Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 46-57.DOI: 10.11686/cyxb2024055
Previous Articles Next Articles
Qing-hua TIAN(), Dan LIU(), Xiao-qin LIAO, Xiao-yan SONG, Lei HU, Chang-ting WANG
Received:
2024-02-26
Revised:
2024-04-08
Online:
2024-11-20
Published:
2024-09-09
Contact:
Dan LIU
Qing-hua TIAN, Dan LIU, Xiao-qin LIAO, Xiao-yan SONG, Lei HU, Chang-ting WANG. Effects of nitrogen fertilization on soil aggregate biological binding agents and stability in an alpine grassland[J]. Acta Prataculturae Sinica, 2024, 33(11): 46-57.
项目 Item | 有机碳 Organic carbon (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷 Total phosphorus (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | pH | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
N0 | 45.43±1.71b | 3.43±0.22b | 1.95±0.08abc | 24.19±1.58ab | 9.51±0.35b | 5.70±0.05ab | 30.22±0.52ab |
N10 | 45.77±1.32b | 3.27±0.15b | 1.85±0.03bc | 23.76±0.94ab | 8.56±0.32b | 5.88±0.03a | 32.93±0.54a |
N20 | 42.03±1.75b | 3.03±0.30b | 1.76±0.01c | 25.52±0.88ab | 7.86±0.69b | 5.67±0.04ab | 32.25±0.69a |
N30 | 45.57±2.01b | 3.60±0.26b | 1.75±0.03c | 35.71±5.56ab | 8.81±0.80b | 5.26±0.12b | 31.17±0.36a |
N40 | 66.93±0.49a | 6.17±0.15a | 2.25±0.04a | 22.29±1.96ab | 11.60±0.36ab | 5.33±0.07b | 25.09±0.13b |
N50 | 63.13±1.88a | 5.90±0.23a | 2.21±0.02a | 20.48±0.85b | 9.44±0.29b | 5.37±0.06ab | 26.54±0.40b |
N60 | 63.53±1.25a | 6.00±0.17a | 2.14±0.04ab | 46.90±5.29a | 15.19±0.37a | 5.19±0.02b | 24.76±0.68b |
Table 1 Variations of soil physiochemical properties under different nitrogen fertilization rates
项目 Item | 有机碳 Organic carbon (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷 Total phosphorus (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | pH | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
N0 | 45.43±1.71b | 3.43±0.22b | 1.95±0.08abc | 24.19±1.58ab | 9.51±0.35b | 5.70±0.05ab | 30.22±0.52ab |
N10 | 45.77±1.32b | 3.27±0.15b | 1.85±0.03bc | 23.76±0.94ab | 8.56±0.32b | 5.88±0.03a | 32.93±0.54a |
N20 | 42.03±1.75b | 3.03±0.30b | 1.76±0.01c | 25.52±0.88ab | 7.86±0.69b | 5.67±0.04ab | 32.25±0.69a |
N30 | 45.57±2.01b | 3.60±0.26b | 1.75±0.03c | 35.71±5.56ab | 8.81±0.80b | 5.26±0.12b | 31.17±0.36a |
N40 | 66.93±0.49a | 6.17±0.15a | 2.25±0.04a | 22.29±1.96ab | 11.60±0.36ab | 5.33±0.07b | 25.09±0.13b |
N50 | 63.13±1.88a | 5.90±0.23a | 2.21±0.02a | 20.48±0.85b | 9.44±0.29b | 5.37±0.06ab | 26.54±0.40b |
N60 | 63.53±1.25a | 6.00±0.17a | 2.14±0.04ab | 46.90±5.29a | 15.19±0.37a | 5.19±0.02b | 24.76±0.68b |
因变量 Dependent variable | 回归方程 Equation | F | R2 | 自变量R2 R2 of each independent variable |
---|---|---|---|---|
Wi (<0.25 mm) | y=8.59+15.10EEG | 6.67 | 0.260* | EEG (0.260*) |
Wi (0.25~1.00 mm) | y=38.66-9.61Hyphal density+0.09Spore density | 13.75 | 0.604** | Hyphal density (0.54*), Spore density (0.07) |
Wi (1~2 mm) | y=14.08+4.00Hyphal density-0.06Spore density | 2.30 | 0.203 | Hyphal density (0.20*), Spore density (0.001) |
Wi (2~4 mm) | y=24.834+7.10Hyphal density | 16.37 | 0.463** | Hyphal density (0.46**) |
MWD | y=1.57+0.20Hyphal density-0.001Spore density-0.41EEG | 13.48 | 0.704** | Hyphal density (0.45**), Spore density (0.19**), EEG (0.06) |
GMD | y=1.09+0.14Hyphal density-0.001Spore density-0.44EEG | 17.36 | 0.750** | Hyphal density (0.44**), Spore density (0.18**), EEG (0.13**) |
Table 2 Stepwise multiple linear regressions between soil aggregate weight percent as well as stability and properties of biological binding agents
因变量 Dependent variable | 回归方程 Equation | F | R2 | 自变量R2 R2 of each independent variable |
