草业学报 ›› 2022, Vol. 31 ›› Issue (10): 41-52.DOI: 10.11686/cyxb2021476
王永宏1(), 田黎明2, 艾鷖1, 陈仕勇3(), 泽让东科1()
收稿日期:
2021-12-22
修回日期:
2022-04-13
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
陈仕勇,泽让东科
作者简介:
E-mail: chengshi8827@163.com基金资助:
Yong-hong WANG1(), Li-ming TIAN2, Yi AI1, Shi-yong CHEN3(), Tserang-donko MIPAM1()
Received:
2021-12-22
Revised:
2022-04-13
Online:
2022-10-20
Published:
2022-09-14
Contact:
Shi-yong CHEN,Tserang-donko MIPAM
摘要:
牦牛放牧是青藏高原重要的人为干扰形式,放牧管理方式以及放牧强度对维持草地健康具有重要作用。为了明晰牦牛短期放牧对高寒草甸土壤真菌群落的影响过程,本研究在川西北典型高寒草甸进行牦牛放牧强度试验,设置了对照(禁牧)、轻度放牧(1头牦牛·hm-2)、中度放牧(2头牦牛·hm-2)和重度放牧(3头牦牛·hm-2)4种放牧强度。结果表明短期(2年)放牧处理通过增加土壤中子囊菌门的相对丰度、降低担子菌门的相对丰度从而改变土壤真菌群落结构;土壤真菌群落多样性与丰富度在各放牧强度间差异不显著,但放牧均有增加土壤真菌群落多样性与丰富度的趋势。通过对真菌群落结构变化进行方差分解,发现放牧强度通过改变土壤养分进而影响真菌群落结构;通过对真菌的共现网络进行模块化分析发现,短期的牦牛放牧对真菌相互作用主要模块的相对丰度影响不显著,而放牧强度通过影响土壤中的养分含量来影响模块相对丰度。
王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52.
Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52.
环境指标 Environmental indicators | 对照组 Control | 轻度放牧 Light grazing | 中度放牧 Moderate grazing | 重度放牧 Heavy grazing |
---|---|---|---|---|
丰富度 Richness | 25.50±0.50a | 25.92±2.77a | 29.33±2.50a | 26.67±2.13a |
多样性Shannon-Wiener | 2.34±0.11b | 2.39±0.17ab | 2.53±0.21a | 2.63±0.06a |
均匀度 Pielou | 0.69±0.03b | 0.74±0.04ab | 0.75±0.05ab | 0.80±0.01a |
地上净初级生产力ANPP (g·cm-2) | 299.52±17.83b | 426.51±88.17a | 448.47±43.29a | 336.34±62.99ab |
含水率Soil moisture (%) | 21.26±3.03a | 24.70±2.29a | 24.96±1.36a | 24.45±3.65a |
土壤容重Bulk density (g·cm-3) | 1.32±0.02a | 1.19±0.02b | 1.25±0.02ab | 1.18±0.08b |
全氮 TN (g·kg-1) | 2.97±0.24a | 3.21±0.22a | 3.18±0.26a | 3.62±0.53a |
全磷 TP (g·kg-1) | 0.77±0.03a | 0.89±0.07a | 0.82±0.06a | 0.81±0.13a |
全钾 TK (g·kg-1) | 16.97±1.04a | 17.00±1.09a | 16.42±0.83a | 15.75±0.36a |
碱解氮 AN (mg·kg-1) | 225.44±34.75a | 272.34±30.98a | 268.34±21.74a | 273.44±34.00a |
速效磷 AP (mg·kg-1) | 3.96±0.53b | 4.50±0.38ab | 5.08±1.00ab | 5.53±0.35a |
速效钾 AK (mg·kg-1) | 134.68±67.78a | 161.61±55.06a | 192.38±15.37a | 165.06±38.52a |
pH | 5.92±0.09a | 5.83±0.06ab | 5.68±0.05c | 5.74±0.05bc |
有机质 SOM (g·kg-1) | 66.88±6.10a | 74.28±0.91a | 64.86±8.22a | 68.81±9.46a |
表1 不同放牧强度对环境因子的影响
Table 1 Effect of different grazing intensities on environmental factors
环境指标 Environmental indicators | 对照组 Control | 轻度放牧 Light grazing | 中度放牧 Moderate grazing | 重度放牧 Heavy grazing |
---|---|---|---|---|
丰富度 Richness | 25.50±0.50a | 25.92±2.77a | 29.33±2.50a | 26.67±2.13a |
多样性Shannon-Wiener | 2.34±0.11b | 2.39±0.17ab | 2.53±0.21a | 2.63±0.06a |
均匀度 Pielou | 0.69±0.03b | 0.74±0.04ab | 0.75±0.05ab | 0.80±0.01a |
地上净初级生产力ANPP (g·cm-2) | 299.52±17.83b | 426.51±88.17a | 448.47±43.29a | 336.34±62.99ab |
含水率Soil moisture (%) | 21.26±3.03a | 24.70±2.29a | 24.96±1.36a | 24.45±3.65a |
土壤容重Bulk density (g·cm-3) | 1.32±0.02a | 1.19±0.02b | 1.25±0.02ab | 1.18±0.08b |
全氮 TN (g·kg-1) | 2.97±0.24a | 3.21±0.22a | 3.18±0.26a | 3.62±0.53a |
全磷 TP (g·kg-1) | 0.77±0.03a | 0.89±0.07a | 0.82±0.06a | 0.81±0.13a |
全钾 TK (g·kg-1) | 16.97±1.04a | 17.00±1.09a | 16.42±0.83a | 15.75±0.36a |
碱解氮 AN (mg·kg-1) | 225.44±34.75a | 272.34±30.98a | 268.34±21.74a | 273.44±34.00a |
速效磷 AP (mg·kg-1) | 3.96±0.53b | 4.50±0.38ab | 5.08±1.00ab | 5.53±0.35a |
速效钾 AK (mg·kg-1) | 134.68±67.78a | 161.61±55.06a | 192.38±15.37a | 165.06±38.52a |
pH | 5.92±0.09a | 5.83±0.06ab | 5.68±0.05c | 5.74±0.05bc |
有机质 SOM (g·kg-1) | 66.88±6.10a | 74.28±0.91a | 64.86±8.22a | 68.81±9.46a |
