Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 64-75.DOI: 10.11686/cyxb2023366
Previous Articles Next Articles
Received:
2023-09-27
Revised:
2023-10-30
Online:
2024-06-20
Published:
2024-03-20
Contact:
Ying TAN
Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss[J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75.
基因名Gene name | 引物序列Gene primer | 熔点Melting point (℃) |
---|---|---|
Actin | F: GATGCTGAGGATATTCAACCCC R: CCATGACACCAGTATGACGAGG | 60.73 59.80 |
CAT | F: CCTATTTGATGATGTGGGTGTCC R: GTCTTGAGTAGCATGGCTGTGGT | 60.84 59.43 |
POD | F: GTTCTGGGGTGTGATGC R: GTATTCGGTTTGCGGTT | 59.87 59.62 |
Cu/Zn-SOD | F: GTGACCTGGGAAACATTATTGCTGA R: ATACTGGAGTCAAGCCAACCACACC | 60.31 60.40 |
Table 1 Primer information for real-time fluorescence quantitative reaction
基因名Gene name | 引物序列Gene primer | 熔点Melting point (℃) |
---|---|---|
Actin | F: GATGCTGAGGATATTCAACCCC R: CCATGACACCAGTATGACGAGG | 60.73 59.80 |
CAT | F: CCTATTTGATGATGTGGGTGTCC R: GTCTTGAGTAGCATGGCTGTGGT | 60.84 59.43 |
POD | F: GTTCTGGGGTGTGATGC R: GTATTCGGTTTGCGGTT | 59.87 59.62 |
Cu/Zn-SOD | F: GTGACCTGGGAAACATTATTGCTGA R: ATACTGGAGTCAAGCCAACCACACC | 60.31 60.40 |
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 侵染率 Infection rate (%) | 泡囊数 Number of vesicles (number·cm-1 root) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root crown ratio |
---|---|---|---|---|---|
CK | 0 | - | - | 0.435±0.038d | 0.637±0.066a |
50 | - | - | 0.567±0.082bc | 0.443±0.125abc | |
100 | - | - | 0.702±0.018a | 0.410±0.090abc | |
150 | - | - | 0.638±0.045abc | 0.471±0.073abc | |
200 | - | - | 0.526±0.037cd | 0.568±0.071ab | |
AMF | 0 | 59.2±1.64b | 15.0±0.6b | 0.660±0.064ab | 0.547±0.161ab |
50 | 62.5±2.42ab | 16.3±0.3ab | 0.725±0.033a | 0.359±0.046abc | |
100 | 65.2±2.55a | 17.7±0.3a | 0.740±0.020a | 0.248±0.054c | |
150 | 53.1±1.34c | 16.7±0.3ab | 0.707±0.015a | 0.305±0.059bc | |
200 | 34.1±0.46d | 15.2±0.5b | 0.697±0.023a | 0.446±0.156abc |
Table 2 Effects of AMF and melatonin treatment on the biomass and mycorrhizal infection of M. sativa
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 侵染率 Infection rate (%) | 泡囊数 Number of vesicles (number·cm-1 root) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root crown ratio |
---|---|---|---|---|---|
CK | 0 | - | - | 0.435±0.038d | 0.637±0.066a |
50 | - | - | 0.567±0.082bc | 0.443±0.125abc | |
100 | - | - | 0.702±0.018a | 0.410±0.090abc | |
150 | - | - | 0.638±0.045abc | 0.471±0.073abc | |
200 | - | - | 0.526±0.037cd | 0.568±0.071ab | |
AMF | 0 | 59.2±1.64b | 15.0±0.6b | 0.660±0.064ab | 0.547±0.161ab |
50 | 62.5±2.42ab | 16.3±0.3ab | 0.725±0.033a | 0.359±0.046abc | |
100 | 65.2±2.55a | 17.7±0.3a | 0.740±0.020a | 0.248±0.054c | |
150 | 53.1±1.34c | 16.7±0.3ab | 0.707±0.015a | 0.305±0.059bc | |
200 | 34.1±0.46d | 15.2±0.5b | 0.697±0.023a | 0.446±0.156abc |
指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT | 指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT |
---|---|---|---|---|---|---|---|
总生物量Total biomass | 5.941** | 0.565NS | 4.010* | 超氧化物歧化酶SOD | 0.579NS | 5.066** | 1.559NS |
根冠比Root/shoot | 2.357NS | 2.328NS | 0.853NS | 过氧化物酶POD | 10.346** | 5.650** | 8.662** |
叶绿素a Chlorophyll a | 6.289** | 3.223NS | 6.705** | 过氧化氢酶CAT | 2.644NS | 1.432NS | 0.256NS |
叶绿素b Chlorophyll b | 5.470** | 0.958NS | 14.474** | 铜锌超氧化物歧化酶基因表达量Cu/Zn-SOD gene expression level | 0.456NS | 7.234** | 2.449NS |
PSⅡ最大光合效率Fv/Fm | 2.603NS | 6.309** | 0.995NS | ||||
PSⅡ潜在活性Fv/Fo | 1.234NS | 4.078* | 2.759NS | 过氧化物酶基因表达量POD gene expression level | 8.366** | 5.523** | 19.761** |
