Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 189-197.DOI: 10.11686/cyxb2023091
Hong-xin NIE1,2,3(), Yu-min LI1,2,3, Kai-yue PANG1,2,3, Sha-tuo CHAI1,2,3,4, Di SHEN1,2,3, Zi-ming ZENG1,2,3, Yang LIAO1,2,3, Xun WANG1,2,3, Bin XUE1, Shu-jie LIU1,2,3, Shu-xiang WANG1,2,3,4(), Ying-kui YANG1,2,3,4()
Received:
2023-04-02
Revised:
2023-04-19
Online:
2023-12-20
Published:
2023-10-18
Contact:
Shu-xiang WANG,Ying-kui YANG
Hong-xin NIE, Yu-min LI, Kai-yue PANG, Sha-tuo CHAI, Di SHEN, Zi-ming ZENG, Yang LIAO, Xun WANG, Bin XUE, Shu-jie LIU, Shu-xiang WANG, Ying-kui YANG. Effect of different concentrate to forage ratios on the structure of microflora in yak manure[J]. Acta Prataculturae Sinica, 2023, 32(12): 189-197.
原料Ingredients | C35 | C65 |
---|---|---|
燕麦干草Oats hay (%) | 65.00 | 35.00 |
玉米Corn (%) | 15.19 | 29.75 |
小麦Wheat (%) | 4.23 | 8.39 |
麸皮Wheat bran (%) | 4.35 | 8.56 |
菜籽粕Rapeseed meal (%) | 4.32 | 8.55 |
豆粕Soybean meal (%) | 1.47 | 2.91 |
棕榈油脂肪粉Palm oil powder (%) | 1.44 | 2.84 |
CaHPO4 (%) | 1.00 | 1.00 |
食盐NaCl (%) | 1.00 | 1.00 |
预混料Premix1) (%) | 2.00 | 2.00 |
合计Total (%) | 100.00 | 100.00 |
营养水平Nutrient levels2) | ||
代谢能Metabolic energy (ME,MJ·kg-1) | 10.08 | 11.89 |
粗蛋白质Crude protein (CP,%) | 11.72 | 13.18 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 43.53 | 31.36 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 27.88 | 18.36 |
钙Ca (%) | 0.44 | 0.48 |
磷 P (%) | 0.43 | 0.56 |
Table 1 Composition and nutrient levels of experimental diets
原料Ingredients | C35 | C65 |
---|---|---|
燕麦干草Oats hay (%) | 65.00 | 35.00 |
玉米Corn (%) | 15.19 | 29.75 |
小麦Wheat (%) | 4.23 | 8.39 |
麸皮Wheat bran (%) | 4.35 | 8.56 |
菜籽粕Rapeseed meal (%) | 4.32 | 8.55 |
豆粕Soybean meal (%) | 1.47 | 2.91 |
棕榈油脂肪粉Palm oil powder (%) | 1.44 | 2.84 |
CaHPO4 (%) | 1.00 | 1.00 |
食盐NaCl (%) | 1.00 | 1.00 |
预混料Premix1) (%) | 2.00 | 2.00 |
合计Total (%) | 100.00 | 100.00 |
营养水平Nutrient levels2) | ||
代谢能Metabolic energy (ME,MJ·kg-1) | 10.08 | 11.89 |
粗蛋白质Crude protein (CP,%) | 11.72 | 13.18 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 43.53 | 31.36 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 27.88 | 18.36 |
钙Ca (%) | 0.44 | 0.48 |
磷 P (%) | 0.43 | 0.56 |
项目 Item | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
观测到的物种Observed species | 1097.15a | 912.33b | 37.56 | 0.01 |
Chao1指数Chao1 index | 1236.56a | 1068.56b | 37.02 | 0.01 |
Shannon指数Shannon index | 7.51a | 7.00b | 0.11 | 0.01 |
Simpson指数Simpson index | 0.98a | 0.97a | 0.01 | 0.21 |
Table 2 Effects of different concentrate to forage ratio on diversity of faecal flora Alpha in yak
项目 Item | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
观测到的物种Observed species | 1097.15a | 912.33b | 37.56 | 0.01 |
Chao1指数Chao1 index | 1236.56a | 1068.56b | 37.02 | 0.01 |
Shannon指数Shannon index | 7.51a | 7.00b | 0.11 | 0.01 |
Simpson指数Simpson index | 0.98a | 0.97a | 0.01 | 0.21 |
门水平 Phylum level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
厚壁菌门Firmicutes | 0.745a | 0.696a | 0.017 | 0.15 |
