草业学报 ›› 2025, Vol. 34 ›› Issue (5): 171-188.DOI: 10.11686/cyxb2024238
• 研究论文 • 上一篇
张敏1,2(
), 杨锐1,2, 黄逸州3, 林芷昕2, 郑贤跃2, 刘庆华2, 高玉云2, 林冬梅1, 林占熺1(
), 金灵1(
)
收稿日期:2024-06-18
修回日期:2024-08-30
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
林占熺,金灵
作者简介:lingjin5@fafu.edu.cn基金资助:
Min ZHANG1,2(
), Rui YANG1,2, Yi-zhou HUANG3, Zhi-xin LIN2, Xian-yue ZHENG2, Qing-hua LIU2, Yu-yun GAO2, Dong-mei LIN1, Zhan-xi LIN1(
), Ling JIN1(
)
Received:2024-06-18
Revised:2024-08-30
Online:2025-05-20
Published:2025-03-20
Contact:
Zhan-xi LIN,Ling JIN
摘要:
本试验旨在探究巨菌草替代不同水平基础饲粮对育肥从江香猪生长性能及肠道健康的影响。选取6月龄体重相近的健康从江香猪30头,随机分为3组(每组5个重复,每个重复2头)。对照组饲喂100%基础饲粮,试验Ⅰ、Ⅱ组分别用新鲜青绿巨菌草替代10%、20%基础饲粮,试验期90 d。通过测定育肥从江香猪生长性能、肠道发育、肠道机械屏障和盲肠菌群结构,并进行经济效益分析,为巨菌草在猪的生产应用中提供理论依据。本试验主要结果如下:1)生长性能:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪生长性能及胴体性状各指标无显著差异(P>0.05)。巨菌草不计成本时,与对照组相比,试验Ⅰ组的增重成本降低8.73%,试验Ⅱ组降低11.59%;巨菌草按市场价格0.35元·kg-1计算时,试验Ⅰ组的增重成本降低2.78%,试验Ⅱ组增加1.35%。2)肠道发育:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪胃的相对重量显著提高(P<0.05),小肠相对重量有升高的趋势(P=0.092)。与对照组相比,试验Ⅰ组育肥从江香猪回肠隐窝深度显著降低(P<0.05),回肠绒毛高度/隐窝深度(V/C)、空肠GLP-2和回肠IGF-1R基因表达量显著提高(P<0.05);试验Ⅱ组育肥从江香猪回肠绒毛高度、V/C及空肠GLP-2基因表达量显著提高(P<0.05)。3)肠道免疫及机械屏障:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪回肠IFN-γ含量显著降低,试验Ⅱ组空肠TGF-β含量显著提高(P<0.05);试验Ⅰ、Ⅱ组回肠ZO-1基因表达量显著提高,试验Ⅱ组空肠Occludin基因表达量显著提高(P<0.05)。4)盲肠微生物区系:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪Shannon指数显著提高,链球菌属相对丰度显著下降(P<0.05)。试验Ⅰ组和试验Ⅱ组毛螺菌科未分类菌属有上升趋势(P=0.065),螺旋体门(P=0.085)、密螺旋体属(P=0.085)有下降趋势。综上所述,巨菌草替代部分基础饲粮对育肥从江香猪生长性能、胴体性状无显著影响,但可提高经济效益并促进胃肠道的发育,提升肠道屏障功能,有利于肠道健康。巨菌草不计成本时,替代20%基础饲粮为宜,巨菌草按市场价格0.35元·kg-1计算时,替代10%基础饲粮为宜。
张敏, 杨锐, 黄逸州, 林芷昕, 郑贤跃, 刘庆华, 高玉云, 林冬梅, 林占熺, 金灵. 巨菌草对育肥从江香猪生长性能及肠道健康的影响[J]. 草业学报, 2025, 34(5): 171-188.
Min ZHANG, Rui YANG, Yi-zhou HUANG, Zhi-xin LIN, Xian-yue ZHENG, Qing-hua LIU, Yu-yun GAO, Dong-mei LIN, Zhan-xi LIN, Ling JIN. Effects of Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs[J]. Acta Prataculturae Sinica, 2025, 34(5): 171-188.
项目 Items | 含量Content | ||
|---|---|---|---|
对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | |
| 原料Ingredients | |||
| 玉米Corn (%) | 76.97 | 69.27 | 61.57 |
| 小麦麸Wheat bran (%) | 2.04 | 1.84 | 1.63 |
| 豆粕Soybean meal (%) | 18.02 | 16.22 | 14.42 |
| 巨菌草鲜草(干物质)Fresh P. giganteum (dry matter) (%) | 0 | 10 | 20 |
| 食盐NaCl (%) | 0.30 | 0.27 | 0.24 |
| 石粉Limestone (%) | 0.86 | 0.77 | 0.69 |
| 磷酸氢钙CaHPO4 (%) | 0.70 | 0.63 | 0.56 |
| L-赖氨酸盐酸盐L-Lys·HCl (%) | 0.11 | 0.10 | 0.09 |
| 预混料Premix1) (%) | 1.00 | 0.90 | 0.80 |
| 合计Total (%) | 100.00 | 100.00 | 100.00 |
| 营养水平Nutrient levels2) | |||
| 消化能Digestible energy (MJ·kg-1) | 13.81 | 12.95 | 12.09 |
| 粗蛋白质Crude protein (%) | 14.50 | 13.88 | 13.25 |
| 中性洗涤纤维Neutral detergent fiber (%) | 10.91 | 15.04 | 19.18 |
| 酸性洗涤纤维Acid detergent fiber (%) | 4.36 | 7.47 | 10.58 |
| 钙Calcium (%) | 0.55 | 0.54 | 0.53 |
| 非植酸磷Non-phytate phosphorus (%) | 0.20 | 0.20 | 0.20 |
| 赖氨酸Lysine (%) | 0.74 | 0.71 | 0.67 |
| 蛋氨酸+胱氨酸Methionine+cystine (%) | 0.50 | 0.48 | 0.45 |
表1 饲粮组成及营养水平(风干基础)
Table 1 Composition and nutrient levels of diets (air-dry basis)
项目 Items | 含量Content | ||
|---|---|---|---|
对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | |
| 原料Ingredients | |||
| 玉米Corn (%) | 76.97 | 69.27 | 61.57 |
| 小麦麸Wheat bran (%) | 2.04 | 1.84 | 1.63 |
| 豆粕Soybean meal (%) | 18.02 | 16.22 | 14.42 |
| 巨菌草鲜草(干物质)Fresh P. giganteum (dry matter) (%) | 0 | 10 | 20 |
| 食盐NaCl (%) | 0.30 | 0.27 | 0.24 |
| 石粉Limestone (%) | 0.86 | 0.77 | 0.69 |
| 磷酸氢钙CaHPO4 (%) | 0.70 | 0.63 | 0.56 |
| L-赖氨酸盐酸盐L-Lys·HCl (%) | 0.11 | 0.10 | 0.09 |
| 预混料Premix1) (%) | 1.00 | 0.90 | 0.80 |
| 合计Total (%) | 100.00 | 100.00 | 100.00 |
| 营养水平Nutrient levels2) | |||
| 消化能Digestible energy (MJ·kg-1) | 13.81 | 12.95 | 12.09 |
| 粗蛋白质Crude protein (%) | 14.50 | 13.88 | 13.25 |
| 中性洗涤纤维Neutral detergent fiber (%) | 10.91 | 15.04 | 19.18 |
