草业学报 ›› 2022, Vol. 31 ›› Issue (11): 172-180.DOI: 10.11686/cyxb2021416
南铭1(), 李晶2, 赵桂琴3(), 柴继宽3, 刘彦明2
收稿日期:
2021-11-15
修回日期:
2022-02-20
出版日期:
2022-11-20
发布日期:
2022-10-01
通讯作者:
赵桂琴
作者简介:
E-mail: zhaogq@gsau.edu.cn基金资助:
Ming NAN1(), Jing LI2, Gui-qin ZHAO3(), Ji-kuan CHAI3, Yan-ming LIU2
Received:
2021-11-15
Revised:
2022-02-20
Online:
2022-11-20
Published:
2022-10-01
Contact:
Gui-qin ZHAO
摘要:
倒伏是影响燕麦产量和品质的重要因子之一,开展燕麦抗倒伏生理机制研究对指导燕麦抗倒伏育种具有重要意义。本研究以燕麦品种蒙燕1号、坝燕6号为抗倒伏材料,以定燕2号和青引2号为易倒伏材料,分析不同倒伏类型燕麦品种茎秆基部伸长节间形态特征,酸性洗涤纤维、中性洗涤纤维,纤维素和木质素及其合成关键酶活性的差异,探讨茎秆基部第2伸长节间形态特征与木质素含量及其合成酶活性同燕麦抗倒伏能力之间的相互关系。结果表明,相比于易倒伏品种,抗倒伏品种倒伏程度轻,田间实际倒伏率低。易倒伏品种茎秆基部第2伸长节间长度较抗倒伏品种高34.17%、抗倒伏品种茎秆基部第2伸长节间粗度、秆壁厚、茎重、密度、充实度、抗折力、穿刺强度分别较易倒伏品种高29.11%、26.18%、25.80%、27.97%、34.61%、36.23%、36.60%,抗倒伏品种茎秆中木质素和纤维素含量显著(P<0.05)高于易倒伏品种。木质素含量与茎秆基部第2伸长节间抗折力和穿刺强度极显著(P<0.01)正相关,相关系数(r=0.9862,r=0.9638),与田间实际倒伏率显著(P<0.05)负相关,相关系数(r=-0.9407)。抗倒伏品种茎秆木质素合成酶酪氨酸解氨酶(TAL)、苯丙氨酸转氨酶(PAL)、肉桂醇脱氢酶(CAD)和4-香豆酸:CoA连接酶(4CL)活性高,促使茎秆基部第2伸长节间积累了大量的木质素,提高了细胞壁木质化强度,增大了茎秆机械强度,进而增强燕麦抗倒伏能力。
南铭, 李晶, 赵桂琴, 柴继宽, 刘彦明. 茎秆基部节间特性和木质素合成与燕麦抗倒伏的关系[J]. 草业学报, 2022, 31(11): 172-180.
Ming NAN, Jing LI, Gui-qin ZHAO, Ji-kuan CHAI, Yan-ming LIU. Relationship between lodging resistance of oats and the basal internode stem characteristics and lignin synthesis[J]. Acta Prataculturae Sinica, 2022, 31(11): 172-180.
