Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 41-54.DOI: 10.11686/cyxb2024060
Previous Articles Next Articles
Chu-qi YAN(), Jian-qiang HUANG()
Received:
2024-02-27
Revised:
2024-05-16
Online:
2025-01-20
Published:
2024-11-04
Contact:
Jian-qiang HUANG
Chu-qi YAN, Jian-qiang HUANG. Vegetation extraction algorithm for the Tibetan Plateau based on YOLOv5 and improved DeeplabV3+[J]. Acta Prataculturae Sinica, 2025, 34(1): 41-54.
模型 Model | 精确率 Precision (%) | 召回率 Recall (%) | 平均准确率 Mean precision (%) | 每秒帧数 Frames per second |
---|---|---|---|---|
YOLOv5x | 98.3 | 98.0 | 99.2 | 52 |
YOLOv5l | 98.5 | 97.3 | 99.1 | 82 |
YOLOv5m | 97.9 | 96.4 | 98.8 | 119 |
YOLOv5s | 97.9 | 97.3 | 98.9 | 204 |
Table 1 Evaluation results of YOLOv5 comparative experiments
模型 Model | 精确率 Precision (%) | 召回率 Recall (%) | 平均准确率 Mean precision (%) | 每秒帧数 Frames per second |
---|---|---|---|---|
YOLOv5x | 98.3 | 98.0 | 99.2 | 52 |
YOLOv5l | 98.5 | 97.3 | 99.1 | 82 |
YOLOv5m | 97.9 | 96.4 | 98.8 | 119 |
YOLOv5s | 97.9 | 97.3 | 98.9 | 204 |
模型 Model | 交并比 Intersection over union (%) | 像素准确率Pixel accuracy (%) | 参数量 Params | 浮点运算次数 Giga floating-point operations per second |
---|---|---|---|---|
PSPnet | 80.20 | 87.47 | 46.707 | 118.427 |
HRnet | 82.27 | 87.39 | 29.538 | 79.915 |
Unet | 84.55 | 89.78 | 43.933 | 184.100 |
DeeplabV3+ | 83.39 | 91.72 | 54.709 | 166.841 |
改进DeeplabV3+Improved DeeplabV3+ | 90.40 | 96.32 | 6.565 | 54.630 |
Table 2 Vegetation extraction comparative experimental evaluation results
模型 Model | 交并比 Intersection over union (%) | 像素准确率Pixel accuracy (%) | 参数量 Params | 浮点运算次数 Giga floating-point operations per second |
---|---|---|---|---|
PSPnet | 80.20 | 87.47 | 46.707 | 118.427 |
HRnet | 82.27 | 87.39 | 29.538 | 79.915 |
Unet | 84.55 | 89.78 | 43.933 | 184.100 |
DeeplabV3+ | 83.39 | 91.72 | 54.709 | 166.841 |
改进DeeplabV3+Improved DeeplabV3+ | 90.40 | 96.32 | 6.565 | 54.630 |
用地类型 Land use type | 交并比 Intersection over union | 像素准确率 Pixel accuracy | 精确率 Precision | 召回率 Recall |
---|---|---|---|---|
农业用地Agricultural land | 88.96 | 96.48 | 90.54 | 96.48 |
工业用地Industrial land | 87.74 | 95.57 | 91.80 | 95.57 |
生活用地Residential land | 88.12 | 96.04 | 90.69 | 96.04 |
河流湿地Riverine wetlands | 90.40 | 95.13 | 94.64 | 95.13 |
裸岩石区Bare rock area | 93.12 | 95.05 | 97.64 | 95.05 |
Table 3 Assessment results across different land use types (%)
用地类型 Land use type | 交并比 Intersection over union | 像素准确率 Pixel accuracy | 精确率 Precision | 召回率 Recall |
---|---|---|---|---|
农业用地Agricultural land | 88.96 | 96.48 | 90.54 | 96.48 |
工业用地Industrial land | 87.74 | 95.57 | 91.80 | 95.57 |
生活用地Residential land | 88.12 | 96.04 | 90.69 | 96.04 |
河流湿地Riverine wetlands | 90.40 | 95.13 | 94.64 | 95.13 |
裸岩石区Bare rock area | 93.12 | 95.05 | 97.64 | 95.05 |
1 | Dong S. Revitalizing the grassland on the Qinghai-Tibetan Plateau. Grassland Research, 2023, 2(3): 241-250. |
2 | Sang J W, Song C Y, Jia N X, et al. Vegetation survey and mapping on the Qinghai-Tibet Plateau. Biodiversity Science, 2023, 31(3): 56-71. |
桑佳文, 宋创业, 贾宁霞, 等. 青藏高原植被调查与制图评估. 生物多样性, 2023, 31(3): 56-71. | |
3 | Zhang W B, Fu S H, Liu B Y. Error assessment of visual estimation plant coverage. Journal of Beijing Normal University (Natural Science), 2001, 37(3): 402-408. |
章文波, 符素华, 刘宝元. 目估法测量植被覆盖度的精度分析. 北京师范大学学报(自然科学版), 2001, 37(3): 402-408. | |