| 酸性洗涤纤维Acid detergent fiber (%) | 4.36 | 7.47 | 10.58 |
| 钙Calcium (%) | 0.55 | 0.54 | 0.53 |
| 非植酸磷Non-phytate phosphorus (%) | 0.20 | 0.20 | 0.20 |
| 赖氨酸Lysine (%) | 0.74 | 0.71 | 0.67 |
| 蛋氨酸+胱氨酸Methionine+cystine (%) | 0.50 | 0.48 | 0.45 |
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
β-肌动蛋白 β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
胰岛素样生长因子-1 Insulin-like growth factor 1 (IGF-1) | F: CTGAGGAGGCTGGAGATGTACT R: CCTGAACTCCCTCTACTTGTGTTC | |
胰岛素样生长因子-1受体 Insulin-like growth factor 1 receptor (IGF-1R) | F: GGAGGAAGTGACAGGGACTAAAGG R: GGTGCCAGGTGATGATGATGC | |
胰高血糖素样肽-2 Glucagon-like peptide-2 (GLP-2) | F: ACTCACAGGGCACGTTTACCA R: AGGTCCCTTCAGCATGTCTCT |
表2 肠道发育相关基因和内参基因的引物序列
Table 2 Primer sequences for genes related to intestinal development and reference gene
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
β-肌动蛋白 β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
胰岛素样生长因子-1 Insulin-like growth factor 1 (IGF-1) | F: CTGAGGAGGCTGGAGATGTACT R: CCTGAACTCCCTCTACTTGTGTTC | |
胰岛素样生长因子-1受体 Insulin-like growth factor 1 receptor (IGF-1R) | F: GGAGGAAGTGACAGGGACTAAAGG R: GGTGCCAGGTGATGATGATGC | |
胰高血糖素样肽-2 Glucagon-like peptide-2 (GLP-2) | F: ACTCACAGGGCACGTTTACCA R: AGGTCCCTTCAGCATGTCTCT |
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
| β-肌动蛋白β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
| 闭合蛋白-1 Claudin-1 | F: TCTTAGTTGCCACAGCATGG R: CCAGTGAAGAGAGCCTGACC | |
| 闭锁蛋白Occludin | F: ATGCTTTCTCAGCCAGCGTA R: AAGGTTCCATAGCCTCGGTC | |
| 闭合小环蛋白-1 Zonula occludens-1 (ZO-1) | F: GAGGATGGTCACACCGTGGT R: GGAGGATGCTGTTGTCTCGG |
表3 小肠紧密连接蛋白基因和内参基因的引物序列
Table 3 Primer sequences for small intestinal tight junction protein genes and reference gene
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
| β-肌动蛋白β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
| 闭合蛋白-1 Claudin-1 | F: TCTTAGTTGCCACAGCATGG R: CCAGTGAAGAGAGCCTGACC | |
| 闭锁蛋白Occludin | F: ATGCTTTCTCAGCCAGCGTA R: AAGGTTCCATAGCCTCGGTC | |
| 闭合小环蛋白-1 Zonula occludens-1 (ZO-1) | F: GAGGATGGTCACACCGTGGT R: GGAGGATGCTGTTGTCTCGG |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 初重Initial weight (kg) | 28.65±0.34a | 28.65±0.23a | 28.81±0.16a | 0.895 |
| 末重Final weight (kg) | 61.75±1.20a | 61.26±1.48a | 58.83±0.57a | 0.264 |
| 平均日增重ADG (g) | 367.78±9.59a | 362.33±15.16a | 333.61±5.03a | 0.140 |
| 基础饲粮平均日采食量Basal diets ADFI (kg·d-1) | 1.30 | 1.17 | 1.04 | - |
| 巨菌草平均日采食量P. giganteum ADFI (kg·d-1) | 0 | 0.78 | 1.55 | - |
表4 巨菌草对育肥从江香猪生长性能的影响
Table 4 Effects of P. giganteum on growth performance of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 初重Initial weight (kg) | 28.65±0.34a | 28.65±0.23a | 28.81±0.16a | 0.895 |
| 末重Final weight (kg) | 61.75±1.20a | 61.26±1.48a | 58.83±0.57a | 0.264 |
| 平均日增重ADG (g) | 367.78±9.59a | 362.33±15.16a | 333.61±5.03a | 0.140 |
| 基础饲粮平均日采食量Basal diets ADFI (kg·d-1) | 1.30 | 1.17 | 1.04 | - |
| 巨菌草平均日采食量P. giganteum ADFI (kg·d-1) | 0 | 0.78 | 1.55 | - |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ |
|---|---|---|---|
| 巨菌草成本按0元·kg-1计算P. giganteum are calculated at a cost of 0 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 11.50 | 11.14 |
| 节约增重成本Save weight gain costs (%) | 0 | 8.73 | 11.59 |
| 巨菌草按市场价格0.35元·kg-1计算P. giganteum are calculated at a cost of 0.35 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 12.25 | 12.77 |
| 节约增重成本Save weight gain costs (%) | 0 | 2.78 | -1.35 |
表5 巨菌草对育肥从江香猪经济效益的影响
Table 5 Effects of P. giganteum on economic benefits of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ |
|---|---|---|---|
| 巨菌草成本按0元·kg-1计算P. giganteum are calculated at a cost of 0 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 11.50 | 11.14 |
| 节约增重成本Save weight gain costs (%) | 0 | 8.73 | 11.59 |
| 巨菌草按市场价格0.35元·kg-1计算P. giganteum are calculated at a cost of 0.35 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 12.25 | 12.77 |
