Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (9): 147-161.DOI: 10.11686/cyxb2024418
Zhi-peng ZHANG(
), Qing-xue JIANG, Xin-yue ZHOU, Tong MIAO, Jun TANG, Deng-xia YI, Xue-min WANG(
), Lin MA(
)
Received:2024-10-24
Revised:2024-12-02
Online:2025-09-20
Published:2025-07-02
Contact:
Xue-min WANG,Lin MA
Zhi-peng ZHANG, Qing-xue JIANG, Xin-yue ZHOU, Tong MIAO, Jun TANG, Deng-xia YI, Xue-min WANG, Lin MA. Screening of candidate genes for plant height in forage oat (Avena sativa) through combined transcriptome and proteome analysis[J]. Acta Prataculturae Sinica, 2025, 34(9): 147-161.
编号 Code | 名称 Name | 材料来源 Source of material |
|---|---|---|
| 972 | Dookie 10 | 澳大利亚,维多利亚州Victoria, Australia |
| 1289 | X61-7 |
Table 1 Materials details
编号 Code | 名称 Name | 材料来源 Source of material |
|---|---|---|
| 972 | Dookie 10 | 澳大利亚,维多利亚州Victoria, Australia |
| 1289 | X61-7 |
| 基因ID Gene ID | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
|---|---|---|
| AVESA.00010b.r1.2CG3384710 | CATCACCGCCAACATCACC | GCAGCCTCCACGATCTCC |
| AVESA.00010b.r1.3CG0669440 | AAGAAGTTGGTGGTTATTGG | CTGCTTCCTTACCTCTCC |
| AVESA.00010b.r1.4AG2537620 | CGGACCTACAACCAGAACC | CAGCCCAAAGTGCCTCTC |
| AVESA.00010b.r1.5DG0437330 | CGGTCTTCTTGCGAATGG | CGATGTACTCCACGAAACC |
| AVESA.00010b.r1.3CG2847600 | ATGCTCTTCACCGTCTCC | CTGGTTGATGTAGTCCTTGG |
| AVESA.00010b.r1.4AG1741330 | GCATAGCGAGCAGTGAAGAG | ACACGGAGATCAGCAGAGC |
| AVESA.00010b.r1.2CG1087750 | CTCCTCCTCCTGCTCGTC | GTGCCCTTGAACCTGTGG |
| AVESA.00010b.r1.2DG0384520 | TGTGCTACGGGAGAAACG | AACTTGATGCCGCTATTCG |
| AVESA.00010b.r1.2CG0426050 | ACCTTCACGCTCAACTTCTCC | GCTCTCCACGCAGTTCTCC |
| AVESA.00010b.r1.4AG0885780 | AACTTCCCGTGCTCTGATCC | GTCGTCTCGTCGGCTTCC |
Table 2 Primer sequences of real-time fluorescence quantitative PCR
| 基因ID Gene ID | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
|---|---|---|
| AVESA.00010b.r1.2CG3384710 | CATCACCGCCAACATCACC | GCAGCCTCCACGATCTCC |
| AVESA.00010b.r1.3CG0669440 | AAGAAGTTGGTGGTTATTGG | CTGCTTCCTTACCTCTCC |
| AVESA.00010b.r1.4AG2537620 | CGGACCTACAACCAGAACC | CAGCCCAAAGTGCCTCTC |
| AVESA.00010b.r1.5DG0437330 | CGGTCTTCTTGCGAATGG | CGATGTACTCCACGAAACC |
| AVESA.00010b.r1.3CG2847600 | ATGCTCTTCACCGTCTCC | CTGGTTGATGTAGTCCTTGG |
| AVESA.00010b.r1.4AG1741330 | GCATAGCGAGCAGTGAAGAG | ACACGGAGATCAGCAGAGC |
| AVESA.00010b.r1.2CG1087750 | CTCCTCCTCCTGCTCGTC | GTGCCCTTGAACCTGTGG |
| AVESA.00010b.r1.2DG0384520 | TGTGCTACGGGAGAAACG | AACTTGATGCCGCTATTCG |
| AVESA.00010b.r1.2CG0426050 | ACCTTCACGCTCAACTTCTCC | GCTCTCCACGCAGTTCTCC |
| AVESA.00010b.r1.4AG0885780 | AACTTCCCGTGCTCTGATCC | GTCGTCTCGTCGGCTTCC |
样品名称 Sample | 过滤后数据 Clean reads (M) | 过滤后序列 Clean bases (G) | 碱基质量>30的 占比Q30 (%) | GC含量 GC content (%) | 唯一比对(对比率) Uniquely mapped (mapping ratio, %) | 多方比对(对比率) Multiple mapped (mapping ratio, %) |
|---|---|---|---|---|---|---|
| H-1 | 43.09 | 6.11 | 94.99 | 53.21 | 83.39 | 14.16 |
| H-2 | 43.05 | 6.13 | 95.07 | 52.98 | 83.80 | 14.22 |
| H-3 | 43.08 | 6.13 | 94.84 | 53.08 | 83.92 | 14.09 |
| L-1 | 43.13 | 6.33 | 94.06 | 51.53 | 85.83 | 11.67 |
| L-2 | 44.62 | 6.57 | 94.58 | 51.38 | 85.79 | 11.62 |
| L-3 | 42.36 | 6.23 | 93.99 | 51.16 | 85.83 | 11.60 |