拟杆菌门Bacteroidota | 0.176b | 0.252a | 0.020 | 0.04 |
放线菌门Actinobacteriota | 0.027a | 0.013b | 0.003 | 0.04 |
螺旋体门Spirochaetota | 0.006b | 0.020a | 0.004 | 0.04 |
疣微菌门Verrucomicrobiota | 0.014a | 0.006a | 0.003 | 0.20 |
髌细菌门Patescibacteria | 0.014a | 0.005b | 0.001 | <0.01 |
变形菌门Proteobacteria | 0.008a | 0.004a | 0.002 | 0.34 |
蓝藻菌门Cyanobacteria | 0.009a | 0.003b | 0.001 | <0.01 |
迷踪菌门Elusimicrobiota | 0.001a | 0.001a | 0.001 | 0.08 |
酸杆菌门Acidobacteriota | 0.001a | 0.001a | 0.001 | 0.32 |
Table 3 Effects of different concentrate to forage ratio on microflora composition of yak feces
门水平 Phylum level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
厚壁菌门Firmicutes | 0.745a | 0.696a | 0.017 | 0.15 |
拟杆菌门Bacteroidota | 0.176b | 0.252a | 0.020 | 0.04 |
放线菌门Actinobacteriota | 0.027a | 0.013b | 0.003 | 0.04 |
螺旋体门Spirochaetota | 0.006b | 0.020a | 0.004 | 0.04 |
疣微菌门Verrucomicrobiota | 0.014a | 0.006a | 0.003 | 0.20 |
髌细菌门Patescibacteria | 0.014a | 0.005b | 0.001 | <0.01 |
变形菌门Proteobacteria | 0.008a | 0.004a | 0.002 | 0.34 |
蓝藻菌门Cyanobacteria | 0.009a | 0.003b | 0.001 | <0.01 |
迷踪菌门Elusimicrobiota | 0.001a | 0.001a | 0.001 | 0.08 |
酸杆菌门Acidobacteriota | 0.001a | 0.001a | 0.001 | 0.32 |
属水平 Genus level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
UCG-005 | 0.200a | 0.214a | 0.009 | 0.48 |
未培养细菌属Uncultured_bacterium | 0.082b | 0.132a | 0.012 | 0.03 |
未识别属Unidentified | 0.074a | 0.099a | 0.010 | 0.21 |
理研菌科_RC9 Rikenellaceae_RC9 | 0.057a | 0.064a | 0.006 | 0.62 |
克里斯滕森菌科_R_7群 Christensenellaceae_R_7 group | 0.051a | 0.040a | 0.003 | 0.11 |
未培养的属Uncultured | 0.046a | 0.030b | 0.003 | <0.01 |
毛螺菌科_NK3A20群 Lachnospiraceae_NK3A20 group | 0.043a | 0.018b | 0.005 | 0.02 |
狭义梭菌属1 Clostridium_sensu_stricto_1 | 0.025a | 0.035a | 0.006 | 0.40 |
拟杆菌属Bacteroides | 0.034a | 0.021a | 0.005 | 0.24 |
罗姆布茨菌属Romboutsia | 0.027a | 0.018a | 0.003 | 0.15 |
单核球蛋白属Monoglobus | 0.024a | 0.018a | 0.002 | 0.07 |
拟普雷沃氏菌属Alloprevotella | 0.005b | 0.032a | 0.006 | 0.02 |
罗氏菌属Roseburia | 0.017a | 0.020a | 0.004 | 0.67 |
帕氏菌属Paeniclostridium | 0.021a | 0.010a | 0.003 | 0.07 |
苏黎士杆菌属Turicibacter | 0.011a | 0.017a | 0.003 | 0.37 |
密螺旋体属Treponema | 0.005b | 0.020a | 0.004 | 0.03 |
奥尔塞内拉属Olsenella | 0.015a | 0.007a | 0.003 | 0.16 |
泰泽雷拉菌属Tyzzerella | 0.009a | 0.013a | 0.002 | 0.36 |
黄斑菌属Acetitomaculum | 0.016a | 0.006a | 0.004 | 0.18 |
瘤胃球菌属Ruminococcus | 0.050a | 0.017b | 0.002 | <0.01 |
Table 4 Effects of different concentrate to forage ratio on bacterial community composition of yak feces
属水平 Genus level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
UCG-005 | 0.200a | 0.214a | 0.009 | 0.48 |
未培养细菌属Uncultured_bacterium | 0.082b | 0.132a | 0.012 | 0.03 |
未识别属Unidentified | 0.074a | 0.099a | 0.010 | 0.21 |
理研菌科_RC9 Rikenellaceae_RC9 | 0.057a | 0.064a | 0.006 | 0.62 |
克里斯滕森菌科_R_7群 Christensenellaceae_R_7 group | 0.051a | 0.040a | 0.003 | 0.11 |
未培养的属Uncultured | 0.046a | 0.030b | 0.003 | <0.01 |