---|---|---|---|---|
Wi (<0.25 mm) | y=8.59+15.10EEG | 6.67 | 0.260* | EEG (0.260*) |
Wi (0.25~1.00 mm) | y=38.66-9.61Hyphal density+0.09Spore density | 13.75 | 0.604** | Hyphal density (0.54*), Spore density (0.07) |
Wi (1~2 mm) | y=14.08+4.00Hyphal density-0.06Spore density | 2.30 | 0.203 | Hyphal density (0.20*), Spore density (0.001) |
Wi (2~4 mm) | y=24.834+7.10Hyphal density | 16.37 | 0.463** | Hyphal density (0.46**) |
MWD | y=1.57+0.20Hyphal density-0.001Spore density-0.41EEG | 13.48 | 0.704** | Hyphal density (0.45**), Spore density (0.19**), EEG (0.06) |
GMD | y=1.09+0.14Hyphal density-0.001Spore density-0.44EEG | 17.36 | 0.750** | Hyphal density (0.44**), Spore density (0.18**), EEG (0.13**) |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SOC | AP | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
MWD | SOC | -0.80** | -0.61 | - | 0.33 | -0.01 | -0.08 | 0.20 | -0.63 | -0.19 |
AP | -0.49* | 0.47 | -0.43 | - | 0 | -0.06 | 0.13 | -0.59 | -0.96 | |
EEG | -0.63** | -0.02 | -0.41 | 0.14 | - | -0.06 | 0.18 | -0.46 | -0.61 | |
TG | -0.71** | -0.10 | -0.47 | 0.28 | -0.01 | - | 0.26 | -0.66 | -0.61 | |
Spore density | 0.43 | -0.38 | 0.32 | -0.16 | 0.01 | 0.07 | - | 0.57 | 0.81 | |
Hyphal density | 0.79** | 0.83 | 0.46 | -0.33 | 0.01 | 0.08 | -0.26 | - | -0.04 | |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
SOC | NH4+-N | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
GMD | SOC | -0.77** | -0.23 | - | 0 | -0.24 | -0.05 | 0.15 | -0.40 | -0.54 |
NH4+-N | -0.25 | -0.07 | -0.01 | - | -0.01 | -0.02 | 0.08 | -0.22 | -0.18 | |
EEG | -0.71** | -0.36 | -0.15 | 0 | - | -0.04 | 0.14 | -0.29 | -0.35 | |
TG | -0.69** | -0.06 | -0.17 | -0.02 | -0.21 | - | 0.19 | -0.42 | -0.63 | |
Spore density | 0.43 | -0.28 | 0.12 | 0.02 | 0.17 | 0.04 | - | 0.36 | 0.71 | |
Hyphal density | 0.78** | 0.52 | 0.17 | 0.03 | 0.20 | 0.05 | -0.20 | - | 0.26 |
Table 3 Direct and indirect effects of glomalin and environmental properties on MWD and GMD
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SOC | AP | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
MWD | SOC | -0.80** | -0.61 | - | 0.33 | -0.01 | -0.08 | 0.20 | -0.63 | -0.19 |
AP | -0.49* | 0.47 | -0.43 | - | 0 | -0.06 | 0.13 | -0.59 | -0.96 | |
EEG | -0.63** | -0.02 | -0.41 | 0.14 | - | -0.06 | 0.18 | -0.46 | -0.61 | |
TG | -0.71** | -0.10 | -0.47 | 0.28 | -0.01 | - | 0.26 | -0.66 | -0.61 | |
Spore density | 0.43 | -0.38 | 0.32 | -0.16 | 0.01 | 0.07 | - | 0.57 | 0.81 | |
Hyphal density | 0.79** | 0.83 | 0.46 | -0.33 | 0.01 | 0.08 | -0.26 | - | -0.04 | |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
SOC | NH4+-N | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
GMD | SOC | -0.77** | -0.23 | - | 0 | -0.24 | -0.05 | 0.15 | -0.40 | -0.54 |
NH4+-N | -0.25 | -0.07 | -0.01 | - | -0.01 | -0.02 | 0.08 | -0.22 | -0.18 | |
EEG | -0.71** | -0.36 | -0.15 | 0 | - | -0.04 | 0.14 | -0.29 | -0.35 | |
TG | -0.69** | -0.06 | -0.17 | -0.02 | -0.21 | - | 0.19 | -0.42 | -0.63 | |
Spore density | 0.43 | -0.28 | 0.12 | 0.02 | 0.17 | 0.04 | - | 0.36 | 0.71 | |
Hyphal density | 0.78** | 0.52 | 0.17 | 0.03 | 0.20 | 0.05 | -0.20 | - | 0.26 |
1 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975. | |
2 | Jin P, Liu M, Xu X, et al. Gross mineralization and nitrification in degraded alpine grassland soil. Rhizosphere, 2023, 27: 100778. |
3 | Zhang J Q, Li Q, Ren Z W, et al. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. |
张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131. | |