Table 3 Quality test of transcriptome sequencing data
样品名称 Sample | 过滤后数据 Clean reads (M) | 过滤后序列 Clean bases (G) | 碱基质量>30的 占比Q30 (%) | GC含量 GC content (%) | 唯一比对(对比率) Uniquely mapped (mapping ratio, %) | 多方比对(对比率) Multiple mapped (mapping ratio, %) |
|---|---|---|---|---|---|---|
| H-1 | 43.09 | 6.11 | 94.99 | 53.21 | 83.39 | 14.16 |
| H-2 | 43.05 | 6.13 | 95.07 | 52.98 | 83.80 | 14.22 |
| H-3 | 43.08 | 6.13 | 94.84 | 53.08 | 83.92 | 14.09 |
| L-1 | 43.13 | 6.33 | 94.06 | 51.53 | 85.83 | 11.67 |
| L-2 | 44.62 | 6.57 | 94.58 | 51.38 | 85.79 | 11.62 |
| L-3 | 42.36 | 6.23 | 93.99 | 51.16 | 85.83 | 11.60 |
变化趋势 | 转录因子家族 Transcription factor family | 数量 Number |
|---|---|---|
| 转录本与蛋白共同上调Transcripts and proteins jointly up-regulated | Nin-like | 1 |
| 转录本与蛋白共同下调Transcripts and proteins jointly down-regulated | Trihelix | 3 |
| FAR1 | 1 | |
| ERF | 1 | |
| 转录本下调、蛋白上调Transcript down-regulation and protein up-regulation | TCP | 1 |
| bHLH | 1 | |
| NF | 1 | |
| 转录本上调、蛋白下调Transcript up-regulation and protein down-regulation | Whirly | 1 |
| NAC | 1 | |
| B3 | 1 |
Table 4 Classification of transcription factors
变化趋势 | 转录因子家族 Transcription factor family | 数量 Number |
|---|---|---|
| 转录本与蛋白共同上调Transcripts and proteins jointly up-regulated | Nin-like | 1 |
| 转录本与蛋白共同下调Transcripts and proteins jointly down-regulated | Trihelix | 3 |
| FAR1 | 1 | |
| ERF | 1 | |
| 转录本下调、蛋白上调Transcript down-regulation and protein up-regulation | TCP | 1 |
| bHLH | 1 | |
| NF | 1 | |
| 转录本上调、蛋白下调Transcript up-regulation and protein down-regulation | Whirly | 1 |
| NAC | 1 | |
| B3 | 1 |
基因ID Gene ID | 注释 Exegesis | 基因差异倍数Gene fold change | 趋势 Tendencies | 蛋白差异倍数Protein fold change | 趋势 Tendencies |
|---|---|---|---|---|---|
| AVESA.00010b.r1.2CG3384710 | BHLH结构域蛋白质BHLH domain-containing protein | 2.27 | 下调Down | 1.92 | 下调Down |
| AVESA.00010b.r1.3CG0669440 | GIDA葡萄糖抑制分裂蛋白GIDA glucose inhibited division protein | 4.41 | 上调Up | 1.31 | 上调Up |
| AVESA.00010b.r1.4AG2537620 | 糖苷水解酶家族17 Glycosyl hydrolases family 17 | 4.14 | 上调Up | 2.18 | 上调Up |
| AVESA.00010b.r1.5DG0437330 | 未定性蛋白Uncharacterized protein | 4.85 | 下调Down | 1.20 | 上调Up |
| AVESA.00010b.r1.3CG2847600 | 色氨酸氨基转移酶相关蛋白Tryptophan aminotransferase related protein | 5.65 | 下调Down | 3.59 | 下调Down |
| AVESA.00010b.r1.4AG1741330 | 过氧化物酶Peroxidase | 4.69 | 上调Up | 2.50 | 上调Up |
| AVESA.00010b.r1.2CG1087750 | γ-硫堇家族γ-thionin family | 3.70 | 下调Down | 1.28 | 上调Up |
| AVESA.00010b.r1.2DG0384520 | 糖基水解酶家族17 Glycosyl hydrolases family 17 | 4.70 | 上调Up | 1.85 | 上调Up |
| AVESA.00010b.r1.2CG0426050 | 谷氨酸脱羧酶Glutamate decarboxylase | 3.02 | 下调Down | 1.25 | 上调Up |
| AVESA.00010b.r1.4AG0885780 | 乙烯反应性转录因子ERF109 Ethylene-responsive transcription factor ERF109 | 9.04 | 下调Down | 1.89 | 上调Up |
Table 5 The candidate genes
基因ID Gene ID | 注释 Exegesis | 基因差异倍数Gene fold change | 趋势 Tendencies | 蛋白差异倍数Protein fold change | 趋势 Tendencies |
|---|---|---|---|---|---|
| AVESA.00010b.r1.2CG3384710 | BHLH结构域蛋白质BHLH domain-containing protein | 2.27 | 下调Down | 1.92 | 下调Down |
| AVESA.00010b.r1.3CG0669440 | GIDA葡萄糖抑制分裂蛋白GIDA glucose inhibited division protein | 4.41 | 上调Up | 1.31 | 上调Up |