毛螺菌科_NK3A20群 Lachnospiraceae_NK3A20 group | 0.043a | 0.018b | 0.005 | 0.02 |
狭义梭菌属1 Clostridium_sensu_stricto_1 | 0.025a | 0.035a | 0.006 | 0.40 |
拟杆菌属Bacteroides | 0.034a | 0.021a | 0.005 | 0.24 |
罗姆布茨菌属Romboutsia | 0.027a | 0.018a | 0.003 | 0.15 |
单核球蛋白属Monoglobus | 0.024a | 0.018a | 0.002 | 0.07 |
拟普雷沃氏菌属Alloprevotella | 0.005b | 0.032a | 0.006 | 0.02 |
罗氏菌属Roseburia | 0.017a | 0.020a | 0.004 | 0.67 |
帕氏菌属Paeniclostridium | 0.021a | 0.010a | 0.003 | 0.07 |
苏黎士杆菌属Turicibacter | 0.011a | 0.017a | 0.003 | 0.37 |
密螺旋体属Treponema | 0.005b | 0.020a | 0.004 | 0.03 |
奥尔塞内拉属Olsenella | 0.015a | 0.007a | 0.003 | 0.16 |
泰泽雷拉菌属Tyzzerella | 0.009a | 0.013a | 0.002 | 0.36 |
黄斑菌属Acetitomaculum | 0.016a | 0.006a | 0.004 | 0.18 |
瘤胃球菌属Ruminococcus | 0.050a | 0.017b | 0.002 | <0.01 |
项目Item | C35 | C65 | SEM | P值P-value |
---|---|---|---|---|
碳水化合物代谢Carbohydrate metabolism | 13.445a | 13.491a | 0.041 | 0.60 |
氨基酸代谢Amino acid metabolism | 12.961a | 12.971a | 0.032 | 0.89 |
辅助因子和维生素代谢Metabolism of cofactors and vitamins | 12.308a | 12.213a | 0.088 | 0.61 |
萜类和多酮类代谢Metabolism of terpenoids and polyketides | 10.461a | 10.157a | 0.094 | 0.11 |
其他氨基酸代谢Metabolism of other amino acids | 6.585a | 6.525a | 0.085 | 0.74 |
复制和修复Replication and repair | 6.368b | 6.524a | 0.028 | <0.01 |
脂类代谢Lipid metabolism | 5.572a | 5.682a | 0.044 | 0.22 |
能量代谢Energy metabolism | 5.506a | 5.566a | 0.023 | 0.22 |
翻译Translation | 3.578b | 3.645a | 0.014 | <0.01 |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 3.439a | 3.555a | 0.099 | 0.59 |
折叠、分拣和降解Folding, sorting and degradation | 3.420a | 3.411a | 0.001 | 0.57 |
细胞运动性Cell motility | 3.404a | 3.180a | 0.072 | 0.12 |
外来生物的生物降解和代谢Xenobiotics biodegradation and metabolism | 2.637a | 2.562a | 0.063 | 0.57 |
核苷酸代谢Nucleotide metabolism | 2.068b | 2.111a | 0.008 | <0.01 |
其他次生代谢物的合成Biosynthesis of other secondary metabolites | 1.993b | 2.055a | 0.013 | <0.01 |
膜运输Membrane transport | 1.712a | 1.740a | 0.022 | 0.55 |
细胞生长和死亡Cell growth and death | 1.524b | 1.560a | 0.006 | <0.01 |
转录Transcription | 1.345a | 1.361a | 0.010 | 0.41 |
信号转导Signal transduction | 0.396a | 0.385a | 0.006 | 0.39 |
耐药性∶抗菌素Drug resistance∶antimicrobial | 0.253a | 0.266a | 0.010 | 0.52 |
Table 5 Effects of diets with different concentrate to forage ratios on KEGG secondary metabolic pathway of fecal bacteria in yaks
项目Item | C35 | C65 | SEM | P值P-value |
---|---|---|---|---|
碳水化合物代谢Carbohydrate metabolism | 13.445a | 13.491a | 0.041 | 0.60 |
氨基酸代谢Amino acid metabolism | 12.961a | 12.971a | 0.032 | 0.89 |
辅助因子和维生素代谢Metabolism of cofactors and vitamins | 12.308a | 12.213a | 0.088 | 0.61 |
萜类和多酮类代谢Metabolism of terpenoids and polyketides | 10.461a | 10.157a | 0.094 | 0.11 |
其他氨基酸代谢Metabolism of other amino acids | 6.585a | 6.525a | 0.085 | 0.74 |
复制和修复Replication and repair | 6.368b | 6.524a | 0.028 | <0.01 |
脂类代谢Lipid metabolism | 5.572a | 5.682a | 0.044 | 0.22 |
能量代谢Energy metabolism | 5.506a | 5.566a | 0.023 | 0.22 |