指标 Index | 蒙燕1号 Mengyan No.1 | 坝燕6号 Bayan No.6 | 青引2号 Qingyin No.2 | 定燕2号 Dingyan No.2 |
---|---|---|---|---|
茎长Stem length (cm) | 6.68±1.36dD | 8.92±1.05cC | 10.40±1.53bB | 13.30±0.85aA |
茎粗Stem diameter (mm) | 6.76±0.15abAB | 7.08±0.26aA | 4.72±0.37cC | 5.09±0.49bB |
秆壁厚Wall thickness (mm) | 1.30±0.12aAB | 1.45±0.23aA | 0.95±0.23bB | 1.08±0.19bB |
茎重Stem weight (g) | 2.79±0.20abAB | 3.14±0.51aA | 1.56±0.38bB | 2.84±0.22abAB |
茎秆密度Stem density (g·cm-3) | 1.94±0.10aA | 1.67±0.22aAB | 1.21±0.31abB | 1.39±0.18abAB |
茎秆充实度Stem fullness (g·cm-1) | 0.14±0.02aA | 0.12±0.05aAB | 0.06±0.01bB | 0.11±0.04abAB |
抗折力Stem resistance (N) | 14.76±1.89aAB | 15.13±2.42aA | 8.16±1.73cC | 10.90±1.29bB |
茎秆穿刺强度Stem rind penetration strength (N) | 11.62±1.52aA | 11.27±2.19aA | 6.04±0.68cC | 8.47±1.43bB |
实际倒伏率Actual lodging rate (%) | 0 | 0 | 93.70±2.31aA | 85.10±3.26bB |
倒伏级别Lodging grade | 0 | 0 | 3 | 3 |
表1 燕麦茎秆指标与抗折力和实际倒伏率
Table 1 Stem index and breaking resistance and actual lodging rate of oat varieties
指标 Index | 蒙燕1号 Mengyan No.1 | 坝燕6号 Bayan No.6 | 青引2号 Qingyin No.2 | 定燕2号 Dingyan No.2 |
---|---|---|---|---|
茎长Stem length (cm) | 6.68±1.36dD | 8.92±1.05cC | 10.40±1.53bB | 13.30±0.85aA |
茎粗Stem diameter (mm) | 6.76±0.15abAB | 7.08±0.26aA | 4.72±0.37cC | 5.09±0.49bB |
秆壁厚Wall thickness (mm) | 1.30±0.12aAB | 1.45±0.23aA | 0.95±0.23bB | 1.08±0.19bB |
茎重Stem weight (g) | 2.79±0.20abAB | 3.14±0.51aA | 1.56±0.38bB | 2.84±0.22abAB |
茎秆密度Stem density (g·cm-3) | 1.94±0.10aA | 1.67±0.22aAB | 1.21±0.31abB | 1.39±0.18abAB |
茎秆充实度Stem fullness (g·cm-1) | 0.14±0.02aA | 0.12±0.05aAB | 0.06±0.01bB | 0.11±0.04abAB |
抗折力Stem resistance (N) | 14.76±1.89aAB | 15.13±2.42aA | 8.16±1.73cC | 10.90±1.29bB |
茎秆穿刺强度Stem rind penetration strength (N) | 11.62±1.52aA | 11.27±2.19aA | 6.04±0.68cC | 8.47±1.43bB |
实际倒伏率Actual lodging rate (%) | 0 | 0 | 93.70±2.31aA | 85.10±3.26bB |
倒伏级别Lodging grade | 0 | 0 | 3 | 3 |
图1 不同燕麦品种茎秆中纤维素和木质素含量KD-1:蒙燕1号;KD-2:坝燕6号;YD-1:青引2号;YD-2:定燕2号。不同字母表示0.05水平差异显著性,下同。KD-1: Mengyan 1; KD-2: Bayan 6; YD-1: Qingyin 2; YD-2: Dingyan 2. Different letters are significantly at the 0.05 probability level, the same below.
Fig.1 Cellulose and lignin content of stem in different oat varieties
指标 Index | 木质素含量 Lignin content | 茎秆抗折力 Stem breaking resistance | 茎秆穿刺强度 Stem rind penetration strength | 实际倒伏率 Actual lodging rate |
---|---|---|---|---|
茎长Stem length | -0.5655 | -0.8337 | -0.6346 | 0.8114 |
茎粗Stem width | 0.9725** | 0.9751** | 0.9529** | -0.9920** |
秆壁厚Wall thickness | 0.9936** | 0.9688** | 0.9358* | -0.9456* |
木质素含量Lignin content | 1.0000 | 0.9862** | 0.9638** | -0.9407* |
PAL活性PAL activity | 0.9216* | 0.9661** | 0.9872** | -0.8892* |
TAL活性TAL activity | 0.9160* | 0.9440* | 0.9740** | -0.8685* |
4CL活性4CL activity | 0.8863* | 0.6748 | 0.6474 | -0.8477 |
CAD活性CAD activity | 0.9044* | 0.9522** | 0.9728** | -0.6601 |
表2 茎秆木质素含量及其酶活性与抗倒伏能力的相关系数
Table 2 Correlation coefficients of lignin content and related enzyme activity with lodging resistance
指标 Index | 木质素含量 Lignin content | 茎秆抗折力 Stem breaking resistance | 茎秆穿刺强度 Stem rind penetration strength | 实际倒伏率 Actual lodging rate |
---|---|---|---|---|
茎长Stem length | -0.5655 | -0.8337 | -0.6346 | 0.8114 |
茎粗Stem width | 0.9725** | 0.9751** | 0.9529** | -0.9920** |