| AVESA.00010b.r1.4AG2537620 | 糖苷水解酶家族17 Glycosyl hydrolases family 17 | 4.14 | 上调Up | 2.18 | 上调Up |
| AVESA.00010b.r1.5DG0437330 | 未定性蛋白Uncharacterized protein | 4.85 | 下调Down | 1.20 | 上调Up |
| AVESA.00010b.r1.3CG2847600 | 色氨酸氨基转移酶相关蛋白Tryptophan aminotransferase related protein | 5.65 | 下调Down | 3.59 | 下调Down |
| AVESA.00010b.r1.4AG1741330 | 过氧化物酶Peroxidase | 4.69 | 上调Up | 2.50 | 上调Up |
| AVESA.00010b.r1.2CG1087750 | γ-硫堇家族γ-thionin family | 3.70 | 下调Down | 1.28 | 上调Up |
| AVESA.00010b.r1.2DG0384520 | 糖基水解酶家族17 Glycosyl hydrolases family 17 | 4.70 | 上调Up | 1.85 | 上调Up |
| AVESA.00010b.r1.2CG0426050 | 谷氨酸脱羧酶Glutamate decarboxylase | 3.02 | 下调Down | 1.25 | 上调Up |
| AVESA.00010b.r1.4AG0885780 | 乙烯反应性转录因子ERF109 Ethylene-responsive transcription factor ERF109 | 9.04 | 下调Down | 1.89 | 上调Up |
| [1] | Liu W H, Jia Z F, Liang G L. The current situation, problems and suggestions for the development of China’s oat feed industry. Qinghai Science and Technology, 2020, 27(3): 82-85. |
| 刘文辉, 贾志锋, 梁国玲. 我国饲用燕麦产业发展现状及存在的问题和建议. 青海科技, 2020, 27(3): 82-85. | |
| [2] | Ye X L, Gan Z, Wan Y, et al. Advances and perspectives in forage oat breeding. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
| 叶雪玲, 甘圳, 万燕, 等. 饲用燕麦育种研究进展与展望. 草业学报, 2023, 32(2): 160-177. | |
| [3] | Chen X, Wu B, Zhang Z W. Evaluation of adaptability and stability for important agronomic traits of oat (Avena spp.) germplasm resources. Journal of Plant Genetic Resources, 2016, 17(4): 577-585. |
| 陈新, 吴斌, 张宗文. 燕麦种质资源重要农艺性状适应性和稳定性评价. 植物遗传资源学报, 2016, 17(4): 577-585. | |
| [4] | Milach S, Rines H W, Phillips R L, et al. Inheritance of a new dwarfing gene in oat. Crop Science, 1998, 38(2): 356-360. |
| [5] | Brown P D, Mckenzie R, Mikaelsen K. Agronomic, genetic, and cytologic evaluation of a vigorous new semidwarf oat. Crop Science, 1980, 20(3): 303-306. |
| [6] | Xu Y H. Fine mapping of oat dwarfing gene Dw6. Chengdu: Sichuan Agricultural University, 2023. |
| 徐颖红. 燕麦矮秆基因Dw6的精细定位. 成都: 四川农业大学, 2023. | |
| [7] | Milach S C K, Rines H W, Phillips R L. Molecular genetic mapping of dwarfing genes in oat. Theoretical & Applied Genetics, 1997, 95(5/6): 783-790. |
| [8] | Morikawa T. Genetic analysis on dwarfness of wild oat, Avena fatua. The Janpanese Journal of Genetics, 1989, 64: 363-371. |
| [9] | Zhang X B. Map-based cloning and functional analysis of leaf shape gene CFL2 and plant height gene SD38 in rice. Chongqing: Southwest University, 2021. |
| 张孝波. 水稻叶形基因CFL2和株高基因SD38的图位克隆与功能分析. 重庆: 西南大学, 2021. | |
| [10] | Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000, 12(9): 1591-1605. |
| [11] | Zhang J, Liu X, Li S, et al. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9(2): e88068. |
| [12] | Schefe J H, Lehmann K E, Buschmann I R, et al. Quantitative real-time RT-PCR data analysis: Current concepts and the novel “gene expression’s CT difference” formula. Journal of Molecular Medicine, 2006, 84(11): 901-910. |
| [13] | Yang F, Ye R, Ma C, et al. Toxicity evaluation, toxin screening and its intervention of the jellyfish Phacellophora camtschatica based on a combined transcriptome-proteome analysis. Ecotoxicology and Environmental Safety, 2022, 46(6): 1-12. |