翻译Translation | 3.578b | 3.645a | 0.014 | <0.01 |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 3.439a | 3.555a | 0.099 | 0.59 |
折叠、分拣和降解Folding, sorting and degradation | 3.420a | 3.411a | 0.001 | 0.57 |
细胞运动性Cell motility | 3.404a | 3.180a | 0.072 | 0.12 |
外来生物的生物降解和代谢Xenobiotics biodegradation and metabolism | 2.637a | 2.562a | 0.063 | 0.57 |
核苷酸代谢Nucleotide metabolism | 2.068b | 2.111a | 0.008 | <0.01 |
其他次生代谢物的合成Biosynthesis of other secondary metabolites | 1.993b | 2.055a | 0.013 | <0.01 |
膜运输Membrane transport | 1.712a | 1.740a | 0.022 | 0.55 |
细胞生长和死亡Cell growth and death | 1.524b | 1.560a | 0.006 | <0.01 |
转录Transcription | 1.345a | 1.361a | 0.010 | 0.41 |
信号转导Signal transduction | 0.396a | 0.385a | 0.006 | 0.39 |
耐药性∶抗菌素Drug resistance∶antimicrobial | 0.253a | 0.266a | 0.010 | 0.52 |
1 | Guo W C, Liu Z H, Yang B M, et al. The boat of Plateau——Chinese yak. Special Economic Flora and Fauna, 1998, 1(5): 4-5. |
郭文场, 刘志宏, 杨柏明, 等. 高原之舟——中国牦牛. 特种经济动植物, 1998, 1(5): 4-5. | |
2 | Meng Q H, Chen Y X, Dong H M, et al. The distribution characteristics and population of yak. Journal of Domestic Animal Ecology, 2017, 38(3): 80-85. |
孟庆辉, 陈永杏, 董红敏, 等. 牦牛分布特点及其种群数量. 家畜生态学报, 2017, 38(3): 80-85. | |
3 | Liu X C, Zhang S, Sun B Z, et al. Progress in understanding quality characteristics of yak meat. Meat Research, 2020, 34(11): 78-83. |
刘晓畅, 张寿, 孙宝忠, 等. 牦牛肉品质特性研究进展. 肉类研究, 2020, 34(11): 78-83. | |
4 | Luo Z J, Ma J S, Bao G C, et al. Development status, existing problems and countermeasures of yak seed industry in Qinghai Province. Chinese Journal of Animal Science, 2021, 57(2): 231-234. |
骆正杰, 马进寿, 保广才, 等. 青海省牦牛种业发展现状、存在问题及应对策略. 中国畜牧杂志, 2021, 57(2): 231-234. | |
5 | Dai D W, Wang S X, Wang X, et al. Effect of supplementary feed levels on growth performance and serum biochemical indicators of yak in cold season. Feed Research, 2020, 43(9): 1-3. |
戴东文, 王书祥, 王迅, 等. 冷季精料补饲水平对牦牛生长性能和血清生化指标的影响. 饲料研究, 2020, 43(9): 1-3. | |
6 | Wang H R. Mechanism analysis and nutritional strategies for prevention of sub-acute ruminal acidosis in ruminants. Chinese Journal of Animal Nutrition, 2014, 26(10): 3140-3148. |
王洪荣. 反刍动物瘤胃酸中毒机制解析及其营养调控措施. 动物营养学报, 2014, 26(10): 3140-3148. | |
7 | Zhang X L, Wang H L, You W, et al. In vitro degradability of corn silage and Leymus chinensis silage and evaluation of their mixed ratios on performance, digestion and serum parameters in beef cattle. Journal of Animal Physiology and Animal Nutrition, 2020, 104(6): 1628-1636. |
8 | Li J W, Hou S Z, Wang Z Y, et al. Effect of dietary concentrate to forage ratio on intestinal bacterial diversity of early weaned Tibetan lambs. Southwest China Journal of Agricultural Sciences, 2021, 34(9): 2025-2031. |
李蒋伟, 侯生珍, 王志有, 等. 饲粮精粗比对早期断奶藏羔羊小肠细菌多样性的影响. 西南农业学报, 2021, 34(9): 2025-2031. | |
9 | Li J W, Zhou L, Hou S Z, et al. Effects of dietary concentrate to roughage ratio on intestinal fungal diversity in Tibetan sheep. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2784-2789. |
李蒋伟, 周力, 侯生珍, 等. 日粮精粗比对育肥藏羊肠道真菌多样性的影响. 西南农业学报, 2021, 34(12): 2784-2789. | |