4 | Zhang W B, Liu B Y, Wu J D. Monitoring of plant coverage of plots by visual estimation and overhead photograph. Bulletin of Soil and Water Conservation, 2001, 21(6): 60-63. |
章文波, 刘宝元, 吴敬东. 小区植被覆盖度动态快速测量方法研究. 水土保持通报, 2001, 21(6): 60-63. | |
5 | Yang Q, Pu H M, Zhao X C, et al. Comparison of different plant cover investigation methods for three artificial grasslands. Chinese Journal of Applied & Environmental Biology, 2021, 27(1): 220-227. |
杨琴, 蒲红梅, 赵学春, 等. 3种人工草地不同植被覆盖度实地测量方法比较. 应用与环境生物学报, 2021, 27(1): 220-227. | |
6 | Canfield R H. Application of the line intercept method in sampling range vegetation. Journal of Forestry, 1941, 39(4): 388-394. |
7 | Zhang Y X, Li X B, Chen Y H. Overview of field and multi-scale remote sensing measurement approaches to grassland vegetation coverage. Advances in Earth Science, 2003, 18(1): 85-93. |
张云霞, 李晓兵, 陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述. 地球科学进展, 2003, 18(1): 85-93. | |
8 | Huang P, Pu J W, Zhao Q Q, et al. Research progress and development trend of remote sensing information extraction methods of vegetation. Remote Sensing for Natural Resources, 2022, 34(2): 10-19. |
黄佩, 普军伟, 赵巧巧, 等. 植被遥感信息提取方法研究进展及发展趋势. 自然资源遥感, 2022, 34(2): 10-19. | |
9 | Shen M X, He R Y, Cong J H, et al. Study on extraction of vegetation information of ETM+ by using PCA method and Brovey transform. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(9): 87-89. |
沈明霞, 何瑞银, 丛静华, 等. 基于主成分分析与Brovey变换的ETM+影像植被信息提取. 农业机械学报, 2007, 38(9): 87-89. | |
10 | Tang P Q, Wu W B, Yao Y M, et al. New method for extracting multiple cropping index of North China Plain based on wavelet transform. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 220-225. |
唐鹏钦, 吴文斌, 姚艳敏, 等. 基于小波变换的华北平原耕地复种指数提取. 农业工程学报, 2011, 27(7): 220-225. | |
11 | Zhang X Y, Jing Y S, Li W G. Optimal scale screening of paddy rice in remote sensing imagery based on high pass filter fusion. Chinese Journal of Agrometeorology, 2018, 39(5): 344-353. |
张晓忆, 景元书, 李卫国. 基于高通滤波算法的水稻遥感影像适宜尺度筛选. 中国农业气象, 2018, 39(5): 344-353. | |
12 | Dai P Q, Ding L X, Liu L J, et al. Tree species identification based on FCN using the visible images obtained from an unmanned aerial vehicle. Laser & Optoelectronics Progress, 2020, 57(10): 101001. |
戴鹏钦, 丁丽霞, 刘丽娟, 等. 基于FCN的无人机可见光影像树种分类. 激光与光电子学进展, 2020, 57(10): 101001. | |
13 | Redmon J, Divvals S, Grishick R, et al. You Only Look Once: unified, real time object detection//Institute of Electrical and Electronic Engineers. Conference on Computer Vision and Pattern Recognition. Las Vegas: Institute of Electrical and Electronic Engineers, 2016: 779-788. |
14 | Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84-90. |
15 | Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Computer Science, 2014(4): 357-361. |
16 | Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
17 | Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. 2017, DOI:10.48550/arXiv.1706.05587. |
18 | Chen L C, Zhu Y, Papandreou G, et al. Encoder-Decoder with atrous separable convolution for semantic image segmentation// European Conference on Computer Vision. Germany: Springer, 2018: 801-818. |
19 | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions//Institute of Electrical and Electronic Engineers. 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: Institute of Electrical and Electronic Engineers, 2015: 1-9. |