| 节约增重成本Save weight gain costs (%) | 0 | 2.78 | -1.35 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 屠宰率Dressing percentage (%) | 67.44±0.78a | 68.14±1.17a | 64.93±0.84a | 0.078 |
| 板油率Leaf lard percentage (%) | 2.24±0.50a | 1.78±0.29a | 1.83±0.34a | 0.666 |
| 背膘厚Backfat thickness (mm) | 29.86±0.98a | 26.33±2.49a | 25.92±3.33a | 0.483 |
| 眼肌面积Loin-eye area (cm2) | 31.10±4.51a | 30.35±2.84a | 27.56±2.80a | 0.754 |
表6 巨菌草对育肥从江香猪胴体性状的影响
Table 6 Effects of P. giganteum on carcass traits of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 屠宰率Dressing percentage (%) | 67.44±0.78a | 68.14±1.17a | 64.93±0.84a | 0.078 |
| 板油率Leaf lard percentage (%) | 2.24±0.50a | 1.78±0.29a | 1.83±0.34a | 0.666 |
| 背膘厚Backfat thickness (mm) | 29.86±0.98a | 26.33±2.49a | 25.92±3.33a | 0.483 |
| 眼肌面积Loin-eye area (cm2) | 31.10±4.51a | 30.35±2.84a | 27.56±2.80a | 0.754 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 胃肠道相对重量Gastrointestinal tract relative weight (g·kg-1) | ||||
| 胃相对重量Stomach relative weight | 8.88±0.16b | 11.38±0.84a | 11.21±0.57a | 0.008 |
| 小肠相对重量Small intestine relative weight | 17.36±1.22a | 18.77±1.28a | 22.42±1.96a | 0.092 |
| 大肠相对重量Large intestine relative weight | 15.50±1.81a | 16.40±0.85a | 17.90±0.52a | 0.384 |
| 胃肠道相对长度Gastrointestinal tract relative length (cm·kg-1) | ||||
| 小肠相对长度Small intestine relative length | 22.29±1.10a | 22.86±0.94a | 24.25±0.69a | 0.338 |
| 大肠相对长度Large intestine relative length | 6.24±0.54a | 6.32±0.26a | 7.00±0.09a | 0.275 |
表7 巨菌草对育肥从江香猪胃肠道相对重量及长度的影响
Table 7 Effects of P. giganteum on gastrointestinal tract (GIT) relative weight and relative length of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 胃肠道相对重量Gastrointestinal tract relative weight (g·kg-1) | ||||
| 胃相对重量Stomach relative weight | 8.88±0.16b | 11.38±0.84a | 11.21±0.57a | 0.008 |
| 小肠相对重量Small intestine relative weight | 17.36±1.22a | 18.77±1.28a | 22.42±1.96a | 0.092 |
| 大肠相对重量Large intestine relative weight | 15.50±1.81a | 16.40±0.85a | 17.90±0.52a | 0.384 |
| 胃肠道相对长度Gastrointestinal tract relative length (cm·kg-1) | ||||
| 小肠相对长度Small intestine relative length | 22.29±1.10a | 22.86±0.94a | 24.25±0.69a | 0.338 |
| 大肠相对长度Large intestine relative length | 6.24±0.54a | 6.32±0.26a | 7.00±0.09a | 0.275 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 空肠Jejunum | ||||
| 绒毛高度Villous height (V, μm) | 903.68±83.76a | 859.67±51.07a | 846.77±29.63a | 0.780 |
| 隐窝深度Crypt depth (C, μm) | 539.08±19.42a | 491.84±34.26a | 489.05±37.78a | 0.710 |
| 绒毛高度/隐窝深度V/C | 1.71±0.12a | 1.82±0.11a | 1.84±0.13a | 0.473 |
| 回肠Ileum | ||||
| 绒毛高度Villous height (V, μm) | 806.74±28.02b | 813.14±8.61b | 910.38±29.87a | 0.017 |
| 隐窝深度Crypt depth (C, μm) | 539.77±7.42a | 447.13±27.26b | 505.58±26.36ab | 0.037 |
| 绒毛高度/隐窝深度V/C | 1.51±0.05b | 1.90±0.10a | 1.90±0.12a | 0.017 |
表8 巨菌草对育肥从江香猪肠道形态结构的影响
Table 8 Effects of P. giganteum on intestinal morphology of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 空肠Jejunum | ||||
| 绒毛高度Villous height (V, μm) | 903.68±83.76a | 859.67±51.07a | 846.77±29.63a | 0.780 |
| 隐窝深度Crypt depth (C, μm) | 539.08±19.42a | 491.84±34.26a | 489.05±37.78a | 0.710 |
| 绒毛高度/隐窝深度V/C | 1.71±0.12a | 1.82±0.11a | 1.84±0.13a | 0.473 |
| 回肠Ileum | ||||
| 绒毛高度Villous height (V, μm) | 806.74±28.02b | 813.14±8.61b | 910.38±29.87a | 0.017 |
| 隐窝深度Crypt depth (C, μm) | 539.77±7.42a | 447.13±27.26b | 505.58±26.36ab | 0.037 |
| 绒毛高度/隐窝深度V/C | 1.51±0.05b | 1.90±0.10a | 1.90±0.12a | 0.017 |
图1 巨菌草对育肥从江香猪空肠肠道发育相关基因表达的影响IGF-1: 胰岛素样生长因子-1 Insulin-like growth factor 1; IGF-1R: 胰岛素样生长因子-1受体Insulin-like growth factor 1 receptor; GLP-2: 胰高血糖素样肽-2 Glucagon-like peptide-2. 不同小写字母表示不同处理间存在显著差异(P<0.05),0.05≤P<0.10表示有趋势,下同。Different lowercase letters mean significant differences among different treatments (P<0.05); 0.05≤P<0.10 indicates a trend, the same below.