10 | Chen L Y. Study on growth performance, fecal bacteria and differential metabolites in feces of Tan sheep with different RFI. Yinchuan: Ningxia University, 2021. |
陈丽尧. 不同RFI滩羊生长性能、粪便菌群和粪便差异代谢物研究. 银川: 宁夏大学, 2021. | |
11 | Liu Q, Zhu Y Y, Zhang C L, et al. Fecal microflora composition and drug resistance of Escherichia coli in captive Himalayan Tahr. Chinese Journal of Veterinary Medicine, 2021, 57(12): 51-55. |
刘青, 朱云芸, 张成林, 等. 圈养喜马拉雅塔尔羊粪便菌群结构及大肠杆菌耐药性试验. 中国兽医杂志, 2021, 57(12): 51-55. | |
12 | Sun G. The study of the Chinese herbal medicine additives on the growth performance, carcass traits, blood physicochemical and fecal flora of pigs. Zhengzhou: Henan Agricultural University, 2018. |
孙港. 中草药添加剂对猪的生长性能、胴体性状、血液理化及粪便菌群的研究. 郑州: 河南农业大学, 2018. | |
13 | Xie Y Y, Song L Y, Yang J H, et al. Small intestinal flora graft alters fecal flora, stool, cytokines and mood status in healthy mice. Life Science Alliance, 2021, 4(9): e202101039. |
14 | Wang J Q, Yang H J, Mo F, et al. Standard for raising beef cattle, NY/T815-2004. Beijing: China Agriculture Press, 2004. |
王加启, 杨红建, 莫放, 等. 肉牛饲养标准, NY/T815-2004. 北京: 中国农业出版社, 2004. | |
15 | Bürgmann H, Pesaro M, Widmer F, et al. A strategy for optimizing quality and quantity of DNA extracted from soil. Journal of Microbiological Methods, 2001, 45(1): 7-20. |
16 | Yang X, Fan W J, Tang Z P, et al. Effects of different mulching cultivation on bacterial diversity, enzyme activity and physicochemical properties of potato rhizosphere soil. Journal of Nuclear Agriculture, 2021, 35(9): 2145-2153. |
杨鑫, 樊吴静, 唐洲萍, 等. 不同覆盖栽培对马铃薯根际土壤细菌多样性、酶活性及化学性状的影响. 核农学报, 2021, 35(9): 2145-2153. | |
17 | Liu F H. The effect of dietary concentrate ratio on production performance, blood indexes, intestinal flora and short-chain fatty acids of obese empty-breasted cows. Hohhot: Inner Mongolia Agricultural University, 2021. |
刘飞鸿. 日粮精粗比对肥胖空怀母牛生产性能、血液指标、肠道菌群及其短链脂肪酸的影响. 呼和浩特: 内蒙古农业大学, 2021. | |
18 | Pang K Y, Yang Y K, Chai S T, et al. Dynamics changes of the fecal bacterial community fed diets with different concentrate to forage ratios in Qinghai Yaks. Animals, 2022, 12(18): 2334. |
19 | Callaway T R, Dowd S E, Edrington T S, et al. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tagencoded FLX amplicon pyrosequencing. Journal of Animal Science, 2010, 88(12): 3977-3983. |
20 | Dowd S E, Callaway T R, Wolcott R D, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tagencoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiology, 2008, 8(1): 1-8. |
21 | Shanks O C, Kelty C A, Archibeque S, et al. Community structures of fecal bacteria in cattle from different animal feeding operations. Applied and Environmental Microbiology, 2011, 77(9): 2992-3001. |
22 | Domínguez-Bello M G, Andersen G L, Rivera-Rivera M J, et al. Comparison of the fecal microbiota in feral and domestic goats. Genes, 2011, 3(1): 1-18. |
