草业学报 ›› 2025, Vol. 34 ›› Issue (10): 41-50.DOI: 10.11686/cyxb2024454
收稿日期:2024-11-19
修回日期:2025-01-09
出版日期:2025-10-20
发布日期:2025-07-11
通讯作者:
张前兵
作者简介:E-mail: qbz102@163.com基金资助:
Jin-feng HUI(
), Kong-qin WEI, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG(
)
Received:2024-11-19
Revised:2025-01-09
Online:2025-10-20
Published:2025-07-11
Contact:
Qian-bing ZHANG
摘要:
为了探究不同海拔高度对紫花苜蓿干草产量和营养品质的影响。本研究在伊犁河流域分别选取了1300~1500 m(H1)、900~1100 m(H2)和500~700 m(H3)海拔高度范围内的代表性样地共12个,以阿尔冈金(A1)、巨能7(A2)、WL363HQ(A3)、新牧4号(A4)4个紫花苜蓿品种为研究材料,通过田间测产结合实验室测定紫花苜蓿植株的粗蛋白质(CP)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、相对饲喂价值(RFV)、粗脂肪(EE)、粗灰分(Ash)、全磷含量(TP)、可溶性糖含量(SSC),分析了紫花苜蓿干草产量与各营养指标之间的关系,并通过主成分分析和隶属函数法综合筛选出适宜于优质紫花苜蓿饲料生产的海拔高度和品种。研究结果显示:对于相同品种,紫花苜蓿的CP、EE、RFV、Ash和干草产量(HY)均随海拔高度的降低呈逐渐增高的趋势,NDF、ADF、SSC均随海拔高度下降呈降低的趋势。在相同海拔高度条件下,紫花苜蓿的RFV、TP、SSC、HY均为A3显著高于其他品种,且A3的NDF、ADF含量最低。皮尔逊相关性分析表明:紫花苜蓿的干草产量与CP、RFV、TP呈显著正相关(P<0.05),但与NDF、ADF呈极显著负相关(P<0.01);CP与TP、EE、RFV、SSC呈显著正相关(P<0.05)。基于主成分和隶属函数分析综合排名前3位的分别是A3H3、A3H1和A3H2。相对于高海拔区域,伊犁河流域低海拔区域对紫花苜蓿产量和营养品质具有一定的提升作用;适宜在伊犁河流域各海拔高度下推广种植的品种为A3。
回金峰, 魏孔钦, 孙延亮, 马春晖, 张前兵. 伊犁河流域紫花苜蓿干草产量和营养品质对海拔高度的响应[J]. 草业学报, 2025, 34(10): 41-50.
Jin-feng HUI, Kong-qin WEI, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Response of alfalfa hay yield and nutritional quality to altitude in the Yili River basin[J]. Acta Prataculturae Sinica, 2025, 34(10): 41-50.
| 品种编号Breed number | 品种Variety | 来源Source | 国家Country |
|---|---|---|---|
| A1 | 阿尔冈金Algonquin | 北京克劳沃种业科技有限公司Beijing Clover Seed Technology Co., Ltd. | 加拿大Canada |
| A2 | 巨能7 Magnum Ⅶ | 北京克劳沃种业科技有限公司Beijing Clover Seed Technology Co., Ltd. | 美国America |
| A3 | WL363HQ | 北京正道种业有限公司Beijing Rytway Seed Co., Ltd. | 美国America |
| A4 | 新牧4号Xinmu 4 | 新疆农业大学Xinjiang Agricultural University | 中国China |
表 1 4 种紫花苜蓿的种源信息
Table 1 Provenance information of 4 alfalfa varieties
| 品种编号Breed number | 品种Variety | 来源Source | 国家Country |
|---|---|---|---|
| A1 | 阿尔冈金Algonquin | 北京克劳沃种业科技有限公司Beijing Clover Seed Technology Co., Ltd. | 加拿大Canada |
| A2 | 巨能7 Magnum Ⅶ | 北京克劳沃种业科技有限公司Beijing Clover Seed Technology Co., Ltd. | 美国America |
| A3 | WL363HQ | 北京正道种业有限公司Beijing Rytway Seed Co., Ltd. | 美国America |
| A4 | 新牧4号Xinmu 4 | 新疆农业大学Xinjiang Agricultural University | 中国China |
| CV | CP | NDF | ADF | RFV | SSC | TP | EE | Ash | HY | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |
| A | 22.91 | ** | 86.21 | ** | 105.75 | ** | 293.02 | ** | 505.25 | ** | 248.92 | ** | 12.38 | ** | 7.95 | ** | 154.11 | ** |
| H | 5.23 | * | 7.79 | ** | 40.86 | ** | 34.68 | ** | 219.05 | ** | 103.10 | ** | 11.09 | ** | 3.86 | ns | 35.04 | ** |
| A×H | 1.701 | ns | 2.062 | ns | 0.360 | ns | 0.581 | ns | 0.990 | ns | 6.850 | ** | 0.220 | ns | 0.280 | ns | 8.280 | ** |
表 2 紫花苜蓿品种、海拔高度对各因子影响的方差分析
Table 2 Variance analysis of alfalfa variety and altitude on each factor
| CV | CP | NDF | ADF | RFV | SSC | TP | EE | Ash | HY | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |
| A | 22.91 | ** | 86.21 | ** | 105.75 | ** | 293.02 | ** | 505.25 | ** | 248.92 | ** | 12.38 | ** | 7.95 | ** | 154.11 | ** |