20 | Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation//Medical Image Computing and Computer Assisted Intervention Society. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich, Germany: Springer, 2015: 234-241. |
21 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Institute of Electrical and Electronic Engineers. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: Institute of Electrical and Electronic Engineers, 2016: 770-778. |
22 | Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network//Institute of Electrical and Electronic Engineers. 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: Institute of Electrical and Electronic Engineers, 2017: 2881-2890. |
23 | Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation//Institute of Electrical and Electronic Engineers. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. California: Institute of Electrical and Electronic Engineers, 2019: 5693-5703. |
24 | Zhou X X, Wu Y L, Li M Y, et al. Automatic vegetation extraction method based on feature separation mechanism with deep learning. Journal of Geo-information Science, 2021, 23(9): 1675-1689. |
周欣昕, 吴艳兰, 李梦雅, 等. 基于特征分离机制的深度学习植被自动提取方法. 地球信息科学学报, 2021, 23(9): 1675-1689. | |
25 | Zhang Y, Wang H, Liu J, et al. A lightweight winter wheat planting area extraction model based on improved DeepLabv3+ and CBAM. Remote Sensing, 2023, 15(17): 4156. |
26 | da Silva Mendes P A, Coimbra A P, de Almeida A T. Vegetation classification using DeepLabv3+ and YOLOv5//Institute of Electrical and Electronic Engineers. ICRA 2022 Workshop in Innovation in Forestry Robotics: Research and Industry Adoption. USA: Institute of Electrical and Electronic Engineers, 2022. |
27 | Hu Y N, An R, Ai Z T, et al. Researches on grass species fine identification based on UAV hyperspectral images in Three-River Source region. Remote Sensing Technology and Application, 2021, 36(4): 926-935. |
胡宜娜, 安如, 艾泽天, 等. 基于无人机高光谱影像的三江源草种精细识别研究. 遥感技术与应用, 2021, 36(4): 926-935. | |
28 | Zhang Y P, Wu X T, Li X L, et al. Identification of degraded grassland in Qinghai area of Yellow River Source based on high-resolution images. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(2): 198-211. |
张宇鹏, 吴笑天, 李希来, 等. 基于高分影像的黄河源青海片区退化草地识别. 西北农业学报, 2023, 32(2): 198-211. | |
29 | Wen T, Liu X N, Ji T, et al. Studying on plant classification and recognition method for Three-River Source alpine grassland plant based on vegetation index. Acta Agrestia Sinica, 2022, 30(7): 1811-1818. |
文铜, 柳小妮, 纪童, 等. 基于植被指数的三江源高寒草地植物分类与识别方法研究. 草地学报, 2022, 30(7): 1811-1818. | |
30 | Lv C H, Liu Y Q. UAV-derived raster data of the Tibetan Plateau in 2020. National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Geogra.tpdc.271124. https://cstr.cn/18406.11.Geogra.tpdc.271124. |
吕昌河, 刘亚群. 青藏高原无人机航拍栅格数据(2020). 国家青藏高原数据中心. https://doi.org/10.11888/Geogra.tpdc.271124. https://cstr.cn/18406.11.Geogra.tpdc.271124. | |
31 | Lv C H, Zhang Z M. UAV-derived raster data of the Tibetan Plateau (2021). National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Terre.tpdc.271903. https://cstr.cn/18406.11.Terre.tpdc.271903. |
吕昌河, 张泽民. 青藏高原无人机航拍栅格数据(2021). 国家青藏高原数据中心. https://doi.org/10.11888/Terre.tpdc.271903. https://cstr.cn/18406.11.Terre.tpdc.271903. | |