23 | De Oliveira M N V, Jewell K A, Freitas F S, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Veterinary Microbiology, 2013, 164(3/4): 307-314. |
24 | Spence C, Wells W G, Smith C J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13): 4663-4672. |
25 | Khafipour E, Li S, Tun H M, et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Animal Frontiers, 2016, 6(2): 13-19. |
26 | Pokusaeva K, Fitzgerald G F, Van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition, 2011, 6(3): 285-306. |
27 | Frey B, Rime T, Phillips M, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiology Ecology, 2016, 92(3): fiw018. |
28 | Tripp H J, Bench S R, Turk K A, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature, 2010, 464(7285): 90-94. |
29 | Li F H. Comparative study on the gastric microbiota diversity in small mammals. Baoding: Hebei University, 2019. |
李飞虹. 小型哺乳动物胃部微生物菌群的比较研究. 保定: 河北大学, 2019. | |
30 | Servin J A, Herbold C W, Skophammer R G, et al. Evidence excluding the root of the tree of life from the actinobacteria. Molecular Biology and Evolution, 2008, 25(1): 1-4. |
31 | Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. |
32 | Meale S J, Li S C, Azevedo P, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Scientific Reports, 2017, 7(1): 198. |
33 | La Reau A J, Meier-Kolthoff J P, Suen G. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microbial Genomics, 2016, 2(12): e000099. |
34 | Jiang F, Song P F, Wang H J, et al. Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Applied Microbiology Biotechnology, 2022, 106(3): 1325-1339. |
35 | Wang B, Ma M P, Diao Q Y, et al. Saponin induced shifts in the rumen microbiome and metabolome of young cattle. Frontiers in Microbiology, 2019, 10(2): 356-359. |
36 | Watts J E M, McDonald R, Daniel R, et al. Examination of a culturable microbial population from the gastroint-estinal tract of the wood eating loricariid catfish panaque nigrolineatus. Diversity, 2013, 5(3): 641-656. |
37 | Downes J, Dewhirst F E, Tanner A C R, et al. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 1214-1218. |
38 | Lamendella R, Santo Domingo J W, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiology, 2011, 11(1): 1-17. |
39 | Li Y J, Zhao S S, Ge L, et al. Research progress of carbohydrate nutrition in ruminants. Shandong Animal Husbandry and Veterinary Medicine, 2012, 33(8): 85-87. |
李玉军, 赵珊珊, 葛林, 等. 反刍动物碳水化合物营养的研究进展. 山东畜牧兽医, 2012, 33(8): 85-87. | |
40 | He D Y, Wang X L, Yang L. Advances in the regulation of amino acid metabolism in animals. Feed Industry, 2011, 32(18): 40-44. |
贺丹艳, 王新磊, 杨琳. 动物氨基酸代谢调控研究进展. 饲料工业, 2011, 32(18): 40-44. | |
41 | Dong W C, Zhuang S, Zhang T, et al. Advances in protein nutrition of ruminants. Animal Husbandry and Veterinary Medicine, 2013, 45(7): 104-109. |
董文超, 庄苏, 张腾, 等. 反刍动物蛋白质营养研究进展. 畜牧与兽医, 2013, 45(7): 104-109. | |
42 | Niehoff I D, Hüther L, Lebzien P. Niacin for dairy cattle: A review. British Journal of Nutrition, 2008, 101(1): 5-19. |