秆壁厚Wall thickness | 0.9936** | 0.9688** | 0.9358* | -0.9456* |
木质素含量Lignin content | 1.0000 | 0.9862** | 0.9638** | -0.9407* |
PAL活性PAL activity | 0.9216* | 0.9661** | 0.9872** | -0.8892* |
TAL活性TAL activity | 0.9160* | 0.9440* | 0.9740** | -0.8685* |
4CL活性4CL activity | 0.8863* | 0.6748 | 0.6474 | -0.8477 |
CAD活性CAD activity | 0.9044* | 0.9522** | 0.9728** | -0.6601 |
1 | Ren C Z, Hu Y G, Liu J H. Chinese oat science. Beijing: China Agriculture Press, 2013: 1-4 . |
任长忠, 胡跃高, 刘景辉. 中国燕麦学. 北京: 中国农业出版社, 2013: 1-4. | |
2 | Zhang Y, Chen Z F, Zhang X N, et al. Effects of different cutting periods on the yield and quality of spring and autumn oat hay. Acta Prataculturae Sinica, 2016, 25(11): 124-135. |
张莹, 陈志飞, 张晓娜, 等. 不同刈割期对春播、秋播燕麦干草产量和品质的影响. 草业学报, 2016, 25(11): 124-135. | |
3 | Mu P, Zhao G Q, Chai J K. Analysis of the production performance and adaptability of oats in different ecological regions of Gansu Province based on GGE-Biplot. Chinese Journal of Eco-Agriculture, 2015, 23(6): 705-712. |
慕平, 赵桂琴, 柴继宽. 基于GGE-Biplot的甘肃省不同生态区燕麦生产性能及适应性分析. 中国生态农业学报, 2015, 23(6): 705-712. | |
4 | Nan M, Zhao G Q, Li J, et al. Correlation analysis and synthesize evaluation of yield and quality introduced oat varieties in the semi-arid of Northwest. Acta Agrestia Sinica, 2018, 26(1): 126-133. |
南铭, 赵桂琴, 李晶, 等. 西北半干旱区引种燕麦品种产量与品质的关联分析及评价. 草地学报, 2018, 26(1): 126-133. | |
5 | Liang G L, Liu W H, Zhang Y C, et al.Effect of lodging on the grain filling process and non-structure carbohydrate of oats. Acta Agrestia Sinica, 2020, 28(4): 1024-1033. |
梁国玲, 刘文辉, 张永超, 等. 倒伏发生对燕麦籽粒灌浆进程及非结构性碳水化合物的影响. 草地学报, 2020, 28(4): 1024-1033. | |
6 | Nan M, Zhao G Q, Li J, et al.Research of lodging-resistance and the stem morphological characteristics of different Avena sativa L. varieties. Acta Agrestia Sinica, 2018, 26(6): 1383-1391. |
南铭, 赵桂琴, 李晶, 等. 不同燕麦品种茎秆形态特征与抗倒伏性的关系. 草地学报, 2018, 26(6): 1383-1391. | |
7 | Yang Y H, Zhu Z, Zhang Y D, et al. The relationship between lodging resistance and stem morphological traits of different rice varieties (lines). Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 231-235. |
杨艳华, 朱镇, 张亚东, 等. 不同水稻品种(系)抗倒伏能力与茎秆形态性状的关系. 江苏农业学报, 2011, 27(2): 231-235. | |
8 | Hu H, Li S S, Hua H, et al. The morphological and structural characteristics of main stems of different wheat varieties and their relationship with lodging. Acta Triticeae Sinica, 2017, 37(10): 1343-1348. |
胡昊, 李莎莎, 华慧, 等. 不同小麦品种主茎茎秆形态结构特征及其与倒伏的关系. 麦类作物学报, 2017, 37(10): 1343-1348. | |
9 | Chen X G, Shi C Y, Yin Y P, et al. Lignin metabolism of wheat stalk and its relationship with lodging resistance. Acta Agronomica Sinica, 2011, 37: 1616-1622. |
陈晓光, 史春余, 尹燕枰, 等. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622. | |
10 | Luo M C, Tian C T, Li X J, et al. Overview of the relationship between rice culm morphology and chemical composition and lodging resistance. Northwestern Journal of Botany, 2007, 27: 2346-2353. |
罗茂春, 田翠婷, 李晓娟, 等. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346-2353. | |
11 | Ma Y H, Wang Q X. Research progress on the relationship between corn stalk traits and lodging resistance. Crop Journal, 2012(2): 10-15. |
马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012(2): 10-15. | |