Fig.1 Effects of P. giganteum on gene expression level of intestinal development in jejunum of finishing Congjiang Xiang pigs
图2 巨菌草对育肥从江香猪回肠肠道发育相关基因表达的影响
Fig.2 Effects of P. giganteum on gene expression level of intestinal development in ileum of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 338.19±26.39a | 329.35±34.87a | 375.16±54.05a | 0.691 |
| 白介素-6 Interleukin-6 (IL-6) | 482.70±27.33a | 447.46±33.76a | 468.63±36.22a | 0.731 |
| 白介素-10 Interleukin-10 (IL-10) | 136.96±6.48a | 140.27±10.82a | 147.66±17.72a | 0.829 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 99.24±4.13a | 97.67±4.60a | 105.35±1.25a | 0.323 |
| 干扰素-γ Interferon-γ (IFN-γ) | 21.61±1.40a | 22.91±1.92a | 26.89±3.28a | 0.289 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 4245±257b | 5002±497ab | 6427±602a | 0.021 |
表9 巨菌草对育肥从江香猪空肠细胞因子的影响
Table 9 Effects of P. giganteum on jejunum cytokines of finishing Congjiang Xiang pigs (pg·mg-1 prot)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 338.19±26.39a | 329.35±34.87a | 375.16±54.05a | 0.691 |
| 白介素-6 Interleukin-6 (IL-6) | 482.70±27.33a | 447.46±33.76a | 468.63±36.22a | 0.731 |
| 白介素-10 Interleukin-10 (IL-10) | 136.96±6.48a | 140.27±10.82a | 147.66±17.72a | 0.829 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 99.24±4.13a | 97.67±4.60a | 105.35±1.25a | 0.323 |
| 干扰素-γ Interferon-γ (IFN-γ) | 21.61±1.40a | 22.91±1.92a | 26.89±3.28a | 0.289 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 4245±257b | 5002±497ab | 6427±602a | 0.021 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 728.76±85.09a | 586.90±46.46a | 723.17±58.09a | 0.223 |
| 白介素-6 Interleukin-6 (IL-6) | 1032.87±125.42a | 834.07±41.41a | 1043.27±81.61a | 0.219 |
| 白介素-10 Interleukin-10 (IL-10) | 313.59±33.99a | 263.04±11.29a | 332.65±22.38a | 0.156 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 237.39±23.15a | 196.57±4.92a | 246.83±18.39a | 0.134 |
| 干扰素-γ Interferon-γ (IFN-γ) | 51.91±4.60a | 37.17±1.88b | 41.58±0.98b | 0.011 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 1016.15±125.91a | 954.25±79.64a | 1095.24±100.36a | 0.619 |
表10 巨菌草对育肥从江香猪回肠细胞因子的影响
Table 10 Effects of P. giganteum on ileum cytokines of finishing Congjiang Xiang pigs (pg·mg-1 prot)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 728.76±85.09a | 586.90±46.46a | 723.17±58.09a | 0.223 |
| 白介素-6 Interleukin-6 (IL-6) | 1032.87±125.42a | 834.07±41.41a | 1043.27±81.61a | 0.219 |
| 白介素-10 Interleukin-10 (IL-10) | 313.59±33.99a | 263.04±11.29a | 332.65±22.38a | 0.156 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 237.39±23.15a | 196.57±4.92a | 246.83±18.39a | 0.134 |
| 干扰素-γ Interferon-γ (IFN-γ) | 51.91±4.60a | 37.17±1.88b | 41.58±0.98b | 0.011 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 1016.15±125.91a | 954.25±79.64a | 1095.24±100.36a | 0.619 |
图3 巨菌草对育肥从江香猪空肠黏膜紧密连接蛋白基因表达的影响ZO-1: 闭合小环蛋白-1 Zonula occludens-1; Claudin-1: 闭合蛋白-1; Occludin: 闭锁蛋白. 下同The same below.
Fig.3 Effects of P. giganteum on gene expression level of tight junction proteins in jejunum mucosa of finishing Congjiang Xiang pigs
图4 巨菌草对育肥从江香猪回肠黏膜紧密连接蛋白基因表达的影响
Fig.4 Effects of P. giganteum on gene expression level of tight junction proteins in ileum mucosa of finishing Congjiang Xiang pigs
图5 育肥从江香猪菌群稀释曲线和扩增子序列变异体韦恩图
Fig.5 Rarefaction curves of observed species and Venn diagram of amplicon sequence variants (ASVs) in finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| Chao1指数Chao1 index | 1214±199.96a | 1447±99.19a | 1462±105.50a | 0.275 |
| ACE指数ACE index | 1236±211.22a | 1475±103.49a | 1490±107.29a | 0.275 |
| Shannon指数Shannon index | 5.14±0.19b | 5.86±0.10a | 5.86±0.21a | 0.026 |
表11 巨菌草对育肥从江香猪盲肠微生物Alpha多样性的影响
Table 11 Effects of P. giganteum on Alpha diversity of cecal microorganism of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| Chao1指数Chao1 index | 1214±199.96a | 1447±99.19a | 1462±105.50a | 0.275 |
| ACE指数ACE index | 1236±211.22a | 1475±103.49a | 1490±107.29a | 0.275 |
| Shannon指数Shannon index | 5.14±0.19b | 5.86±0.10a | 5.86±0.21a | 0.026 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 门水平 Phylum level | ||||
| 厚壁菌门Firmicutes | 75.47±2.09a | 74.64±2.02a | 79.56±2.23a | 0.275 |
| 拟杆菌门Bacteroidota | 14.43±2.06a | 19.77±2.26a | 14.52±0.90a | 0.145 |
| 螺旋体门Spirochaetota | 7.18±0.92a | 3.49±1.36a | 3.63±1.40a | 0.085 |
| 放线菌门Actinobacteriota | 1.21±0.57a | 1.07±0.38a | 0.74±0.15a | 0.914 |
| 变形菌门Proteobacteria | 1.03±0.49a | 0.28±0.12a | 0.77±0.25a | 0.281 |
| 属水平Genus level | ||||
| 乳杆菌属Lactobacillus | 12.72±4.50a | 9.71±3.80a | 8.62±6.11a | 0.651 |
| 链球菌属Streptococcus | 9.01±3.70a | 1.97±0.56b | 1.10±0.23b | 0.021 |
| 毛螺菌科未分类菌属Unclassified_f__Lachnospiraceae | 7.56±1.67a | 11.30±1.30a | 13.63±1.36a | 0.065 |
| UCG-005 | 6.84±1.82a | 8.67±0.67a | 10.50±1.17a | 0.230 |
| 密螺旋体属Treponema | 6.96±0.93a | 3.36±1.36a | 3.47±1.36a | 0.085 |
| Norank_f__p-251-o5 | 4.44±1.73a | 4.84±1.04a | 3.10±0.47a | 0.533 |
| 狭义梭菌属1 Clostridium_sensu_stricto_1 | 5.63±1.09a | 2.97±0.71a | 3.30±1.32a | 0.108 |
| 克里斯滕森菌科R-7群Christensenellaceae_R-7_group | 3.20±0.61a | 2.21±0.22a | 3.51±0.41a | 0.164 |
| 普雷沃菌科_UCG-003菌属Prevotellaceae_UCG-003 | 3.19±2.37a | 1.44±0.21a | 1.12±0.26a | 0.717 |
| 土孢杆菌属Terrisporobacter | 3.03±0.36a | 2.83±0.33a | 3.86±0.61a | 0.497 |
表12 育肥从江香猪盲肠内优势菌门和优势菌属的相对丰度