净光合速率 Pn | 0.489NS | 6.091** | 2.909NS | 过氧化氢酶基因表达量CAT gene expression level | 2.344NS | 1.434NS | 0.678NS |
蒸腾速率 Tr | 5.956** | 2.050NS | 10.682** | 钾K | 2.402NS | 1.170NS | 23.001** |
气孔导度 Gs | 1.671NS | 1.398NS | 0.198NS | 氮N | 0.257NS | 0.286NS | 50.656** |
胞间CO2浓度 Ci | 5.662** | 4.324* | 2.832NS | 磷P | 0.001NS | 0.177NS | 8.166** |
钠Na | 10.125** | 0.656NS | 31.730** |
Table 3 Binary analysis of variance for various indicators of M. sativa
指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT | 指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT |
---|---|---|---|---|---|---|---|
总生物量Total biomass | 5.941** | 0.565NS | 4.010* | 超氧化物歧化酶SOD | 0.579NS | 5.066** | 1.559NS |
根冠比Root/shoot | 2.357NS | 2.328NS | 0.853NS | 过氧化物酶POD | 10.346** | 5.650** | 8.662** |
叶绿素a Chlorophyll a | 6.289** | 3.223NS | 6.705** | 过氧化氢酶CAT | 2.644NS | 1.432NS | 0.256NS |
叶绿素b Chlorophyll b | 5.470** | 0.958NS | 14.474** | 铜锌超氧化物歧化酶基因表达量Cu/Zn-SOD gene expression level | 0.456NS | 7.234** | 2.449NS |
PSⅡ最大光合效率Fv/Fm | 2.603NS | 6.309** | 0.995NS | ||||
PSⅡ潜在活性Fv/Fo | 1.234NS | 4.078* | 2.759NS | 过氧化物酶基因表达量POD gene expression level | 8.366** | 5.523** | 19.761** |
净光合速率 Pn | 0.489NS | 6.091** | 2.909NS | 过氧化氢酶基因表达量CAT gene expression level | 2.344NS | 1.434NS | 0.678NS |
蒸腾速率 Tr | 5.956** | 2.050NS | 10.682** | 钾K | 2.402NS | 1.170NS | 23.001** |
气孔导度 Gs | 1.671NS | 1.398NS | 0.198NS | 氮N | 0.257NS | 0.286NS | 50.656** |
胞间CO2浓度 Ci | 5.662** | 4.324* | 2.832NS | 磷P | 0.001NS | 0.177NS | 8.166** |
钠Na | 10.125** | 0.656NS | 31.730** |
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 钾含量 K content | 氮含量 N content | 磷含量 P content | 钠含量 Na content |
---|---|---|---|---|---|
CK | 0 | 0.267±0.012f | 0.758±0.010f | 0.165±0.029d | 4.465±0.203a |
50 | 0.347±0.009e | 2.808±0.138bc | 0.362±0.081ab | 3.834±0.204b | |
100 | 0.576±0.015b | 2.935±0.596b | 0.411±0.049a | 2.400±0.116cd | |
150 | 0.427±0.020cd | 2.289±0.031de | 0.395±0.075ab | 3.766±0.201b | |
200 | 0.317±0.015ef | 1.780±0.149e | 0.257±0.024bcd | 4.367±0.103a | |
AMF | 0 | 0.353±0.026de | 1.169±0.231f | 0.205±0.052cd | 3.468±0.186b |
50 | 0.440±0.017c | 3.148±0.047b | 0.424±0.024a | 2.866±0.145c | |
100 | 0.683±0.038a | 3.986±0.592a | 0.456±0.053a | 2.133±0.089d | |
150 | 0.580±0.035b | 2.365±0.208cd | 0.415±0.020a | 2.832±0.145c | |
200 | 0.470±0.021c | 1.894±0.253de | 0.331±0.032abc | 3.400±0.058b |
Table 4 AMF and melatonin treatment effects on mineral element content of M. sativa (mmol·g-1)
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 钾含量 K content | 氮含量 N content | 磷含量 P content | 钠含量 Na content |
---|---|---|---|---|---|
CK | 0 | 0.267±0.012f | 0.758±0.010f | 0.165±0.029d | 4.465±0.203a |
50 | 0.347±0.009e | 2.808±0.138bc | 0.362±0.081ab | 3.834±0.204b | |
100 | 0.576±0.015b | 2.935±0.596b | 0.411±0.049a | 2.400±0.116cd | |
150 | 0.427±0.020cd | 2.289±0.031de | 0.395±0.075ab | 3.766±0.201b | |
200 | 0.317±0.015ef | 1.780±0.149e | 0.257±0.024bcd | 4.367±0.103a | |
AMF | 0 | 0.353±0.026de | 1.169±0.231f | 0.205±0.052cd | 3.468±0.186b |
50 | 0.440±0.017c | 3.148±0.047b | 0.424±0.024a | 2.866±0.145c | |
100 | 0.683±0.038a | 3.986±0.592a | 0.456±0.053a | 2.133±0.089d | |
150 | 0.580±0.035b | 2.365±0.208cd | 0.415±0.020a | 2.832±0.145c | |
200 | 0.470±0.021c | 1.894±0.253de | 0.331±0.032abc | 3.400±0.058b |
1 | Zeng H Q, Bai Y J, Wei Y X. Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany, 2022, 73(17): 5874-5885. |