32 | Ouyang D, He S, Zhang G, et al. Efficient multi-scale attention module with cross-spatial learning// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Greece: IEEE, 2023: 1-5. |
33 | Fan Q H, Huang H B, Guan J Y, et al. Rethinking local perception in lightweight vision transformer. ArXiv, 2023, abs/2303.17803. |
[1] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[2] | Xin-yi YANG, Fu-qiang YANG, Xu-jiao ZHOU, Ming-jun WANG, Hai-xia HUANG, Song-song LU, Xiao-wei ZHANG, Wei-bo DU, Xu-hu WANG, Qing TIAN, An ZHAO, Wan-peng HE, Xiao-lei ZHOU. Mechanism of herbaceous community assembly in a burned area of Picea asperata-Abies fargesii forest on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(8): 40-47. |
[3] | Xiao-lei ZHOU, Fu-qiang YANG, Ming-jun WANG, Hai-xia HUANG, Qing TIAN, Xu-jiao ZHOU, An ZHAO, Wan-peng HE, Yan-li ZHAO, Li-hong JIANG. Important species’ niche characteristics of population in herbaceous communities at Picea asperata-Abies fargesii forest burned area on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(7): 23-37. |
[4] | Yun-hao LI, Zhong-xian LI, Shuai FU, Zhong-xue ZHANG, Shi-qin MAO, Qi-sheng FENG, Tian-gang LIANG, Yan-zhong LI. Identification of cultivated alfalfa diseases based on AlexNet [J]. Acta Prataculturae Sinica, 2023, 32(12): 104-114. |
[5] | Chun-li MIAO, Zhong-xian LI, Zhi-cheng ZHAO, Shuai FU, Jin-long GAO, Jie LIU, Qi-sheng FENG, Tian-gang LIANG. Real-time monitoring and analysis algorithm for key biophysical indicators of cultivated alfalfa in a grassland intelligent perception system [J]. Acta Prataculturae Sinica, 2023, 32(12): 90-103. |
[6] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[7] | Juan-juan ZHOU, Wei WEI. Interactive effect of fertilization and cutting on community dynamics and transgressive overyielding effect of grass pasture in the northern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(10): 28-39. |
[8] | Rui-jing WANG, Qi-sheng FENG, Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 11-22. |
[9] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[10] | Ying LI, Jing WU, Chun-bin LI, Ge-xia QIN. Temporal and spatial variation in grassland ground surface soil heat flux on the Qinghai-Tibetan Plateau from 2003 to 2018 [J]. Acta Prataculturae Sinica, 2022, 31(11): 1-14. |
[11] | Zhe-ren JIN, Qi-sheng FENG, Rui-jing WANG, Tian-gang LIANG. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning [J]. Acta Prataculturae Sinica, 2022, 31(10): 1-17. |
[12] | Gang FU, Jun-hao WANG, Shao-wei LI, Ping HE. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(9): 38-50. |
[13] | Zhi-biao NAN, Yan-rong WANG, Bin NIE, Chun-jie LI, Wei-guo ZHANG, Chao XIA. Breeding of Lanjian No. 3 common vetch and evaluation of its characteristics [J]. Acta Prataculturae Sinica, 2021, 30(4): 111-120. |
[14] | Ming-ming SHI, Xiao-min WANG, Qi CHEN, Bing-hong HAN, Bing-rong ZHOU, Jian-she XIAO, Hong-bin XIAO. Responses of soil moisture to precipitation and infiltration in dry and wet alpine grassland ecosystems [J]. Acta Prataculturae Sinica, 2021, 30(12): 49-58. |
[15] | QIU Yue, WU Peng-fei, WEI Xue. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods [J]. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||