Table 12 Relative abundance of cecal dominant phyla and genera in finishing Congjiang Xiang pigs (%)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 门水平 Phylum level | ||||
| 厚壁菌门Firmicutes | 75.47±2.09a | 74.64±2.02a | 79.56±2.23a | 0.275 |
| 拟杆菌门Bacteroidota | 14.43±2.06a | 19.77±2.26a | 14.52±0.90a | 0.145 |
| 螺旋体门Spirochaetota | 7.18±0.92a | 3.49±1.36a | 3.63±1.40a | 0.085 |
| 放线菌门Actinobacteriota | 1.21±0.57a | 1.07±0.38a | 0.74±0.15a | 0.914 |
| 变形菌门Proteobacteria | 1.03±0.49a | 0.28±0.12a | 0.77±0.25a | 0.281 |
| 属水平Genus level | ||||
| 乳杆菌属Lactobacillus | 12.72±4.50a | 9.71±3.80a | 8.62±6.11a | 0.651 |
| 链球菌属Streptococcus | 9.01±3.70a | 1.97±0.56b | 1.10±0.23b | 0.021 |
| 毛螺菌科未分类菌属Unclassified_f__Lachnospiraceae | 7.56±1.67a | 11.30±1.30a | 13.63±1.36a | 0.065 |
| UCG-005 | 6.84±1.82a | 8.67±0.67a | 10.50±1.17a | 0.230 |
| 密螺旋体属Treponema | 6.96±0.93a | 3.36±1.36a | 3.47±1.36a | 0.085 |
| Norank_f__p-251-o5 | 4.44±1.73a | 4.84±1.04a | 3.10±0.47a | 0.533 |
| 狭义梭菌属1 Clostridium_sensu_stricto_1 | 5.63±1.09a | 2.97±0.71a | 3.30±1.32a | 0.108 |
| 克里斯滕森菌科R-7群Christensenellaceae_R-7_group | 3.20±0.61a | 2.21±0.22a | 3.51±0.41a | 0.164 |
| 普雷沃菌科_UCG-003菌属Prevotellaceae_UCG-003 | 3.19±2.37a | 1.44±0.21a | 1.12±0.26a | 0.717 |
| 土孢杆菌属Terrisporobacter | 3.03±0.36a | 2.83±0.33a | 3.86±0.61a | 0.497 |
| 1 | Liao X D, Zhang L Y, Lv L, et al. Survey on distribution of mineral contents in feedstuffs for livestock and poultry in China. Scientia Agricultura Sinica, 2019, 52(11): 1970-1972. |
| 廖秀冬, 张丽阳, 吕林, 等. 我国畜禽饲料资源中矿物元素含量分布的调查. 中国农业科学, 2019, 52(11): 1970-1972. | |
| 2 | Anon. The Ministry of Agriculture and Rural Affairs has issued a work plan to promote the reduction and substitution of corn and soybean meal in feed. BeiFang MuYe, 2021(7): 5. |
| 佚名. 农业农村部发布工作方案推进饲料中玉米、豆粕减量替代. 北方牧业, 2021(7): 5. | |
| 3 | Li Y S, Zhou Y, Zhao X D, et al. Application of Pennisetum giganteum in livestock breeding. Feed Research, 2020, 43(7): 146-148. |
| 李玉帅, 周岩, 赵晓登, 等. 巨菌草在畜禽养殖中的应用. 饲料研究, 2020, 43(7): 146-148. | |
| 4 | Huang X F, Meng Q X, Yang J X, et al. Effects of replacing the corn silage with Puelia sinese Roxb silage on production performance, composition of milk and economic benefits in dairy cows. China Animal Husbandry & Veterinary Medicine, 2017, 44(7): 1997-2002. |
| 黄晓飞, 孟庆翔, 杨甲轩, 等. 巨菌草青贮替代全株玉米青贮对奶牛生产性能、乳成分和经济效益的影响. 中国畜牧兽医, 2017, 44(7): 1997-2002. | |
| 5 | Deng X W, Luo N, Sun Z H, et al. Application of Pennisetum giganteum in Phasianus colchicu fodder in northern Shaanxi. Chinese Wild Plant Resources, 2021, 40(3): 28-32. |
| 邓新为, 罗娜, 孙志宏, 等. 陕北地区巨菌草在七彩山鸡饲料中的应用研究. 中国野生植物资源, 2021, 40(3): 28-32. | |
| 6 | Deng X W, Xu Y, Liu X, et al. Effects of Pennisetum giganteum diet on growth performance, serum, antioxidant capacity and intestinal flora of Phasianus colchicus. Journal of Domestic Animal Ecology, 2022, 43(3): 20-24. |
| 邓新为, 徐源, 刘夏, 等. 巨菌草饲粮对七彩山鸡生长性能、血清抗氧化能力和肠道菌群的影响. 家畜生态学报, 2022, 43(3): 20-24. | |
| 7 | Qiu B W, Deng X W, Hao L L, et al. Effect of Pennisetum giganteum on growth performance, immune organs and intestinal villi of colorful pheasants. Feed Research, 2020, 43(3): 25-29. |
| 裘博文, 邓新为, 郝柳柳, 等. 巨菌草对七彩山鸡生长性能、免疫器官以及肠绒毛形态的影响. 饲料研究, 2020, 43(3): 25-29. | |
| 8 | Zhu X F, Xu H Q, Chen W, et al. Cloning, expression and bioinformatics analysis of IGF-1 and IGF-2 genes in Congjiangxiang pigs (Sus scrofa). Journal of Agricultural Biotechnology, 2019, 27(8): 1382-1391. |
| 朱晓锋, 许厚强, 陈伟, 等. 从江香猪IGF-1和IGF-2基因的克隆、表达及生物信息学分析. 农业生物技术学报, 2019, 27(8): 1382-1391. | |
| 9 | Tan X G. Report on Yongsheng breeding experiment of Cong Jiangxiang pigs. The Chinese Livestock and Poultry Breeding, 2018, 14(3): 67-68. |
| 谭锡国. 从江香猪永胜养殖试验报告. 中国畜禽种业, 2018, 14(3): 67-68. | |
| 10 | Raj S, Skiba G, Sobol M, et al. Body composition and fatty acid profile of musculus longissimus dorsi in growing pigs fed a diet supplemented with grass meal. Journal of Animal and Feed Sciences, 2015, 24(4): 315-322. |
| 11 | Wang J B. Effects of partial substitution of concentrate with forage on growth performance, carcass characteristic and digestive functions in growing-finishing pigs. Hangzhou: Zhejiang University, 2001. |
| 王进波. 青绿饲料替代部分精料对生长肥育猪生长性能、胴体特性及消化机能的影响. 杭州: 浙江大学, 2001. | |
| 12 | State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Nutrient requirements of swine: GB/T 39235-2020. Beijing: Standards Press of China, 2020. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 猪营养需要量: GB/T 39235-2020. 北京: 中国标准出版社, 2020. | |
| 13 | State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Operating procedures of livestock and poultry slaughtering-Pig: GB/T 17236-2019. Beijing: Standards Press of China, 2019. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 畜禽屠宰操作规程 生猪: GB/T 17236-2019. 北京: 中国标准出版社, 2019. | |
| 14 | Ministry of Agriculture of the People’s Republic of China. Technical regulation for testing of carcass traits in lean-type pig: NY/T 825-2004. Beijing: China Agriculture Press, 2004. |
| 中华人民共和国农业部. 瘦肉型猪胴体性状测定技术规范: NY/T 825-2004. 北京: 中国农业出版社, 2004. | |
| 15 | Wang H S. Effects of low-protein diets supplemented with different nitrogen nutrients on mentabolism and immunity and their underlying mechanism on barrier and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2020. |
| 王会松. 低蛋白日粮添加不同氮营养素对猪代谢和免疫的影响及其肠道黏膜屏障和微生物的机制. 南京: 南京农业大学, 2020. | |