| [14] | Luo J. Brassica napus L. dwarf traits proteome and transcriptome joint analysis. Guiyang: Guizhou Normal University, 2021. |
| 罗京. 甘蓝型油菜矮化性状的蛋白质组和转录组联合分析. 贵阳: 贵州师范大学, 2021. | |
| [15] | Li H, He X W, Gao Y F, et al. Integrative analysis of transcriptome, proteome, and phosphoproteome reveals potential roles of photosynthesis antenna proteins in response to brassinosteroids signaling in maize. Plants, 2023, 12(6): 1290-1307. |
| [16] | Lin J, Zheng X, Xia J, et al. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC Plant Biology, 2024, 24(1): 689-707. |
| [17] | Wang Y J, Lu W J, Zhao J, et al. Transcriptome dynamics of dominant maize dwarf Dwarf11 (D11) revealed by RNA-seq and co-expression analysis. Plant Molecular Biology Reporter, 2017, 35(3): 355-365. |
| [18] | Sui J M. Fine mapping of one semidwarf gene sdt3 and candidate-gene screening and functional analysis of the other semidwarf gene sdg in rice (Oryza sativa L.) . Yangzhou: Yangzhou University, 2006. |
| 隋炯明. 水稻半矮秆基因sdt3的精细定位和sdg的克隆与功能分析. 扬州: 扬州大学, 2006. | |
| [19] | Gong Y S, Wei S H, Peng Z S, et al. Genetic study on plant height and its components, partial yield traits in durum wheat ‘ANW16F’. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 229-235. |
| 龚胤书, 魏淑红, 彭正松, 等. 硬粒小麦ANW16F株高及构成因子与部分产量性状遗传研究. 西南农业学报, 2021, 34(2): 229-235. | |
| [20] | Wu M Y. Genetic analysis and gene mapping of three (semi-) dwarf genes in rice. Beijing: Chinese Academy of Agricultural Sciences, 2020. |
| 吴明月. 三个(半)矮秆水稻基因的遗传分析和基因定位. 北京: 中国农业科学院, 2020. | |
| [21] | Lv H K, Zhang J, Wang T Y, et al. The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Molecular Biology, 2014, 84(3): 243-257. |
| [22] | Peng Z, Li X, Yang Z, et al. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genetics and Molecular Research, 2011, 10(4): 2349-2357. |
| [23] | Song J, Li L, Liu B Y, et al. Fine mapping of reduced height locus RHT26 in common wheat. Theoretical and Applied Genetics, 2023, 136(3): 62-72. |
| [24] | Chen L, Yang Y, Mishina K, et al. RNA-seq analysis of the peduncle development of Rht12 dwarf plants and primary mapping of Rht12 in common wheat. Cereal Research Communications, 2020, 48(2): 1-9. |
| [25] | Shan Q Q. Analysis of allelic variaions of wheat plant height regulation genes Rht-1 and GID1 and their interaction mechansim. Zhengzhou: Henan Agricultural University, 2018. |
| 单强强. 小麦株高调控基因Rht-1和GID1的等位变异分析及其编码蛋白的互作机制. 郑州: 河南农业大学, 2018. | |
| [26] | Wang H M. Characterization of the expression patterns of tomato SlGH3.2 and its potential functions in rice plants. Nanjing: Nanjing Agricultural University, 2015. |
| 王慧敏. 番茄SlGH3.2的表达特征及在水稻中的功能研究分析. 南京: 南京农业大学, 2015. | |
| [27] | Ai G. Functional dissection of SlGH3-15 in tomato. Wuhan: Huazhong Agricultural University, 2017. |
| 艾国. 番茄SlGH3-15基因的功能解析. 武汉: 华中农业大学, 2017. | |
| [28] | Kazuhito A, Fumio T. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. Journal of Experimental Botany, 2007, 58(10): 2699-2707. |
| [29] | Jia Y T. Function analysis of transcription factor bHLH146 in Arabidopsis thaliana. Changchun: Jilin University, 2022. |
| 贾雨彤. 拟南芥转录因子bHLH146的功能研究. 长春: 吉林大学, 2022. | |