12 | Zou J L, Liu W G, Yuan J. The relationship between lignin synthesis and lodging resistance in the stalks of relay-cropped soybeans at seedling stage. Acta Agronomica Sinica, 2015, 41: 1098-1104. |
邹俊林, 刘卫国, 袁晋. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41: 1098-1104. | |
13 | Wang C, Ruan R W, Yuan X H, et al. The anatomical structure and lignin metabolism of buckwheat stalk and their relationship with lodging resistance. Acta Agronomica Sinica, 2014, 40: 1846-1856. |
汪灿, 阮仁武, 袁晓辉, 等. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40: 1846-1856. | |
14 | Wang K, Zhao X H, Yao X H, et al. Relationship between culm characteristics and lignin synthesis and lodging resistance of highland barley. Acta Agronomica Sinica, 2019, 45(4): 621-627. |
王凯, 赵小红, 姚晓华, 等. 茎秆特性和木质素合成与青稞抗倒伏关系. 作物学报, 2019, 45(4): 621-627. | |
15 | Huang J H, Li W, Qu C M, et al. Expression characteristics of key genes in lignin metabolism pathway in different lodging resistance materials in Brassica napus. Acta Agronomica Sinica, 2013, 39(8): 1339-1344. |
黄杰恒, 李威, 曲存民, 等. 甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点. 作物学报, 2013, 39(8): 1339-1344. | |
16 | Liu X T, Wang J, Hou X F, et al. Functions and research progress of lignin and its synthetic genes in crop resistance lodging. Molecular Plant Breeding, 2019, 17(2): 655-662. |
刘欣婷, 王娟, 侯献飞, 等. 木质素及其合成基因在作物抗倒伏中的功能及其研究进展. 分子植物育种, 2019, 17(2): 655-662. | |
17 | Chi N L. Determination of insoluble carbohydrates in plant fiber. Shanghai: Fudan University, 2012. |
池宁琳. 植物纤维中不溶性碳水化合物的测定. 上海: 复旦大学, 2012. | |
18 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
19 | Ren C Z, Yang C. History of Chinese oat varieties. Beijing: China Agriculture Press, 2018: 23. |
任长忠, 杨才. 中国燕麦品种志. 北京: 中国农业出版社, 2018: 23. | |
20 | Li W, Xiong J, Chen X Y. The physiological significance of lignin metabolism and its genetic control research progress. Northwestern Journal of Botany, 2003, 23: 675-681. |
李伟, 熊谨, 陈晓阳. 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003, 23: 675-681. | |
21 | Zhou R, Wang X Z, Chen H F, et al. QTL analysis of lodging and related traits in soybean. Acta Agronomica Sinica, 2009, 35(1): 57-65. |
周蓉, 王贤智, 陈海峰, 等. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35(1): 57-65. | |
22 | Guan Y A, Li J H, Ren L J, et al. Research on the lodging of cereal crops. Shandong Agricultural Sciences, 1998(5): 50-54. |
管延安, 李建和, 任莲菊, 等. 禾谷类作物倒伏性的研究. 山东农业科学, 1998(5): 50-54. | |
23 | Yao J B, Ma H X, Yao G C, et al. Research progress in wheat lodging resistance. Journal of Plant Genetic Resources, 2013, 14(2): 208-213. |
姚金保, 马鸿翔, 姚国才, 等. 小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14(2): 208-213. | |
24 | Naked Oats, Grain Production Room, Inner Mongolia Agricultural Research Institute. Preliminary study on morphological characteristics of lodging resistance varieties of naked oats. Inner Mongolia Agricultural Science and Technology, 1978(2): 19-21. |
内蒙古农研所粮作室莜麦专业课题组. 莜麦抗倒伏品种形态特征的初步研究. 内蒙古农业科技, 1978(2): 19-21. | |
25 | Pinthus M J. Lodging in wheat, barley, and oats: The phe-nomenon, its cause, and preventive measures. Advances in Agronomy, 1973(25): 209-263. |
26 | Peng D L. The relationship between wheat lodging and stalk lignin metabolism and its effects on grain yield and starch characteristics. Tai’an: Shandong Agricultural University, 2014: 31-39. |