| 16 | Xu J M. Effects of sodium buryrate on mucosal immune, intestine development and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2017. |
| 徐菊美. 丁酸钠对猪肠黏膜免疫、肠道发育和菌群区系的影响. 南京: 南京农业大学, 2017. | |
| 17 | Xia Z. Effects of liquid feeding of fermented feed on growth performance and intestinal health in weaned piglets. Chengdu: Sichuan Agricultural University, 2021. |
| 夏邹. 发酵饲料液态饲喂对断奶仔猪生长性能和肠道健康的影响. 成都: 四川农业大学, 2021. | |
| 18 | Lin Z X, Yang G F, Zhang M, et al. Dietary supplementation of mixed organic acids improves growth performance, immunity, and antioxidant capacity and maintains the intestinal barrier of Ira rabbits. Animals, 2023, 13(19): 3140. |
| 19 | Xu J Y, Wang Z L, Zhang W B, et al. Effects of Pennisetum giganteum feed on growth performance, slaughter performance and meat quality of black pigs. Henan Journal of Animal Husbandry and Veterinary Medicine, 2023, 44(11): 3-6. |
| 徐佳玉, 王志力, 张伟彬, 等. 巨菌草饲料对黑猪生长性能、屠宰性能和肉质的影响. 河南畜牧兽医, 2023, 44(11): 3-6. | |
| 20 | Zhu L, Wang X. Effects of substitution of concentrate with ryegrass on the growth performance and substance metabolism of growing-finishing pigs. Veterinary Orientation, 2021(14): 231. |
| 朱雷, 王鑫. 黑麦草替代精料对生长肥育猪生长性能及物质代谢的影响. 兽医导刊, 2021(14): 231. | |
| 21 | Xiang Y R. Experimental study on the effect of partial substitution of concentrate with Pennisetum sinese Roxb in pig. Zhejiang Journal Animal Science and Veterinary Medicine, 2012, 37(3): 21-22. |
| 项延润. 皇竹草替代部分精料喂猪的效果试验. 浙江畜牧兽医, 2012, 37(3): 21-22. | |
| 22 | Wallenbecka A, Rundgrenb M, Prestob M. Inclusion of grass/clover silage in diets to growing/finishing pigs-Influence on performance and carcass quality. Acta Agriculturae Scandinavica, Section A-Animal Science, 2015, 3(64): 145-153. |
| 23 | Zhang S, Li C X, Wang P F, et al. Effects of alfalfa processing dust on growth performance, carcass traits, meat quality and economic efficiency of fattening pigs. Chinese Journal of Animal Nutrition, 2023, 35(5): 2859-2866. |
| 张森, 李成旭, 王鹏飞, 等. 苜蓿加工粉尘对育肥猪生长性能、胴体性状、肉品质及经济效益的影响. 动物营养学报, 2023, 35(5): 2859-2866. | |
| 24 | Chen D M, Chen Y, Zhang L. Effect of Pennisetum giganteum powder on growth performance and nutrients availability of Sichuan white goose. China Poultry, 2021, 43(9): 59-64. |
| 陈冬梅, 陈耀, 张龙. 巨菌草粉对四川白鹅生长性能和养分利用率的影响. 中国家禽, 2021, 43(9): 59-64. | |
| 25 | Zhao H Q. Effects of Pennisetum giganteum feed on growth index and fat related genes expression in pheasant. Yan’an: Yan’an University, 2018. |
| 赵鹤青. 巨菌草饲料对七彩山鸡生长指标及脂肪相关基因表达的研究. 延安: 延安大学, 2018. | |
| 26 | Kambashi B, Boudry C, Picron P, et al. Forage plants as an alternative feed resource for sustainable pig production in the tropics: a review. Animal, 2014, 8(8): 1298-1311. |
| 27 | Zhao J. Studies on feed grain replaced by alfafa meal in diet of finishing pigs and economic benifit analysis. Lanzhou: Lanzhou University, 2014. |
| 赵静. 苜蓿草粉替代育肥猪饲料粮生物学及经济学研究. 兰州: 兰州大学, 2014. | |
| 28 | Olukosi O A, van Kuijk S, Han Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science, 2018, 97(11): 3891-3898. |
| 29 | Zhang Y M, Liu Y, Li W T, et al. Carcass performance and meat quality analysis of Rizhao large white pigs (Sus scrofa) and the expression of MyHC genes in muscle tissues. Journal of Agricultural Biotechnology, 2018, 26(4): 616-625. |
| 张艳敏, 刘颖, 李文通, 等. 日照大白猪胴体性能和肉品质的测定及MyHC基因在肌肉组织中的表达分析. 农业生物技术学报, 2018, 26(4): 616-625. | |
| 30 | Galassi G, Malagutti L, Matteo C G. Growth and slaughter performance, nitrogen balance and ammonia emission from slurry in pigs fed high fibre diets. Italian Journal of Animal Science, 2007, 6(3): 227-239. |
| 31 | Xue L Z, Wang K R, Wang H, et al. Sources and regulation of intestinal oxidative stress in broilers. China Feed, 2021(18): 5-8. |
| 薛凌壮, 王开荣, 王红, 等. 肉鸡肠道氧化应激的来源与调控. 中国饲料, 2021(18): 5-8. | |
| 32 | Li W X. Effects of dietary crude fiber level on growth performance, digestion and metabolism and intestinal health of Mashen pigs and Duroc×Landrace×Large. Jinzhong: Shanxi Agricultural University, 2021. |
| 李文新. 日粮粗纤维水平对马身猪和杜长大猪生长性能、消化代谢和肠道发育的影响. 晋中: 山西农业大学, 2021. | |
| 33 | Ngoc T T B, Len N T, Lindberg J E. Impact of fibre intake and fibre source on digestibility, gut development, retention time and growth performance of indigenous and exotic pigs. Animal, 2013, 7(5): 736-745. |
| 34 | Raj S, Skiba G, Weremko D, et al. Growth of the gastrointestinal tract of pigs during realimentation following a high-fibre diet. Journal of Animal and Feed Sciences, 2005, 14(4): 675-684. |
| 35 | Chen J L, Yan J C. Application and research of dietary fiber in pig production. Feed and Animal Husbandry, 2008(6): 50-53. |
| 陈金龙, 闫景彩. 日粮纤维在猪生产中的应用与研究. 饲料与畜牧, 2008(6): 50-53. | |
| 36 | Wu W D, Xie J J, Zhu L Y, et al. Research progress of dietary fiber affects gut health of pigs. Chinese Journal of Animal Nutrition, 2017, 29(3): 739-748. |
| 吴维达, 解竞静, 朱丽媛, 等. 饲粮纤维影响猪肠道健康的研究进展. 动物营养学报, 2017, 29(3): 739-748. | |
| 37 | Lin G Z, Che D S, Liu B, et al. Research progress on the mechanism of dietary fiber regulating intestinal tract health in pigs. Feed Industry, 2020, 41(8): 26-32. |
| 林光智, 车东升, 刘博, 等. 日粮纤维调控猪肠道健康机制的研究进展. 饲料工业, 2020, 41(8): 26-32. | |
| 38 | Tiwari U P, Chen H Y, Kim S W, et al. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 2018, 245(10): 77-90. |