| H | 5.23 | * | 7.79 | ** | 40.86 | ** | 34.68 | ** | 219.05 | ** | 103.10 | ** | 11.09 | ** | 3.86 | ns | 35.04 | ** |
| A×H | 1.701 | ns | 2.062 | ns | 0.360 | ns | 0.581 | ns | 0.990 | ns | 6.850 | ** | 0.220 | ns | 0.280 | ns | 8.280 | ** |
图1 不同海拔条件下紫花苜蓿品种的干草产量大写字母表示同一品种不同海拔高度间差异显著(P<0.05),小写字母表示同一海拔高度不同品种间差异显著(P<0.05)。A1:阿尔冈金;A2:巨能 7;A3: WL363HQ;A4:新牧4号;H1:高海拔;H2:中海拔;H3:低海拔。下同。Capital letters indicate significant differences among different altitudes of the same variety (P<0.05), lowercase letters indicate significant differences among varieties at the same altitude (P<0.05). A1: Algonquin; A2: Magnum Ⅶ; A3: WL363HQ; A4: Xinmu 4; H1: High altitude; H2: Medium altitude; H3: Low altitude. The same below.
Fig. 1 Hay yield of alfalfa variety at different altitudes
图3 不同海拔条件下紫花苜蓿品种的粗灰分、粗脂肪、全磷及可溶性糖含量
Fig. 3 Crude ash, ether extract, total phosphorus and soluble sugar content of alfalfa variety at different altitudes
图4 不同海拔条件下紫花苜蓿品种的干草产量与营养品质相关性分析*:表示在0.05水平上显著相关,**:表示在0.01水平上显著相关。*: Significant correlation at the 0.05 level, **: Significant correlation at the 0.01 level.
Fig. 4 Correlation analysis of hay yield and nutritional quality of alfalfa at different altitudes
图5 不同海拔条件下紫花苜蓿品种各项指标的主成分分析及综合得分
Fig. 5 Principal component analysis and comprehensive scores of various alfalfa varieties under different altitude conditions
编号 Number | Ash | TP | SSC | HY | CP | EE | NDF | ADF | RFV | 平均值 Mean | 排序 Sort |
|---|---|---|---|---|---|---|---|---|---|---|---|
| A1H1 | 0.000 | 0.000 | 0.330 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.037 | 12 |
| A1H2 | 0.386 | 0.055 | 0.150 | 0.259 | 0.029 | 0.420 | 0.112 | 0.262 | 0.122 | 0.199 | 11 |
| A1H3 | 0.184 | 0.480 | 0.000 | 0.600 | 0.057 | 0.599 | 0.116 | 0.346 | 0.150 | 0.281 | 10 |
| A2H1 | 0.192 | 0.172 | 0.725 | 0.170 | 0.487 | 0.388 | 0.099 | 0.281 | 0.121 | 0.293 | 9 |
| A2H2 | 0.918 | 0.070 | 0.596 | 0.247 | 0.495 | 0.788 | 0.394 | 0.389 | 0.316 | 0.468 | 7 |
| A2H3 | 0.375 | 0.378 | 0.457 | 0.486 | 0.682 | 0.866 | 0.457 | 0.594 | 0.417 | 0.524 | 6 |
| A3H1 | 0.849 | 0.907 | 1.000 | 0.955 | 0.702 | 0.665 | 0.949 | 0.734 | 0.850 | 0.846 | 2 |
| A3H2 | 0.026 | 0.696 | 0.845 | 0.963 | 0.791 | 0.725 | 0.985 | 0.955 | 0.967 | 0.773 | 3 |
| A3H3 | 0.812 | 1.000 | 0.680 | 1.000 | 1.000 | 0.771 | 1.000 | 1.000 | 1.000 | 0.918 | 1 |
| A4H1 | 0.771 | 0.187 | 0.763 | 0.536 | 0.248 | 0.720 | 0.171 | 0.438 | 0.202 | 0.449 | 8 |
| A4H2 | 0.356 | 0.490 | 0.559 | 0.544 | 0.666 | 0.983 | 0.343 | 0.663 | 0.365 | 0.552 | 5 |
| A4H3 | 1.000 | 0.514 | 0.395 | 0.619 | 0.813 | 1.000 | 0.411 | 0.820 | 0.455 | 0.670 | 4 |
表 3 不同海拔条件下紫花苜蓿品种各指标的隶属函数分析
Table 3 Membership function analysis of various indexes of alfalfa cultivars at different altitudes
编号 Number | Ash | TP | SSC | HY | CP | EE | NDF | ADF | RFV | 平均值 Mean | 排序 Sort |
|---|---|---|---|---|---|---|---|---|---|---|---|
| A1H1 | 0.000 | 0.000 | 0.330 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.037 | 12 |