| [30] | Qi W W, Sun F, Wang Q J, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiology, 2011, 157(1): 216-228. |
| [31] | Ma Z M, Wu T, Huang K, et al. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice. Frontiers in Plant Science, 2020, 11(13): 709-724. |
| [1] | Gui FU, Yu-ping LIU, Xu SU, Rong-ju QU, Zha-xi CAIRANG. Analysis of SSR characterization in full-length transcriptome and development of SSR molecular markers for Littledalea racemosa [J]. Acta Prataculturae Sinica, 2025, 34(7): 107-119. |
| [2] | Ting MA, Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA. Differentially expressed genes and related pathways in root systems of Astragalus cicer under NaCl stress [J]. Acta Prataculturae Sinica, 2025, 34(4): 104-123. |
| [3] | Rui-juan SANG, Chao-jie CUI, Yun HE, Xiao-xia ZHANG, Jin YAO, Chun-yang DONG, Hao SUN, Ying-hua SHI, Xiao-yan ZHU, De-feng LI. Lodging resistance and production performance of 18 autumn-sown forage oat varieties in northern Henan Province [J]. Acta Prataculturae Sinica, 2024, 33(8): 74-85. |
| [4] | Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198. |
| [5] | Bing ZENG, Pan-pan SHANG, Bing-na SHEN, Yin-chen WANG, Ming-hao QU, Yang YUAN, Lei BI, Xing-yun YANG, Wen-wen LI, Xiao-li ZHOU, Yu-qian ZHENG, Wen-qiang GUO, Yan-long FENG, Bing ZENG. Differentially expressed genes and related pathways in root systems of Dactylis glomerata under flooding stress [J]. Acta Prataculturae Sinica, 2024, 33(2): 93-111. |
| [6] | Jing-bo YU, Hui-li ZHANG, Jin LI, Hao GUAN, Qing-ping ZHOU, Shi-yong CHEN. A multi-trait evaluation of phosphorus efficiency of 38 forage oat cultivars at the seedling stage [J]. Acta Prataculturae Sinica, 2024, 33(11): 161-171. |
| [7] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
| [8] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
| [9] | Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis [J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156. |
| [10] | Xue-ling YE, Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU. Advances and perspectives in forage oat breeding [J]. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
| [11] | Ya TAO, Li-jun XU, Feng LI, Wen-long LI, Qi-zhong SUN, Chang XU, Ke-jian LIN. The Leymus chinensis industry in China needs to be urgently revitalized [J]. Acta Prataculturae Sinica, 2023, 32(11): 188-198. |
| [12] | Feng LI, Wen-long LI, Xue LI, Zhong-juan ZHANG, Lin-po BAI, Yu-fei ZHAO, Ya TAO. A multi-trait evaluation of the performance of 16 forage oat varieties in central and southern Heilongjiang Province [J]. Acta Prataculturae Sinica, 2023, 32(10): 82-92. |
| [13] | Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
| [14] | Jing ZHOU, Si-qi CHEN, Wen-jiao SHI, Fu-lin YANG, Hui LIN, Zhan-xi LIN. Transcriptome analyses of functional genes in young leaves and roots of Giant Juncao [J]. Acta Prataculturae Sinica, 2021, 30(2): 143-155. |
| [15] | Xin-zhu CHEN, Jian-guo ZHANG. Effects of cutting time and plant height of ‘Reyan No.4’ king grass on distribution of lactic acid bacteria and silage fermentation quality [J]. Acta Prataculturae Sinica, 2021, 30(1): 150-158. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||