4 | Gonzalez-Ollauri A, Hudek C, Mickovski S B, et al. Describing the vertical root distribution of alpine plants with simple climate, soil, and plant attributes. CATENA, 2021, 203: 105305. |
5 | Ma Z, Yue Y, Feng M, et al. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Scientific Reports, 2019, 9(1): 15140. |
6 | Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. The New Phytologist, 2018, 220(4): 1222-1235. |
7 | Gispert M, Emran M, Pardini G, et al. The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma, 2013, 202/203: 51-61. |
8 | Jing H, Shi J Y, Wang G L, et al. Distribution of the glomalin-related soil protein and aggregate fractions in different restoration communities after clear-cutting Pinus tabulaeformis plantation. China Environmental Science, 2017, 37(8): 3056-3063. |
景航, 史君怡, 王国梁, 等. 皆伐油松林不同恢复措施下团聚体与球囊霉素分布特征. 中国环境科学, 2017, 37(8): 3056-3063. | |
9 | Gan J W, Han X Z, Zou W X. Glomalin and its role in soil ecosystems: A review. Soils and Crops, 2022, 11(1): 41-53. |
甘佳伟, 韩晓增, 邹文秀. 球囊霉素及其在土壤生态系统中的作用. 土壤与作物, 2022, 11(1): 41-53. | |
10 | Guo W, Zhou Y P, Chen M Q, et al. Effects of long-term different N application rates on aggregate distribution and fungal community composition in fluvo-aquic soil. Acta Pedologica Sinica, 2024, 61(3): 824-835. |
郭伟, 周云鹏, 陈美淇, 等. 长期不同氮肥施用量对潮土团聚体分布和真菌群落组成的影响. 土壤学报, 2024, 61(3): 824-835. | |
11 | Yin Y, Wang L, Liang C, et al. Soil aggregate stability and iron and aluminium oxide contents under different fertiliser treatments in a long-term solar greenhouse experiment. Pedosphere, 2016, 26(5): 760-767. |
12 | Xiao D, Che R, Liu X, et al. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 2019, 55(5): 457-469. |
13 | Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry, 2006, 77(1): 25-56. |
14 | Jeewani P H, Luo Y, Yu G, et al. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry, 2021, 162: 108417. |
15 | Wright S F, Upadhyaya A, Buyer J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 1998, 30(13): 1853-1857. |
16 | Emran M, Gispert M, Pardini G. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. European Journal of Soil Science, 2012, 63(5): 637-649. |
17 | Wright S F, Anderson R L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biology and Fertility of Soils, 2000, 31(3/4): 249-253. |
18 | Huang Y, Wang D W, Cai J L, et al. Review of glomalin-related soil protein and its environmental function in the rhizosphere. Acta Phytoecologica Sinica, 2011, 35(2): 232-236. |
黄艺, 王东伟, 蔡佳亮, 等. 球囊霉素相关土壤蛋白根际环境功能研究进展. 植物生态学报, 2011, 35(2): 232-236. | |
19 | Zhong X, Li J, Li X, et al. Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma, 2017, 285: 323-332. |
20 | Rezáčová V, Czakó A, Stehlík M, et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Scientific Reports, 2021, 11(1): 12548. |
21 | Zheng Y, Kim Y, Tian X, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 2014, 89(3): 594-605. |
22 | Johnson N C, Rowland D L, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology (Durham), 2003, 84(7): 1895-1908. |
23 | Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46(2): 235-244. |
24 | Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 1998, 198(1): 97-107. |
25 | Yang C, Liu N, Zhang Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 2019, 337: 444-452. |
26 | Liu J L, Liu W Y, Zhao X T, et al. Effects of planting duration of Dendrocalamus brandisii on soil aggregate stability and organic matter composition. World Bamboo and Rattan, 2024, 22(1): 30-38. |
刘佳林, 刘蔚漪, 赵秀婷, 等. 甜龙竹种植年限对土壤团聚体稳定性及有机质组分的影响. 世界竹藤通讯, 2024, 22(1): 30-38. | |