| A1H2 | 0.386 | 0.055 | 0.150 | 0.259 | 0.029 | 0.420 | 0.112 | 0.262 | 0.122 | 0.199 | 11 |
| A1H3 | 0.184 | 0.480 | 0.000 | 0.600 | 0.057 | 0.599 | 0.116 | 0.346 | 0.150 | 0.281 | 10 |
| A2H1 | 0.192 | 0.172 | 0.725 | 0.170 | 0.487 | 0.388 | 0.099 | 0.281 | 0.121 | 0.293 | 9 |
| A2H2 | 0.918 | 0.070 | 0.596 | 0.247 | 0.495 | 0.788 | 0.394 | 0.389 | 0.316 | 0.468 | 7 |
| A2H3 | 0.375 | 0.378 | 0.457 | 0.486 | 0.682 | 0.866 | 0.457 | 0.594 | 0.417 | 0.524 | 6 |
| A3H1 | 0.849 | 0.907 | 1.000 | 0.955 | 0.702 | 0.665 | 0.949 | 0.734 | 0.850 | 0.846 | 2 |
| A3H2 | 0.026 | 0.696 | 0.845 | 0.963 | 0.791 | 0.725 | 0.985 | 0.955 | 0.967 | 0.773 | 3 |
| A3H3 | 0.812 | 1.000 | 0.680 | 1.000 | 1.000 | 0.771 | 1.000 | 1.000 | 1.000 | 0.918 | 1 |
| A4H1 | 0.771 | 0.187 | 0.763 | 0.536 | 0.248 | 0.720 | 0.171 | 0.438 | 0.202 | 0.449 | 8 |
| A4H2 | 0.356 | 0.490 | 0.559 | 0.544 | 0.666 | 0.983 | 0.343 | 0.663 | 0.365 | 0.552 | 5 |
| A4H3 | 1.000 | 0.514 | 0.395 | 0.619 | 0.813 | 1.000 | 0.411 | 0.820 | 0.455 | 0.670 | 4 |
| [1] | Ren Y P, Li X S, Zhang L P. Study on foreign alfalfa cultivation technology introduced into new reclamation area of Yili River basin. Xinjiang Agricultural Sciences, 2008, 45(3): 48-51. |
| 任玉平, 李学森, 张丽萍. 伊犁河流域新垦区引进国外紫花苜蓿栽培技术研究. 新疆农业科学, 2008, 45(3): 48-51. | |
| [2] | Zheng M N, Liang X Z, Han Z S, et al. Productivity and nutritional value of 28 alfalfa varieties in the Yanmenguan area of Shanxi Province. Acta Prataculturae Sinica, 2018, 27(5): 97-108. |
| 郑敏娜, 梁秀芝, 韩志顺, 等. 不同苜蓿品种在雁门关地区的生产性能和营养价值研究. 草业学报, 2018, 27(5): 97-108. | |
| [3] | Yi L Z, Li C Z, Liu H Q, et al. Adaptation of different alfalfa varieties in Qingdao, Shandong Province. Acta Prataculturae Sinica, 2011, 20(2): 147-155. |
| 衣兰智, 李长忠, 刘洪庆, 等. 不同苜蓿品种在青岛地区的适应性. 草业学报, 2011, 20(2): 147-155. | |
| [4] | Wang Y T, Zhang J G, Yu L P, et al. Overwintering and yield responses of two late-summer seeded alfalfa cultivars to phosphate supply. Agronomy, 2022, 12(2): 327. |
| [5] | Francesco B, Valentino C, Paola B, et al. Shrub growth and plant diversity along an elevation gradient: evidence of indirect effects of climate on alpine ecosystems. PLoS One, 2018, 13(4): e0196653. |
| [6] | Pan H L, Tian Y, Liu Y L, et al. Ecological responses of Fargesia nitida to altitude in the Wolong Nature Reserve. Ecology and Environmental Sciences, 2010, 19(12): 2832-2839. |
| 潘红丽, 田雨, 刘兴良, 等. 卧龙自然保护区华西箭竹(Fargesia nitida)生态学特征随海拔梯度的变化. 生态环境学报, 2010, 19(12): 2832-2839. | |
| [7] | Zhang J H. Comparative study on yield and other characteristics of alfalfa at different altitude. Yangling: Northwest A&F University, 2007. |
| 张建华. 不同海拔条件下紫花苜蓿产量及其生长特性比较. 杨凌: 西北农林科技大学, 2007. | |
| [8] | Luo W W, Gao C X, Zhang D, et al. Effects of environmental factors at different altitudes on leaves and fruit quality of Fuji apple. Chinese Journal of Applied Ecology, 2014, 25(8): 2243-2250. |
| 罗文文, 高琛稀, 张东, 等. 不同海拔环境因子对富士苹果叶片和果实品质的影响. 应用生态学报, 2014, 25(8): 2243-2250. | |