| 39 | Kwon O, Han T S, Son M Y. Intestinal morphogenesis in development, regeneration, and disease: The potential utility of intestinal organoids for studying compartmentalization of the crypt-villus structure. Frontiers in Cell and Developmental Biology, 2020, 8(2): 593969. |
| 40 | Dempsey P J. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochimica et Biophysica Acta-Molecular Cell Research, 2017, 1864(11): 2228-2239. |
| 41 | Wei X B, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs. Feed Industry, 2016, 37(4): 61-64. |
| 卫旭彪, 张璐璐, 马广, 等. 酵母菌对猪肠道绒毛、隐窝及菌群的影响. 饲料工业, 2016, 37(4): 61-64. | |
| 42 | Yang P, Zhao J B. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 2021, 9(8): 4639-4654. |
| 43 | Adams S, Kong X, Che D S, et al. Effects of dietary supplementation of alfafa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets. Applied Ecology and Environmental Research, 2019, 17(2): 2275-2295. |
| 44 | Zhao Y, Liu C, Niu J, et al. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. Journal of Animal Science, 2023, 101(1): 1-16. |
| 45 | Wu X Y, Chen D W, Yu B, et al. Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 2018, 51/52: 20-28. |
| 46 | Ren M M, Yang H, Xiang Y, et al. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecun of Jinhua pigs. Chinese Journal of Animal Nutrition, 2020, 32(6): 2575-2585. |
| 任敏敏, 杨华, 项云, 等. 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响. 动物营养学报, 2020, 32(6): 2575-2585. | |
| 47 | Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences, 2021, 22(12): 6434. |
| 48 | Janssen J A M J L. New insights from IGF-IR stimulating activity analyses: Pathological considerations. Cells, 2020, 9(4): 862. |
| 49 | Kieffer D A, Martin R J, Adams S H. Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Advances in Nutrition, 2016, 7(6): 1111-1121. |
| 50 | Rowland K J, Brubaker P L. The “cryptic” mechanism of action of glucagon-like peptide-2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(1): G1-G8. |
| 51 | Diao H, Jiao A R, Yu B, et al. Beet pulp: An alternative to improve the gut health of growing pigs. Animals, 2020, 10(10): 1860. |
| 52 | Schedle K, Pfaffl M W, Plitzner C, et al. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Archives of Animal Nutrition, 2008, 62(6): 427-438. |
| 53 | He J, Xie H M, Chen D W, et al. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60(2): 715-727. |
| 54 | Tappenden K A, Albin D M, Bartholome A L, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. The Journal of Nutrition, 2003, 133(11): 3717-3720. |
| 55 | Guo Y X, Wang B Y, Wang T T, et al. Biological characteristics of IL-6 and related intestinal diseases. International Journal of Biological Sciences, 2021, 17(1): 204-219. |
| 56 | Lücke J, Heinrich F, Malsy J, et al. Intestinal IL-1β plays a role in protecting against SARS-CoV-2 infection. The Journal of Immunology, 2023, 211(6): 1052-1061. |
| 57 | Liu T T, Chen Y K, Adil M, et al. In silico identification of natural product-based inhibitors targeting IL-1beta/IL-1R protein-protein interface. Molecules, 2023, 28(13): 4885. |
| 58 | Ding C H, Cicuttini F, Li J, et al. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opinion on Investigational Drugs, 2009, 18(10): 1457-1466. |
| 59 | Ye D M, Ma I, Ma T Y. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006, 290(3): G496-G504. |
| 60 | Wang L F, Zhu J M, Shan S F, et al. Repression of interferon-γ expression in T cells by prospero related Homeobox protein. Cell Research, 2008, 18(9): 911-920. |
| 61 | Jorgovanovic D, Song M J, Wang L P, et al. Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 2020, 8(1): 49. |
| 62 | Minshawi F, Lanvermann S, McKenzie E, et al. The generation of an engineered interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 2020, 11(2): 1794. |
| 63 | Zhang Q, Yu N W, Lee C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. American Journal of Clinical and Experimental Urology, 2014, 2(2): 149-155. |
| 64 | Chen H, Chen D W, Qin W, et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. International Journal of Food Sciences and Nutrition, 2017, 68(2): 65-72. |
| 65 | Ding S J, Cheng Y T, Azad M, et al. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Frontiers in Immunology, 2023, 14(2): 1104837. |
| 66 | Weber T E, Ziemer C J, Kerr B J. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. Journal of Animal Science, 2008, 86(4): 871-881. |
| 67 | Liu L X, Li Q Q, Yang Y J, et al. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8(2): 736739. |
| 68 | Tian Y, Yang L Y, Huang X G, et al. Reseach progress of fecal microbiota transplantation in improving intestinal barrier function in pigs. Chinese Journal of Animal Nutrition, 2023, 35(4): 2072-2080. |
| 田玉, 杨玲媛, 黄兴国, 等. 粪菌移植改善猪肠道屏障功能的研究进展. 动物营养学报, 2023, 35(4): 2072-2080. | |
| 69 | Wang J, Ji H F. Tight junction proteins in the weaned piglet intestine: Roles and regulation. Current Protein & Peptide Science, 2019, 20(7): 652-660. |
| 70 | Heinemann U, Schuetz A. Structural features of tight-junction proteins. International Journal of Molecular Sciences, 2019, 20(23): 6020. |
| 71 | Kuo W T, Odenwald M A, Turner J R, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Annals of the New York Academy of Sciences, 2022, 1514(1): 21-33. |
| 72 | Garcia H V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 2017, 1397(1): 66-79. |
| 73 | Zhou B W, Moodie A, Blanchard A A, et al. Claudin 1 in breast cancer: New insights. Journal of Clinical Medicine, 2015, 4(12): 1960-1976. |