27 | Zhang W, Fu Y, Li J F, et al. Comparative study on kjeldahl method and dumas combustion method for total nitrogen measurement in soil. Chinese Agricultural Science Bulletin, 2015, 31(35): 172-175. |
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究. 中国农学通报, 2015, 31(35): 172-175. | |
28 | Zhang X S. Analysis of the factors affecting the available P content in the fermentation liquid of P bacteria determined by Mo-Sb colorimetry. Journal of Anhui Agricultural Sciences, 2008, 36(12): 4822-4823. |
张祥胜. 钼锑抗比色法测定磷细菌发酵液中有效磷含量测定值的影响因素分析. 安徽农业科学, 2008, 36(12): 4822-4823. | |
29 | Zhan X Y, Liu C H, Fan H Y, et al. Comparison between two N-ammoniacal measurements in water-Napierian reagent colorimetric method and indophenol-blue colorimetric method. Environmental Science and Management, 2010, 35(11): 132-134. |
詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较-纳氏试剂光度法、靛酚蓝比色法. 环境科学与管理, 2010, 35(11): 132-134. | |
30 | Qimanguli·P L T, Liu D, Mao J, et al. Soil carbon, nitrogen, phosphorus and their eco-stoichiometric characteristics of alpine grasslands under different degradation degrees. Chinese Journal of Ecology, 2023, 2(10): 1-11. |
其曼古丽·帕拉提, 刘丹, 毛军, 等. 不同退化程度高寒草地土壤碳氮磷含量及其生态化学计量特征. 生态学杂志, 2023, 2(10): 1-11. | |
31 | Han Y, Feng J, Han M, et al. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Global Change Biology, 2020, 26(12): 7229-7241. |
32 | Liu Y, Shi G, Mao L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535. |
33 | Babalola B J, Li J, Willing C E, et al. Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. The New Phytologist, 2022, 234(6): 2057-2072. |
34 | Li X, Han S, Luo X, et al. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments, 2020, 20(2): 963-972. |
35 | Yang M, Shi Z Y, Lu S C, et al. Effect of warming on soil glomalin in grassland of the Qinghai-Tibet Plateau. Ecology and Environmental Sciences, 2020, 29(4): 650-656. |
杨梅, 石兆勇, 卢世川, 等. 增温对青藏高原草地生态系统土壤球囊霉素含量的影响. 生态环境学报, 2020, 29(4): 650-656. | |
36 | Yang X, Li Y, Niu B, et al. Temperature and precipitation drive elevational patterns of microbial beta diversity in alpine grasslands. Microbial Ecology, 2022, 84(4): 1141-1153. |
37 | Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. |
38 | Li B W. Effect of fertilization on GRSP and environmental factors in alpine meadows on the Qinghai-Tibetan Plateau. Lanzhou: Lanzhou University, 2016. |
李博文. 施肥对青藏高原高寒草甸球囊霉素土壤相关蛋白及其环境因子的影响. 兰州: 兰州大学, 2016. | |
39 | Wu Q, Cao M, Zou Y, et al. Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 2014, 4(1): 5823. |
40 | Zhang X, Ren H Y, Han G D. Effects of warming and nitrogen application on soil aggregate stability and carbon content in the desert grassland of Inner Mongolia. Grassland and Prataculture, 2020, 32(2): 22-26. |
张欣, 任海燕, 韩国栋. 增温和施氮对内蒙古荒漠草原土壤团聚体稳定性及碳含量的影响. 草原与草业, 2020, 32(2): 22-26. | |
41 | Bai J, Zhang S, Huang S, et al. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture, 2023, 22(11): 3517-3534. |
42 | Zhou C C, Chen Z J, Zhao S X, et al. Effects of different cultivating patterns and nitrogen fertilizer application on soil aggregates. Agricultural Research in the Arid Areas, 2013, 31(3): 100-105. |
周从从, 陈竹君, 赵世翔, 等. 不同栽培模式及施氮量对土壤团聚体的影响. 干旱地区农业研究, 2013, 31(3): 100-105. | |
43 | Yao J H, Wu J N, Wang C Y, et al. Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 2024, 43(1): 102-110. |
姚俊红, 武俊男, 王呈玉, 等. 长期不同施氮量下黑土团聚体稳定性及有机碳含量的变化. 农业环境科学学报, 2024, 43(1): 102-110. | |
44 | Nimmo J R, Deason J, Izbicki J A, et al. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site. Water Resources Research, 2002, 38(10): 31-33. |