| [9] | Xi X Y, Li Q, Li C H. Effects of altitude and varieties on overwintering adaptability and cold resistance mechanism of alfalfa roots in the Qinghai-Tibet Plateau. Journal of the Science of Food and Agriculture, 2023, 103(5): 2446-2458. |
| [10] | Hosseinirad A, Chaichi R M, Sadeghpour A. Response of alfalfa seed yield and yield components to phosphorus fertilizing systems and seeding rate at semi-saline soil conditions. Journal of Plant Nutrition, 2013, 36(3): 491-502. |
| [11] | Xu H, He L, Song M Q, et al. Comprehensive evaluation of the production performance of eight alfalfa varieties in the arid area of Qaidam. Agricultural Research in the Arid Areas, 2024, 42(2): 33-40. |
| 徐航, 何霖, 宋美琪, 等. 8个紫花苜蓿品种在柴达木旱区的生产性能综合评价. 干旱地区农业研究, 2024, 42(2): 33-40. | |
| [12] | Wang Z P, Yu T F, An H B, et al. A comprehensive evaluation of 40 alfalfa varieties in the Horqin region based on yield and overwintering characteristics. Pratacultural Science, 2024, 41(3): 664-674. |
| 王志鹏, 于铁峰, 安海波, 等. 基于产量及越冬特性对40个紫花苜蓿品种在科尔沁地区综合评价. 草业科学, 2024, 41(3): 664-674. | |
| [13] | Zhang L Y. Feed analysis and quality testing technology. Beijing: China Agricultural University Press, 2003. |
| 张丽英. 饲料分析与检测技术. 北京: 中国农业大学出版社, 2003. | |
| [14] | Olga M, Kristian N A, Halvor S K, et al. Quantification of soluble solids and individual sugars in apples by Raman spectroscopy: A feasibility study. Postharvest Biology and Technology, 2021, 180: 111620. |
| [15] | Ding X Q, Liu B Q, Wang J T, et al. Comparative study on production performance of 32 alfalfa species. Feed Research, 2022, 45(18): 109-113. |
| 丁小琴, 刘佰强, 王金涛, 等. 32种紫花苜蓿生产性能比较研究. 饲料研究, 2022, 45(18): 109-113. | |
| [16] | Zhang H Y, Liu M J, Wei D D, et al. Comparative study on leaf photosynthetic activity of different fall dormancy alfalfa before and after winter. Acta Agrestia Sinica, 2022, 30(4): 983-991. |
| 张浩阳, 刘美君, 卫丹丹, 等. 不同秋眠级苜蓿越冬前后叶片光合作用的比较研究. 草地学报, 2022, 30(4): 983-991. | |
| [17] | Kunrath R T, Lemaire G, Sadras O V, et al. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Research, 2018, 222: 1-11. |
| [18] | Liu Y, Wu Q, Ge G, et al. Influence of drought stress on alfalfa yields and nutritional composition. BMC Plant Biology, 2018, 18(1): 13. |
| [19] | Chen J. Comparison on agronomic traits and nutritional value of 20 alfalfa varieties in different soil conditions. Changchun: Northeast Normal University, 2017. |
| 陈洁. 不同土壤条件下20个紫花苜蓿品种农艺性状及营养价值的比较. 长春: 东北师范大学, 2017. | |
| [20] | Zhang D, Long H Y. Evaluation of production performance and nutritional value of eight alfalfa varieties in the hot-arid zone. Chinese Journal of Grassland, 2024, 46(1): 70-77. |
| 张德, 龙会英. 8个紫花苜蓿品种在干热区生产性能和营养价值评价. 中国草地学报, 2024, 46(1): 70-77. | |
| [21] | Sun W B, Ma H L, Hou X Y, et al. Comprehensive evaluation of production performance and nutritional value of 20 alfalfa cultivars in two ecological areas of Gansu Province. Acta Prataculturae Sinica, 2017, 26(3): 161-174. |
| 孙万斌, 马晖玲, 侯向阳, 等. 20个紫花苜蓿品种在甘肃两个地区的生产性能及营养价值综合评价. 草业学报, 2017, 26(3): 161-174. | |
