草业学报 ›› 2021, Vol. 30 ›› Issue (8): 119-126.DOI: 10.11686/cyxb2020308
• 研究论文 • 上一篇
郭丰辉1,2(), 丁勇1, 马文静3, 李贤松1, 李西良1(), 侯向阳1,2()
收稿日期:
2020-06-30
修回日期:
2020-10-29
出版日期:
2021-07-09
发布日期:
2021-07-09
通讯作者:
李西良,侯向阳
作者简介:
Corresponding author. E-mail: houxy16@vip.126.com, lixiliang0824@126.com基金资助:
Feng-hui GUO1,2(), Yong DING1, Wen-jing MA3, Xian-song LI1, Xi-liang LI1(), Xiang-yang HOU1,2()
Received:
2020-06-30
Revised:
2020-10-29
Online:
2021-07-09
Published:
2021-07-09
Contact:
Xi-liang LI,Xiang-yang HOU
摘要:
母体放牧环境可以对后代子株产生遗留效应,同时,放牧可通过改变生态系统蒸散发格局及强度加剧干旱。然而,放牧遗留效应是否影响了植物对干旱的响应,尚知之甚少。从长期围封和放牧样地采集羊草克隆后代进行室内培养,研究了放牧遗留效应对羊草干旱适应性的影响。结果表明:1)相对于围封羊草克隆后代(NG),放牧羊草克隆后代(GZ)单株株高、单株生物量的干旱抵抗力更强,材料来源与干旱处理交互作用显著;相反,GZ子株数对干旱的响应比NG更敏感;2)NG与GZ地上生物量、总生物量对干旱具有相同的响应趋势和强度;3)NG总根茎长、总根茎节间数对干旱的响应更敏感,对照处理下NG总根茎长度、总根茎节间数显著大于GZ,而干旱处理下无显著差异;4)NG在干旱下减小根茎和地上分配,提高根系分配;而GZ在干旱下减小根茎分配、提高地上分配,根系分配无显著变化。结果表明,放牧遗留效应改变了羊草对干旱的响应模式,为认识放牧生态系统过程提供了新的角度。
郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126.
Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment[J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126.
图1 放牧与围封羊草单株性状及子株数对干旱的响应CK: 对照处理Control treatment; DT: 干旱处理Drought treatment; NG: 围封样地来源羊草L. Chinensis collected from enclosed plot; GZ: 放牧样地来源羊草L. Chinensis collected from grazing plot; P: 双因素方差分析结果The result of Two-way ANOVA; NO: 该指标无法满足双因素方差分析条件The index cannot meet the conditions of Two-way ANOVA;*: 对照和干旱处理间差异显著Significant difference between control and drought treatment; PI, ?: 放牧或围封羊草在干旱处理下的可塑性指数及变化量大小The plasticity index and variation of GZ or NG to drought treatment; 不同小写字母表示在对照或干旱处理下放牧与围封羊草之间存在显著差异Different lowercase letters indicate that there are significant differences between NG and GZ under control or drought treatment.
Fig.1 The responses of GZ and NG to drought treatment in terms of individual characters and ramet number
根茎性状 Rhizome characters | 来源 Source | 对照 CK | 干旱处理 DT | 交互作用 Interaction | PI (%) | ? | |
---|---|---|---|---|---|---|---|
F | P | ||||||
总根茎长度 Total rhizome length (cm) | NG | 161.91±6.75Aa | 11.12±3.62Ba | 16.74 | <0.001 | 93.13 | 150.79 |
GZ | 101.66±9.50Ab | 2.15±1.14Ba | 97.89 | 99.51 | |||
总根茎节间数 Total rhizome number | NG | 55.00±4.21Aa | 5.50±1.66Ba | 4.06 | 0.05 | 90.00 | 49.50 |
GZ | 37.11±4.27Ab | 1.40±0.75Ba | 96.23 | 35.71 | |||
最长根茎长度 The longest rhizome (cm) | NG | 54.64±5.98Aa | 9.72±2.97Ba | 1.41 | 0.24 | 82.21 | 44.92 |
GZ | 38.28±4.15Ab | 2.15±1.14Bb | 94.38 | 36.13 | |||
最长根茎节间数 The largest internode number | NG | 18.00±1.94Aa | 4.50±1.23Ba | 0.12 | 0.73 | 75.00 | 13.50 |
GZ | 14.11±1.50Aa | 1.40±0.75Bb | 90.08 | 12.71 | |||
节间长 The internode length (cm) | NG | 3.05±0.18Aa | 2.09±0.30Ba | NO | NO | 31.48 | 0.96 |
GZ | 2.83±0.17Aa | 1.56±0.06Ba | 44.88 | 1.27 |
表1 放牧与围封羊草根茎性状对干旱的响应
Table 1 The responses of GZ and NG to drought treatment in terms of rhizome characters
根茎性状 Rhizome characters | 来源 Source | 对照 CK | 干旱处理 DT | 交互作用 Interaction | PI (%) | ? | |
---|---|---|---|---|---|---|---|
F | P | ||||||
总根茎长度 Total rhizome length (cm) | NG | 161.91±6.75Aa | 11.12±3.62Ba | 16.74 | <0.001 | 93.13 | 150.79 |
GZ | 101.66±9.50Ab | 2.15±1.14Ba | 97.89 | 99.51 | |||
总根茎节间数 Total rhizome number | NG | 55.00±4.21Aa | 5.50±1.66Ba | 4.06 | 0.05 | 90.00 | 49.50 |
GZ | 37.11±4.27Ab | 1.40±0.75Ba | 96.23 | 35.71 | |||
最长根茎长度 The longest rhizome (cm) | NG | 54.64±5.98Aa | 9.72±2.97Ba | 1.41 | 0.24 | 82.21 | 44.92 |
GZ | 38.28±4.15Ab | 2.15±1.14Bb | 94.38 | 36.13 | |||
最长根茎节间数 The largest internode number | NG | 18.00±1.94Aa | 4.50±1.23Ba | 0.12 | 0.73 | 75.00 | 13.50 |
GZ | 14.11±1.50Aa | 1.40±0.75Bb | 90.08 | 12.71 | |||
节间长 The internode length (cm) | NG | 3.05±0.18Aa | 2.09±0.30Ba | NO | NO | 31.48 | 0.96 |
GZ | 2.83±0.17Aa | 1.56±0.06Ba | 44.88 | 1.27 |
图4 放牧和围封羊草生物量分配对干旱的响应百分数代表生物量分配Percentiles indicate biomass allocation.