45 | Liu W, Wei Y, Li R, et al. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment, 2022, 847: 157518. |
46 | Guo H B, Yuan Y H, Wu J P, et al. Distribution of water-stable aggregates and organic carbon in response to simulated nitrogen deposition in a Chinese fir plantation. Journal of Soil and Water Conservation, 2013, 27(4): 268-272. |
郭虎波, 袁颖红, 吴建平, 等. 氮沉降对杉木人工林土壤团聚体及其有机碳分布的影响. 水土保持学报, 2013, 27(4): 268-272. | |
47 | Curtin D, Smillie G W. Effects of incubation and pH on soil solution and exchangeable cation ratios. Soil Science Society of America Journal, 1995, 59: 1006-1011. |
48 | Okebalama C B, Marschner B. Reapplication of biochar, sewage waste water, and NPK fertilizers affects soil fertility, aggregate stability, and carbon and nitrogen in dry-stable aggregates of semi-arid soil. Science of the Total Environment, 2023, 866: 161203. |
49 | Sun L, Wang G, Jing H, et al. Nitrogen addition increases the contents of glomalin-related soil protein and soil organic carbon but retains aggregate stability in a Pinus tabulaeformis forest. PeerJ, 2018, 6: e5039. |
50 | Zhu R, Zheng Z, Li T, et al. Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environmental Science and Pollution Research, 2019, 26(2): 1973-1982. |
51 | Wang Q, Hong H, Liao R, et al. Glomalin-related soil protein: The particle aggregation mechanism and its insight into coastal environment improvement. Ecotoxicology and Environmental Safety, 2021, 227: 112940. |
[1] | Ling-ling XU, Ben NIU, Xian-zhou ZHANG, Yong-tao HE, Pei-li SHI, Ning ZONG, Jian-shuang WU, Xiang-tao WANG. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet [J]. Acta Prataculturae Sinica, 2024, 33(6): 1-16. |
[2] | Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process [J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45. |
[3] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[4] | Ji-liang LIU, Wen-zhi ZHAO, Yong-zhen WANG, Yi-lin FENG, Jin-xian QI, Yong-yuan LI. Effect of fencing and grazing on soil macro- and meso-arthropod diversity in alpine grassland ecosystems in the Qilian Mountains in the fall [J]. Acta Prataculturae Sinica, 2023, 32(8): 214-221. |
[5] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[6] | Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
[7] | Shi-long LEI, Li-rong LIAO, Jie WANG, Lu ZHANG, Zhen-cheng YE, Guo-bin LIU, Chao ZHANG. The diversity-Godron stability relationship of alpine grassland and its environmental drivers [J]. Acta Prataculturae Sinica, 2023, 32(3): 1-12. |
[8] | Ya-ni WANG, Yi-gang HU, Zeng-ru WANG, Yi-kang LI, Zhen-hua ZHANG, Hua-kun ZHOU. Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(5): 26-39. |
[9] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[10] | Bi-hua GUO, Xue-mei ZHANG, Jin-ping LIU, Ming-hong YOU, Xiao-hong GAN, Yong YANG. Effects of slope on soil properties and post construction desertification of highway embankments in an Alpine Meadow region [J]. Acta Prataculturae Sinica, 2022, 31(11): 15-24. |
[11] | Meng-han WANG, Li-li DONG, Fu-cui LI, Lie-bao HAN, Xiang WANG. Effects of different organic ∶inorganic nitrogen addition ratios on nitrogen distribution and transformation in a grassland soil [J]. Acta Prataculturae Sinica, 2022, 31(1): 36-46. |
[12] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[13] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[14] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[15] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||