2 | Ma Z K, Yang K, Wang J C, et al. Exogenous melatonin enhances the low phosphorus tolerance of barley roots of different genotypes. Cells, 2023, 12(10): 1397. |
3 | Xue Y W, Wang W J, Fu J J. Molecular mechanism research progress of melatonin-mediated abiotic/biotic stress response in plant. Hans Journal of Agricultural Sciences, 2019, 9(4): 323-330. |
4 | Arnao M B, Hernández-Ruiz J. Melatonin: A new plant hor-mone and/or a plant master regulator? Trends in Plant Science, 2019, 24(1): 38-48. |
5 | Kanwar M K, Yu J Q, Zhou J. Phytomelatonin: Recent advances and future prospects. Journal of Pineal Research, 2018, 65(4): e12526. |
6 | Liang T T, Zhang Y J, Li Y, et al. Physiological and molecular mechanisms of melatonin in alleviating waterlogging stress to plants. Plant Physiology Journal, 2023, 59(1): 44-54. |
梁甜甜, 张艳军, 李燕, 等. 褪黑素缓解植物涝渍胁迫的生理和分子机制. 植物生理学报, 2023, 59(1): 44-54. | |
7 | Li J W, Ma D M, Su L N, et al. Effects of exogenous melatonin on oat seedling growth and antioxidant system under salt stress. Acta Agrestia Sinica, 2023, 31(2): 396-403. |
李嘉文, 麻冬梅, 苏立娜, 等. 外源褪黑素对盐胁迫下燕麦幼苗生长及抗氧化系统的影响. 草地学报, 2023, 31(2): 396-403. | |
8 | Su L N, Ma D M, Li J W, et al. Implications of exogenous melatonin on the physiological and photosynthetic characteristics of the seedlings of two alfalfa varieties. Acta Agrestia Sinica, 2023, 31(3): 726-732. |
苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响. 草地学报, 2023, 31(3): 726-732. | |
9 | Yin J P, Wang Z Q, Qi M F, et al. Effects of melatonin application on photosynthetic function in tomato seedlings under salt stress. Chinese Journal of Ecology, 2019, 38(2): 467-475. |
尹赜鹏, 王珍琪, 齐明芳, 等. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响. 生态学杂志, 2019, 38(2): 467-475. | |
10 | Zhao L J, Ma D M, Wang W J, et al. Effect of exogenous melatonin on antioxidant capacity and photosynthetic efficiency of alfalfa seedling under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1355-1363. |
赵丽娟, 麻冬梅, 王文静, 等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响. 西北植物学报, 2021, 41(8): 1355-1363. | |
11 | Stevens K J, Wall C B, Janssen J A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L. and Eclipta prostrata L. grown under three levels of water availability. Mycorrhiza, 2011, 21(4): 279-288. |
12 | Deljou M J N, Marouf A, Hamedan H J. Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on gerbera cut flower (Gerbera jamesonii) production in soilless cultivation. Acta Horticulturae, 2014, 1034(32): 417-422. |
13 | Asrar A A, Abdel-Fattah G M, Elhindi K M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 2012, 50(2): 305-316. |
14 | Zhou X N, Yang L, Xu J, et al. Effects of inoculation with AM fungi on the growth of sunflower grown in soil with different saltinity. Journal of Agricultural Resources and Environment, 2020, 37(5): 744-752. |
周昕南, 杨亮, 许静, 等. 接种AM真菌对不同盐度土壤中向日葵生长的影响. 农业资源与环境学报, 2020, 37(5): 744-752. | |
15 | Jia T T, Chang W, Fan X X, et al. Effects of arbuscular mycorrhizal fungi on photosynthetic and chlorophyll fluorescence characteristics in Elaeagnus angustifolia seedlings under salt stress. Acta Ecologica Sinica, 2018, 38(4): 1337-1347. |
贾婷婷, 常伟, 范晓旭, 等. 盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响. 生态学报, 2018, 38(4): 1337-1347. | |
16 | Wang Y N, Tao S, Hua X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress. Acta Ecologica Sinica, 2018, 38(6): 2187-2194. |
王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响. 生态学报, 2018, 38(6): 2187-2194. | |