彭佃亮. 小麦倒伏与茎杆木质素代谢的关系及其对籽粒产量和淀粉特征的影响. 泰安: 山东农业大学, 2014: 31-39. | |
27 | Wang C, Hu D, Liu X B, et al. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.) . Field Crops Research, 2015, 180: 46-53. |
28 | Zhao X H, Bai Y X, Wang K, et al. Effects of planting density on lodging resistance and straw feeding characteristics of two highland barley varieties. Acta Agronomica Sinica, 2020, 46(4): 586-595. |
赵小红, 白羿雄, 王凯, 等. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020, 46(4): 586-595. | |
29 | Ahmad I, Kamran M, Ali S, et al. Uniconazole applicanon strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 2018, 222: 66-77. |
30 | Baucher M, Monties B, Van Montagu M, et al. Biosynthesis and genetic engineer in lignin. Critical Review Plant Science, 1998, 17: 125-197. |
31 | Lu K L, Yin Y P, Wang Z L, et al. Effect of nitrogen application period on lignin synthesis of wheat stalk and its physiological mechanism of lodging resistance. Acta Agronomica Sinica, 2014, 40: 1686-1694. |
卢昆丽, 尹燕枰, 王振林, 等. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014, 40: 1686-1694. | |
32 | Ran X Z. Research progress of enzymes in lignin biosynthesis metabolism. Chinese Agricultural Science Bulletin, 2009, 25(3): 23-27. |
冉秀芝. 木质素生物合成代谢中酶学研究进展. 中国农学通报, 2009, 25(3): 23-27. | |
33 | Luo Z S. The effect of GA3 treatment on the lignification and endogenous hormone levels of postharvest bamboo shoots. Acta Horticulture, 2005, 32: 454-457. |
罗自生. GA3处理对采后竹笋木质化及内源激素水平的影响. 园艺学报, 2005, 32: 454-457. | |
34 | Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 2002, 162: 491-498. |
35 | Liu X Y, Jin J Y, He P, et al. The effect of potassium chloride on corn lignin metabolism and its relationship with stalk rot resistance. Chinese Agricultural Sciences, 2007, 40: 2780-2787. |
刘晓燕, 金继运, 何萍, 等. 氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系. 中国农业科学, 2007, 40: 2780-2787. | |
36 | Boerjanl W, Ralph J, Baucher M. Lignin biosynthesis. Plant Biology, 2003, 54: 519-546. |
37 | Shi H Y, Zhang Y X. Molecular characteristics of key enzyme genes in the biosynthetic pathway of lignin. Chinese Agricultural Science Bulletin, 2011, 27(5): 288-291. |
石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. 中国农学通报, 2011, 27(5): 288-291. |
[1] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
[2] | 田吉鹏, 刘蓓一, 顾洪如, 丁成龙, 程云辉, 玉柱. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2022, 31(8): 157-166. |
[3] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[4] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[5] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[6] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[7] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[8] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[9] | 李海萍, 关皓, 贾志锋, 刘文辉, 马祥, 刘勇, 汪辉, 马力, 周青平. 抗冻融乳酸菌的筛选及其对燕麦青贮品质和有氧稳定性的影响[J]. 草业学报, 2022, 31(12): 158-170. |
[10] | 王星宇, 程静, 高生, 李默涵, 杨满霞, 葛军勇, 周海涛, 李云霞, 臧华栋, 左文博. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性[J]. 草业学报, 2022, 31(12): 76-84. |
[11] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[12] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[13] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[14] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[15] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||