的应用与展望. 植物学报, 2023, 58(2): 233-240. | |
93 | Zheng Y H, Liu J X, Chen S Y. RAPD analysis of merit selections of Cynodon dactylon in China. Journal of Plant Resources and Environment, 2005(2): 6-9. |
郑玉红, 刘建秀, 陈树元. 中国狗牙根(Cynodon dactylon)优良选系的RAPD分析. 植物资源与环境学报, 2005(2): 6-9. | |
94 | Mao P S, Zhang T, Yang Q C. Study on the verification of alfalfa cultivars by RAPD molecular markers. Acta Agrestia Sinica, 2007(2): 124-128. |
毛培胜, 张涛, 杨青川. 紫花苜蓿品种鉴定的RAPD分子标记技术研究. 草地学报, 2007(2): 124-128. | |
95 | Mi F G, Barre P, Qu L J, et al. Quantitative trait loci of lamina length in perennial ryegrass. Acta Agrestia Sinica, 2004(4): 303-307, 321. |
米福贵, Barre Philippe, 瞿礼嘉, 等. 多年生黑麦草叶片长度数量性状位点(QTLs)研究. 草地学报, 2004(4): 303-307, 321. | |
96 | Daniel F, Elisabeth V, Daniel G, et al. Ultralong oxford nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biology and Evolution, 2021, 13(8): evab159. |
97 | He F, Wei C, Zhang Y, et al. Genome-wide association analysis coupled with transcriptome analysis reveals candidate genes related to salt stress in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2022(12): 3407. |
98 | Zhou X L, Yang Q C, Wang P Q, et al. Recent progresses in the studies of transfer genes in alfalfa. Journal of Chongqing University (Natural Science Edition), 2005(4): 126-130. |
周兴龙, 杨青川, 王凭青, 等. 苜蓿转基因研究进展. 重庆大学学报(自然科学版), 2005(4): 126-130. | |
99 | Dong S, Tredway L P, Shew H D, et al. Resistance of transgenic tall fescue to two major fungal diseases. Plant Science, 2007, 173(5): 501-509. |
100 | Bao Y, Zhao R, Li F, et al. Simultaneous expression of Spinacia oleracea Chloroplast Choline Monooxygenase (CMO) and Betaine Aldehyde Dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Molecular Biology Reporter, 2011, 29(2): 379-388. |
101 | Singer S D, Burton Hughes K, Subedi U, et al. The CRISPR/Cas9-mediated modulation of Squamosa Promoter-Binding Protein-Like 8 in alfalfa leads to distinct phenotypic outcomes. Frontiers in Plant Science, 2022, 12: 3203. |
102 | Zheng L, Wen J, Liu J, et al. From model to alfalfa: gene editing to obtain semidwarf and prostrate growth habits. The Crop Journal, 2022, 10(4): 932-941. |
103 | Annicchiarico P, Barrett B, Brummer E C, et al. Achievements and challenges in improving temperate perennial forage legumes. Critical Reviews in Plant Sciences, 2015, 34(1/2/3): 327-380. |
104 | Liu G S, Wang D L, Shi F L, et al. Review of study on germplasm resources of Leymus chinensis and its inspirations. Chinese Journal of Grassland, 2022, 44(4): 1-9. |
刘公社, 王德利, 石凤翎, 等. 羊草种质资源研究历程及启示. 中国草地学报, 2022, 44(4): 1-9. | |
105 | Wanga M A, Shimelis H, Mashilo J, et al. Opportunities and challenges of speed breeding: A review. Plant Breeding, 2021, 140(2): 185-194. |
[1] | 高金柱, 赵东豪, 高乐, 苏喜浩, 何学青. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186. |
[2] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[3] | 王萌, 鲁雪莉, 王菊英, 张梦超, 宋奕汝, 孟晨, 张莉, 徐宗昌. 小黑麦种质萌发期苗期耐盐资源评价与筛选[J]. 草业学报, 2024, 33(5): 58-68. |
[4] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
[5] | 刘昊, 李显炀, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 紫花苜蓿SAUR基因家族的鉴定及其在非生物胁迫中的表达模式研究[J]. 草业学报, 2024, 33(4): 135-153. |
[6] | 李显炀, 刘昊, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 全基因组水平紫花苜蓿WRKY转录因子家族鉴定与表达模式分析[J]. 草业学报, 2024, 33(4): 154-170. |
[7] | 李妍, 马富龙, 韩路, 王海珍. 美国‘WL’系列不同秋眠级苜蓿品种在南疆的生产性能与适应性评价[J]. 草业学报, 2024, 33(3): 139-149. |
[8] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[9] | 唐璎, 刘晓静, 赵雅姣, 董霖. 甘肃不同区域青贮紫花苜蓿乳酸菌群落特征及其驱动因子研究[J]. 草业学报, 2024, 33(2): 112-124. |
[10] | 魏孔钦, 赵俊威, 张前兵. 施磷对紫花苜蓿土壤呼吸速率及活性有机碳组分的影响[J]. 草业学报, 2024, 33(2): 80-92. |
[11] | 周建玲, 梁巧兰, 魏列新, 周其宇, 田龙, 陈应娥, 王存颖, 张国印. 不同症状类型苜蓿病毒病AMV病原检测及其寄主范围测定[J]. 草业学报, 2024, 33(1): 126-137. |
[12] | 白旭琴, 贾春云, 李文栓, 李亚敏, 刘长风, 韩秀云, 褚美函, 巩宗强, 李晓军. 叶面喷施硒肥对紫花苜蓿富硒降镉效果的影响[J]. 草业学报, 2024, 33(1): 50-60. |
[13] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[14] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[15] | 亢燕, 王耀辉, 牛天慧, 滕哲, 祁智, 杨佳. 羊草LcZIP1的铁转运功能鉴定[J]. 草业学报, 2023, 32(9): 173-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||