Fig.4 The responses of GZ and NG to drought treatment in terms of biomass allocation
生物量分配 Biomass allocation | 来源 Source | 交互作用Interaction | PI (%) | ? (%) | |
---|---|---|---|---|---|
F | P | ||||
地上Aboveground | NG | 7.335 | 0.011 | 15 | 8 |
GZ | -18 | -10 | |||
根系Root | NG | NO | NO | -68 | -15 |
GZ | 7 | 2 | |||
根茎Rhizome | NG | 0.249 | 0.621 | 27 | 7 |
GZ | 50 | 8 |
表2 羊草生物量分配双因素方差分析
Table 2 Two-way ANOVA of L. chinensis biomass allocation
生物量分配 Biomass allocation | 来源 Source | 交互作用Interaction | PI (%) | ? (%) | |
---|---|---|---|---|---|
F | P | ||||
地上Aboveground | NG | 7.335 | 0.011 | 15 | 8 |
GZ | -18 | -10 | |||
根系Root | NG | NO | NO | -68 | -15 |
GZ | 7 | 2 | |||
根茎Rhizome | NG | 0.249 | 0.621 | 27 | 7 |
GZ | 50 | 8 |
1 | Cuddington K. Legacy effects: The persistent impact of ecological interactions. Biological Theory, 2011, 6(3): 203-210. |
2 | Kostenko O, Voorde T F J, Mulder P P J, et al. Legacy effects of aboveground-belowground interactions. Ecology Letters, 2012, 15(8): 813-821. |
3 | Wurst S, Ohgushi T. Do plant- and soil- mediated legacy effects impact future biotic interactions? Functional Ecology, 2015, 29(11): 1373-1382. |
4 | Valls F H, Bonnet O, Cromsigt J P G M, et al. Legacy effects of different land-use histories interact with current grazing patterns to determine grazing lawn soil properties. Ecosystems, 2015, 18(4): 720-733. |
5 | Anderegg W R L, Schwalm C, Biondi F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349: 528-532. |
6 | Kafle D, Wurst S. Legacy effects of herbivory enhance performance and resistance of progeny plants. Journal of Ecology, 2019, 107(1): 58-68. |
7 | Painter E L, Detling J K, Steingraeber D A. Plant morphology and grazing history: Relationships between native grasses and herbivores. Vegetatio, 1993, 106(1): 37-62. |
8 | Polley H W, Detling J K. Grazing-mediated differentiation in Agropyron smithii: Evidence from populations with different grazing histories. Oikos, 1990, 57(3): 326-332. |
9 | Tomás M A, Carrera A D, Poverene M. Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories? Plant Ecology, 2000, 147(2): 227-235. |
10 | Ren W, Hu N, Hou X, et al. Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Frontiers in Plant Science, 2017, 8: 1-13. |
11 | Li X L, Liu Z Y, Hou X Y, et al. Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 2015, 50(2): 159-170. |
李西良, 刘志英, 侯向阳, 等. 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 2015, 50(2): 159-170. | |
12 | Loreti J, Oesterheld M, Sala O. Lack of intraspecific variation in resistance to defoliation in a grass that evolved under light grazing pressure. Plant Ecology, 2001, 157(2): 197-204. |
13 | Oesterheld M, Mcnaughton S J. Intraspecific variation in the response of Themeda triandra to defoliation: The effect of time of recovery and growth rates on compensatory growth. Oecologia, 1988, 77(2): 181-186. |
14 | Wang M, Xu B, Zhang D Y, et al. Changes in plant community biomass and biodiversity along soil moisture content gradients in Xilin River basin,Inner Mongolia. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 445-449. |
王萌, 徐冰, 张大勇, 等. 内蒙古草原锡林河流域植物群落生物量及多样性沿土壤水分含量梯度的变化. 北京师范大学学报(自然科学版), 2016, 52(4): 445-449. | |
15 | Jia Z B. A comparative study on influence on plant communities and mutual species and response to different temperature gradient and combination of water and heat in Inner Mongolia steppe region of temperate zone. Hohhot: Inner Mongolia University, 2001. |
贾志斌. 不同温度梯度及其水热组合对温带草原群落与共有种的影响及其响应的比较研究. 呼和浩特: 内蒙古大学, 2001. | |
16 | Pereyra D A, Bucci S J, Arias N S, et al. Grazing increases evapotranspiration without the cost of lowering soil water storages in arid ecosystems. Ecohydrology, 2017, 10(6): e1850. |