| [22] | Guo M, Yan D, Ma Z K, et al. Effects of altitude on the agronomic and qualitative characters of barley. Barley and Cereal Sciences, 2017, 34(6): 22-29. |
| 郭铭, 闫栋, 马增科, 等. 不同海拔地区对大麦农艺性状和品质的影响. 大麦与谷类科学, 2017, 34(6): 22-29. | |
| [23] | Liu T T, Wang S W, Li Q F, et al. Ruminal degradation characteristics of whole maize plant material before and after ensiling in beef cattle as determined in situ using the nylon bag method. Acta Prataculturae Sinica, 2021, 30(1): 159-169. |
| 刘桃桃, 王思伟, 李秋凤, 等. 利用尼龙袋法比较3个全株玉米品种青贮前后肉牛瘤胃降解特性. 草业学报, 2021, 30(1): 159-169. | |
| [24] | Sun J, Gong L, Lian L, et al. Effect of altitude and mixed-sowing ratio on forage production and quality of oat and common vetch. Pratacultural Science, 2018, 35(10): 2438-2449. |
| 孙杰, 巩林, 连露, 等. 海拔高度和混播比例对燕麦与箭筈豌豆产草量及质量的影响. 草业科学, 2018, 35(10): 2438-2449. | |
| [25] | Sun Y L, Liu X S, Li S Y, et al. Comprehensive evaluation of production performance with different fall dormancy rates of alfalfa in Shihezi, Xinjiang. Acta Agrestia Sinica, 2022, 30(5): 1227-1236. |
| 孙延亮, 刘选帅, 李生仪, 等. 新疆石河子地区不同秋眠级紫花苜蓿生产性能的综合评价. 草地学报, 2022, 30(5): 1227-1236. | |
| [26] | Wang X F, Gao W Q, Liu J F, et al. Plant defensive strategies and environment-driven mechanisms. Chinese Journal of Ecology, 2015, 34(12): 3542-3552. |
| 王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制. 生态学杂志, 2015, 34(12): 3542-3552. | |
| [27] | Wang Y T, Meng D B, Yu L Q, et al. Comparison of production performance and cold resistance of 8 alfalfa materials in Hohhot. Chinese Journal of Grassland, 2022, 44(6): 60-66. |
| 王运涛, 孟德斌, 于林清, 等. 8个紫花苜蓿材料在呼和浩特地区的抗寒性和生产性能比较. 中国草地学报, 2022, 44(6): 60-66. | |
| [28] | Zhao J T, Yue Y F, Zhang Q B, et al. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
| 赵建涛, 岳亚飞, 张前兵, 等. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应. 草业学报, 2022, 31(8): 24-34. | |
| [29] | Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant. Plant Physiology, 2011, 156(3): 318-325. |
| [30] | Arenas-Castro S, Gonçalves F J, Moreno M, et al. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment, 2020, 709: 136161. |
| [1] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [2] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [3] | 刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214. |
| [4] | 张译尹, 王斌, 王腾飞, 兰剑, 胡海英. 苜蓿种子田间作小黑麦对饲草产量、水分利用及苜蓿种子产量的影响[J]. 草业学报, 2025, 34(8): 43-53. |
| [5] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [6] | 项凌飞, 张峰举, 麻冬梅, 刘金龙, 兰剑, 邓建强, 胡海英, 王斌, 蔡春江, 马巧利. 氮磷钾配施对盐碱地湖南稷子生产性能和营养品质的影响[J]. 草业学报, 2025, 34(7): 185-195. |
| [7] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [8] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [9] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [10] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [11] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [12] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [13] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [14] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [15] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||