17 | Maeda Y. Plant salt tolerance and removal of salt in saline soil by plants. Bulletin of the Society of Sea Water Science, Japan, 2012, 66(2): 92-98. |
18 | Zhou X J, Huang H X, Zhang J X, et al. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2023, 32(2): 75-83. | |
19 | Lu Q, Yang L, Wang H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. elegans. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 29-36. |
鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应. 南京林业大学学报(自然科学版), 2020, 44(4): 29-36. | |
20 | Wang Y, Li J, Li S X. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析. 草业学报, 2023, 32(3): 107-117. | |
21 | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. |
刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. | |
22 | Wang X K. The principles and techniques of physiological and biochemical experiment of plants. Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006. | |
23 | Xing X L. Effects of exogenous proline and salicylic acid on physiological characteristics and antioxidant enzyme gene expression of alfalfa under saline-alkali stress. Shenyang: Liaoning University, 2020. |
邢晓琳. 外源脯氨酸和水杨酸对盐碱胁迫下紫花苜蓿生理特性及抗氧化酶基因表达的影响. 沈阳: 辽宁大学, 2020. | |
24 | Kenneth J L, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Ct method. Methods, 2001, 25(4): 402-408. |
25 | Bao S D. Soil agro-chemistrical analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
26 | Lu S, Guo H, Wang S M, et al. Effects of AM fungi on growth and physiological characters of Medicago sativa L. under NaCl stress. Journal of Soil and Water Conservation, 2011, 25(2): 227-231. |
陆爽, 郭欢, 王绍明, 等. 盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响. 水土保持学报, 2011, 25(2): 227-231. | |
27 | Duan Q Q, Yang X H, Huang X Z. Signal exchange between plants and arbuscular mycorrhizae fungi during the early stage of symbiosis-A review. Acta Microbiologica Sinica, 2015, 55(7): 819-825. |
段倩倩, 杨晓红, 黄先智. 植物与丛枝菌根真菌在共生早期的信号交流. 微生物学报, 2015, 55(7): 819-825. | |
28 | Pu Z T, Zhang L, Zhang C, et al. Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime. Soils, 2022, 54(5): 882-889. |
蒲子天, 张林, 张弛, 等. 丛枝菌根真菌与植物共生影响植物水分状态的研究进展. 土壤, 2022, 54(5): 882-889. | |
29 | Wei D, Peng Z, Jun P, et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Research, 2018, 33: 256-265. DOI: 10.1016/j.algal.2018.05.021. |
30 | Zhang N, Zhang H J, Zhao B, et al. The RNA-seqapproach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56(1): 39-50. |
31 | Wang W W, Shen F, Wu Y C, et al. Bio synthesis of melatonin and its role in plant stress: a review. Jiangsu Agricultural Sciences, 2022, 50(1): 1-6. |
王薇薇, 沈峰, 吴永成, 等. 褪黑素生物合成及其在植物逆境胁迫中的作用综述. 江苏农业科学, 2022, 50(1): 1-6. | |
32 | Sun C, Liu L, Wang L, et al. Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 2021, 63(1): 126-145. |
33 | Song X F, Gan C D, Zhao H Y, et al. Concentration-dependent effect of foliar spraying of melatonin on salt tolerance of rice. Acta Pedologica Sinica, 2018, 55(2): 455-466. |
宋雪飞, 甘淳丹, 赵海燕, 等. 叶面喷施褪黑素调控水稻幼苗耐盐性的浓度效应研究. 土壤学报, 2018, 55(2): 455-466. | |
34 | Maillet F, Poinsot V, André O, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58-63. |
35 | Garg N, Pandey R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza, 2015, 25(3): 165-180. |
36 | Hajiboland R, Dashtebani F, Aliasgharzad N. Physiological responses of halophytic C4, grass Aeluropus littoralis, to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica, 2015, 53(4): 572-584. |