[1] | Yu-qi ZHE, Zhi-juan WU, Ji-kun WANG, Jin-cheng ZHONG, Zhi-xin CHAI, Jin-wei XIN. Analysis of the genetic structure of Tibetan yak populations based on mtDNA COX3 [J]. Acta Prataculturae Sinica, 2023, 32(9): 231-240. |
[2] | Dao zhi cai rang WU, Cheng-fang PEI, Zhi-yuan MA, Hong-shan LIU, Xu-liang CAO, Hu LIU, Jian-wei ZHOU. Effect of feed level of oat hay on average daily gain, blood physiological and biochemical indexes, and rumen fermentation parameters in yaks [J]. Acta Prataculturae Sinica, 2023, 32(11): 119-129. |
[3] | Jia-yu DUAN, Bo ZHANG, Jun CAO, Shu-jie LIU, Zhan-hong CUI. Distribution of sodium, potassium, and magnesium in 70-100 kg yak calves and the growth requirements for these nutrients [J]. Acta Prataculturae Sinica, 2023, 32(11): 130-139. |
[4] | Shi-long MA, Xiao-wei LI, Xiang LI, Shu-qiong XIE, Yi-li LIU, Jiao TANG, Ming-feng JIANG. Assessment of genetic structure of 3 Maiwa yak preserved populations based on genotyping-by-sequencing technology [J]. Acta Prataculturae Sinica, 2022, 31(9): 183-194. |
[5] | Yin-jie YOU, Hao-zhen ZHOU, Yao LIU, Chen-xi WANG, Zhong-li PENG. Comparison of nutritional value of oat hay, oat silage and Sichuan pasture for yaks [J]. Acta Prataculturae Sinica, 2022, 31(8): 99-110. |
[6] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
[7] | Yu-jie LI, Qi-wei SHEN, Ao ZHANG, Dan LIU, Dai-hua YE, Ting-xuan LI. P accumulation and P removal potential of a P-accumulating ecotype of Polygonum hydropiper for different manure types [J]. Acta Prataculturae Sinica, 2022, 31(3): 114-123. |
[8] | Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52. |
[9] | Xu-mei JIN, Ying-ying WANG, Chong-yi LIU, Xin-yi CHEN, Ming-xiu LONG, Shu-bin HE. Effects on soil nutrients and bacterial communities of different cover crops in an organic kiwifruit orchard in the Guanzhong region of China [J]. Acta Prataculturae Sinica, 2022, 31(10): 53-63. |
[10] | Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso [J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169. |
[11] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
[12] | Xue-liang ZHANG, Yu-ting ZHANG, Rui LIU, Jun XIE, Jian-wei ZHANG, Wen-jing XU, Xiao-jun SHI. Effects of green manure return regimes on soil greenhouse gas emissions [J]. Acta Prataculturae Sinica, 2021, 30(5): 25-33. |
[13] | Zhi-min WEI, Bin SUN, Cheng FANG, Zi-wen DAI, Man-qiang LIU, Jia-guo JIAO, Feng HU, Hui-xin LI, Li XU. Co-inoculation with rhizobia and azotobacter affects the growth of Vicia villosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 94-102. |
[14] | Jiang-wei LI, Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109. |
[15] | Fa-ming PAN, Sheng-hua CHANG, Guo-dong WANG, Sheng-yan HAO, Jia LIU, Hui-yuan ZHANG, Yin-ping XU. Effects of phenological period on the composition of fatty acids and conjugated linoleic acids in rumen fluid, forage and milk fat of grazing yak and their correlation analysis [J]. Acta Prataculturae Sinica, 2021, 30(3): 110-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||