| 74 | Kaminsky L W, Al-Sadi R, Ma T Y. IL-1β and the intestinal epithelial tight junction barrier. Frontiers in Immunology, 2021, 12(2): 767456. |
| 75 | Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain infection by HIV-1. Fluids and Barriers of the CNS, 2023, 20(1): 73. |
| 76 | Liu J H, Luo Y H, Kong X F, et al. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon, 2023, 9(7): e17699. |
| 77 | Chen H, Mao X B, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 2013, 110(10): 1837-1848. |
| 78 | Liu J H, Luo Y H, Kong X F, et al. Effects of dietary fiber on growth performance, nutrient digestibility and intestinal health in different pig breeds. Animals, 2022, 12(23): 3298. |
| 79 | Hu R Q, Li S W, Diao H, et al. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Frontiers in Immunology, 2023, 14(2): 1095740. |
| 80 | Keto L, Tsitko I, Perttilä S, et al. Effect of silage juice feeding on pig production performance, meat quality and gut microbiome. Livestock Science, 2021, 254(12): 104728. |
| 81 | Yu M, Gao T, Liu Z, et al. Effects of dietary supplementation with high fiber (stevia residue) on the fecal flora of pregnant sows. Animals, 2020, 10(12): 2247. |
| 82 | Gao C M, Wen Y, Yi X F, et al. The effect of different fiber source diets on the gut microbiota of fattening pigs. Feed Research, 2022, 45(8): 27-31. |
| 高崇敏, 文裕, 易显凤, 等. 不同纤维源饲粮对育肥猪肠道微生物菌群的影响. 饲料研究, 2022, 45(8): 27-31. | |
| 83 | Li Z Q, Zhao Y J, Wang H, et al. High-fibre diets regulate antioxidative capacity and promote intestinal health by regulating bacterial microbiota in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 108(2): 357-365. |
| 84 | Zheng X R, Zhuo M X, Ji J L, et al. Characteristics of serum immune indices and intestinal microbiota of Wannan black pigs at different growth stages. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3770-3783. |
| 郑先瑞, 卓明雪, 纪金丽, 等. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析. 畜牧兽医学报, 2023, 54(9): 3770-3783. | |
| 85 | Xue X X, Wang L, Shen W J, et al. Effect of different dietary energy-protein ratios on growth performance,body size and fecal microflora of duality of ‘Berkshire pigs×Bamei pigs’. Feed Research, 2022, 45(4): 25-31. |
| 薛星星, 王磊, 沈文娟, 等. 日粮不同能蛋比对“巴×八”二元猪生长性能、体尺和粪便微生物区系的影响. 饲料研究, 2022, 45(4): 25-31. | |
| 86 | Li Z Q, Zhang F, Zhao Y R, et al. Effects of different starch diets on growth performance, intestinal health and faecal microbiota of growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 107(4): 1043-1053. |
| 87 | Zhao J B, Liu P, Wu Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7995-8004. |
| 88 | Li S T, Zhang C, Gu Y Y, et al. Lean rats gained more body weight than obese ones from a high-fibre diet. British Journal of Nutrition, 2015, 114(8): 1188-1194. |
| 89 | Li H, Ma L T, Li Z Q, et al. Evolution of the gut microbiota and its fermentation characteristics of Ningxiang pigs at the young stage. Animals, 2021, 11(3): 638. |
| 90 | Su Y, Yao W, Perez-Gutierrez O N, et al. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology, 2008, 66(3): 546-555. |
| 91 | Gao Q T, Sun G M, Duan J J, et al. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 2022, 13(1): 969524. |
| 92 | El K A, Armougom F, Gordon J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11(7): 497-504. |
| 93 | Pu G, Li P H, Du T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig. Frontiers in Microbiology, 2020, 11(1): 533. |
| 94 | Petry A L, Patience J F, Huntley N F, et al. Xylanase supplementation modulates the microbiota of the large intestine of pigs fed corn-based fiber by means of a stimbiotic mechanism of action. Frontiers in Microbiology, 2021, 12(2): 619970. |
| [1] | 靳生伟, 韩银仓, 孙永刚, 丁维芹, 刘亚倩, 祁增源, 周建强. 冷季不同饲养方式对牦牛生长性能及血液生理生化指标的影响[J]. 草业学报, 2025, 34(1): 215-225. |
| [2] | 苏东遥, 李永亮, 董晴, 赵心念, 李晓宇, 金晓东, 王亚男, 田树军, 高玉红, 孙新胜. 发酵床对哺乳期湖羔羊生长、消化以及血液理化特性的影响[J]. 草业学报, 2024, 33(8): 86-97. |
| [3] | 申迪, 曾子铭, 庞凯悦, 柴沙驼, 聂洪辛, 李毓敏, 廖扬, 王迅, 黄伟华, 刘书杰, 杨英魁, 王书祥. 低精料日粮和高精料日粮对牦牛生长性能和瘤胃菌群结构的影响[J]. 草业学报, 2024, 33(5): 155-165. |
| [4] | 张瑞, 安雪姣, 李建烨, 卢曾奎, 牛春娥, 徐振飞, 张金霞, 耿智广, 岳耀敬, 杨博辉. 湖羊及其不同杂交组合生长性能、产肉性能及肌肉品质比较分析[J]. 草业学报, 2024, 33(3): 186-197. |
| [5] | 杨乾龙, 魏倩倩, 赵德辉, 郭肖兰, 张铁涛, 王晓旭, 鲍坤, 王凯英. 饲粮添加过瘤胃半胱氨酸对育成期梅花鹿生长性能、营养物质表观消化率和血清生化指标的影响[J]. 草业学报, 2023, 32(2): 148-159. |
| [6] | 王钊, 刘静, 于昊, 李鹏, 牛伟强, 万永杰, 张艳丽, 茆达干. 日粮添加蚕豆皮对湖羊生长性能、屠宰性能、器官发育和肉品质的影响[J]. 草业学报, 2023, 32(10): 162-172. |
| [7] | 王循刚, 张晓玲, 徐田伟, 耿远月, 胡林勇, 赵娜, 刘宏金, 康生萍, 徐世晓. 饲粮蛋白质水平对藏系绵羊瘤胃真菌菌群结构及功能的影响[J]. 草业学报, 2022, 31(2): 182-191. |
| [8] | 范阳, 齐伟彪, 朱崇淼, 殷雨洋, 毛胜勇. 日粮中添加发酵豆渣对湖羊生长性能、养分表观消化率、肉品质及血清生化指标的影响[J]. 草业学报, 2022, 31(11): 86-93. |
| [9] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
| [10] | 蓝婧婷, 任瑞, 周瑞, 戴洪伟, 舒文秀, 朱凯, 王略宇, 徐红伟, 臧荣鑫. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. |
| [11] | 索效军, 张年, 杨前平, 陶虎, 熊琪, 李晓锋, 张凤, 陈明新. 日粮添加花生秧和苜蓿草粉对波麻杂交羊增重性能、内脏器官发育及血液指标的影响[J]. 草业学报, 2021, 30(5): 146-154. |
| [12] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
| [13] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
| [14] | 周晶, 陈思齐, 史文娇, 阳伏林, 林辉, 林占熺. 巨菌草幼叶及根转录组功能基因测序及分析[J]. 草业学报, 2021, 30(2): 143-155. |
| [15] | 张磊, 韩雪林, 张娟, 李苏涛, 史文娇, 阳伏林. 岩藻多糖对肉兔生长性能、血清生化指标及养分表观消化率的影响[J]. 草业学报, 2021, 30(10): 159-168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||