17 | Wu Q H, Mao S J, Liu X Q, et al. Analysis of the soil water-holding capacity in alpine forb meadow under grazing gradient and relevant influence factors. Journal of Glaciology and Geocryology, 2014, 36(3): 590-598. |
吴启华, 毛绍娟, 刘晓琴, 等. 牧压梯度下高寒杂草类草甸土壤持水能力及影响因素分析. 冰川冻土, 2014, 36(3): 590-598. | |
18 | Veldhuis M P, Howison R A, Fokkema R W, et al. A novel mechanism for grazing lawn formation: Large herbivore-induced modification of the plant-soil water balance. Journal of Ecology, 2014, 102(6): 1506-1517. |
19 | Ma W J, Li J, Jimoh S O, et al. Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 2019, 7: e7047. |
20 | Li L Z, Zhang D G, Xin X P, et al. Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica, 2009, 29(10): 5271-5279. |
李林芝, 张德罡, 辛晓平, 等. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性. 生态学报, 2009, 29(10): 5271-5279. | |
21 | Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 2006, 94(6): 1103-1116. |
22 | Liu J P. Axillary bud outgrowth and apical dominance. Plant Physiology Communications, 2007, 43(3): 575-582. |
刘进平. 植物腋芽生长与顶端优势. 植物生理学通讯, 2007, 43(3): 575-582. | |
23 | Díaz S, Lavorel S, Mcintyre S, et al. Plant trait responses to grazing-A global synthesis. Global Change Biology, 2007, 13(2): 313-341. |
24 | Lennartsson T, Ramula S, Tuomi J. Growing competitive or tolerant? Significance of apical dominance in the overcompensating herb Gentianella campestris. Ecology, 2018, 99(2): 259-269. |
25 | Li C J. The role of plant hormone in apical dominance. Plant Physiology Communications, 1995, 31(6): 401-406. |
李春俭. 植物激素在顶端优势中的作用. 植物生理学通讯, 1995, 31(6): 401-406. | |
26 | Li L, Jia Z Q, Zhu Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. |
李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. | |
27 | Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012, 17(3): 172-179. |
28 | Li J N, Li P F, Kong H Y, et al. Current progress in eco-physiology of root-sourced chemical signal in plant under drought stress. Acta Ecologica Sinica, 2011, 31(9): 2610-2620. |
李冀南, 李朴芳, 孔海燕, 等. 干旱胁迫下植物根源化学信号研究进展. 生态学报, 2011, 31(9): 2610-2620. | |
29 | Jin B H, Chen Y J, Wu Y H, et al. Response of root distribution and biomass allocation of different Poa L.varieties to drought stress. Acta Agrestia Sinica, 2009, 17(6): 813-816. |
金不换, 陈雅君, 吴艳华, 等. 早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应. 草地学报, 2009, 17(6): 813-816. | |
30 | Zhu H, Lin Q F, Wang K. The research progress on plant mild drought stress. Molecular Plant Breeding, 2018, 16(22): 7521-7526. |
朱虹, 林清芳, 王凯. 植物温和干旱胁迫的研究进展. 分子植物育种, 2018, 16(22): 7521-7526. | |
31 | Walter J, Jentsch A, Beierkuhnlein C, et al. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 2013, 94(5): 3-8. |
32 | Zobel M, Moora M, Herben T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: What do we need to know next? Oikos, 2010, 119(5): 802-806. |
33 | Suzuki J I, Stuefer J. On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 1999, 14(1): 11-17. |
[1] | 韩晓栩, 赵媛媛, 张丽静, 郭丁, 傅华, 李永善, 杨成新. 干旱和UV-B辐射胁迫及其互作对白沙蒿抗性生理的影响[J]. 草业学报, 2021, 30(8): 109-118. |
[2] | 李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169. |
[3] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[4] | 赵小强, 钟源, 周文期. 不同水分环境下玉米叶面积QTL定位及候选基因分析[J]. 草业学报, 2021, 30(5): 103-120. |
[5] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[6] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
[7] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[8] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[9] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[10] | 张宁, 曹允馨, 徐伟, 常智慧. 干旱胁迫下污泥对草地早熟禾生长及激素代谢的影响[J]. 草业学报, 2021, 30(3): 167-176. |
[11] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[12] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[13] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[14] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[15] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||