37 | Guo A H. Influences of exogenous melatonin on seedling growth of Sonchus oleraceus L. under salt stress. Jiangsu Agricultural Sciences, 2022, 50(13): 153-157. |
郭爱华. 外源褪黑素对盐胁迫下苦菜幼苗生长的影响. 江苏农业科学, 2022, 50(13): 153-157. | |
38 | Yao Y T, Zhang G X, Ding S P, et al. Effects of salt stress on strawberry seedling growth and antioxidant system. Northern Horticulture, 2021(17): 22-29. |
姚玉涛, 张国新, 丁守鹏, 等. 盐胁迫对草莓苗期生长及氧化还原系统的影响. 北方园艺, 2021(17): 22-29. | |
39 | Yan M, Yao Y D, Mou K P, et al. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
闫梅, 姚彦东, 牟开萍, 等. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性. 浙江农业学报, 2022, 34(9): 1901-1910. | |
40 | Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. |
肖国增, 滕珂, 李林洁, 等. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. |
[1] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
[2] | Hai-xia DUAN, Qian SHI, Sheng-ping KANG, Hai-qing GOU, Chong-liang LUO, You-cai XIONG. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants [J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182. |
[3] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[4] | Cheng-fang GAO, Lei SANG, Shi-kun SUN, Dong-jin CHEN, Jin-xiang WANG, Xi-ping XIE. Effects of dietary supplementation with kudzu vine on apparent nutrient digestibility, intestinal development, and intestinal digestive enzyme activities in growing meat rabbits [J]. Acta Prataculturae Sinica, 2024, 33(4): 199-209. |
[5] | Lin-xi HUANG, Qian CHEN, Xian-yan ZHANG, Shun YAN, Yun YANG, Pei-yao XIN, Qiong WANG. Effect of two kinds of tree litter leaf extracts on soil enzyme activities and eco-enzymatic stoichiometry of Axonopus compressus [J]. Acta Prataculturae Sinica, 2024, 33(4): 35-46. |
[6] | Lu-ping MA, Zhao-yong SHI, Wen-jing WEI, Shuang YANG. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology [J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109. |
[7] | Ping-an BAO, Kai-yang QIU, Ye-yun HUANG, Si-yao WANG, Lu-yao CUI, Xin-yi LUO, Yun-tao YANG, Ying-zhong XIE. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
[8] | Peng DUAN, Rong-yi WEI, Fang-ping WANG, Bu-qing YAO, Zhi-zhong ZHAO, Bi-xia HU, Ci SONG, Ping YANG, Ting WANG. Effects of adding different nutrients on soil microbial carbon source utilization in degraded alpine wetland in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2024, 33(2): 138-153. |
[9] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[10] | Xu-qin BAI, Chun-yun JIA, Wen-shuan LI, Ya-min LI, Chang-feng LIU, Xiu-yun HAN, Mei-han CHU, Zong-qiang GONG, Xiao-jun LI. An investigation of foliar spraying of selenium fertilizer for selenium enrichment and cadmium reduction in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(1): 50-60. |
[11] | Jin-xiu HAN, Bin CHEN, Yan-ting LIU, Ru MENG, Li-yan JIN, Miao HE. Identification of CibHLH1 and its effect on photosynthetic characteristics in Chrysanthemum indicum var. aromaticum [J]. Acta Prataculturae Sinica, 2024, 33(1): 89-101. |
[12] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[13] | Jing TIAN, Cai-xia CAO, Li-ying HUANG, Juan-yan WU, Jian-guo ZHANG. Screening low-nutrient-tolerant lactic acid bacteria and their effects on the fermentation quality of silages from poor materials [J]. Acta Prataculturae Sinica, 2023, 32(9): 222-230. |
[14] | Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China [J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78. |
[15] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||