处理 Treatment | Chao 1丰富度 Chao 1 richness | Shannon多样性 Shannon-Wiener diversity | ||||
---|---|---|---|---|---|---|
平均值 Mean | F | P | 平均值 Mean | F | P | |
对照组 Control | 424.72±34.02 | 0.769 | 0.543 | 5.5833±0.5349 | 0.352 | 0.789 |
轻度放牧 Light grazing | 526.89±72.22 | 6.0477±0.6021 | ||||
中度放牧 Moderate grazing | 504.79±47.69 | 5.6767±0.8937 | ||||
重度放牧 Heavy grazing | 502.67±42.08 | 6.3700±0.1795 |
表2 不同放牧强度土壤真菌群落α多样性的单因素方差分析结果
Table 2 Results of One-way ANOVA analysis of soil fungal community α diversity at different grazing intensities
处理 Treatment | Chao 1丰富度 Chao 1 richness | Shannon多样性 Shannon-Wiener diversity | ||||
---|---|---|---|---|---|---|
平均值 Mean | F | P | 平均值 Mean | F | P | |
对照组 Control | 424.72±34.02 | 0.769 | 0.543 | 5.5833±0.5349 | 0.352 | 0.789 |
轻度放牧 Light grazing | 526.89±72.22 | 6.0477±0.6021 | ||||
中度放牧 Moderate grazing | 504.79±47.69 | 5.6767±0.8937 | ||||
重度放牧 Heavy grazing | 502.67±42.08 | 6.3700±0.1795 |
图4 不同放牧强度各模块的相对丰度不同字母表示差异显著 (P<0.1)。Different letters mean significant differences at 0.1 level.
Fig.4 Relative abundance under different grazing intensities for each module
图5 不同真菌门相对丰度与环境因子的冗余分析(A)、真菌群落结构变化进行方差分解分析(B)
Fig.5 RDA results of environmental factors and relative abundance of different fungal phylums (A) and VPA of fungal community structure changes (B)
1 | Xie G D, Lu C X, Leng Y F, et al. Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 2003, 18(2): 189-196. |
谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估. 自然资源学报, 2003, 18(2): 189-196. | |
2 | Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. |
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875. | |
3 | Yang Y S, Li H Q, Zhang L, et al. Characteristics of soil water percolation and dissolved organic carbon leaching and their response to long-term fencing in an alpine meadow on the Tibetan Plateau. Environmental Earth Sciences, 2016, 75(23): 1-10. |
4 | Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. |
朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. | |
5 | Yang Y F, Wu L W, Lin Q Y, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648. |
6 | Zhou H K, Zhao X Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the “Alpine Meadow” of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
7 | Zhang X S, Tang H P, Dong X B, et al. The dilemma of steppe and it’s transformation in China. Chinese Science Bulletin, 2016, 61(2): 165-177. |
张新时, 唐海萍, 董孝斌, 等. 中国草原的困境及其转型. 科学通报, 2016, 61(2): 165-177. | |
8 | Ren J Z. Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 2012, 27(8): 1259-1275. |
任继周. 放牧、草原生态系统存在的基本方式-兼论放牧的转型. 自然资源学报, 2012, 27(8): 1259-1275. | |
9 | Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7(1): 1-8. |
10 | Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968. |
11 | Piccini C, Conde D, Pernthaler J, et al. Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition. Photochemical and Photobiological Sciences, 2009, 8(9): 1321-1328. |
12 | Xun W B, Yan R R, Ren Y, et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe. Microbiome, 2018, 6(1): 1-13. |
13 | Wang X X, Zhang W, Liu Y, et al. Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biology and Biochemistry, 2021, 153: 107970. |
14 | Tedersoo L, Bahram M, Põlme S, et al. Global diversity and geography of soil fungi. Science, 2014, 346(6213): 1052-1053. |
15 | Yang T, Adams J M, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist, 2017, 215(2): 756-765. |
16 | Fan D D, Kong W D, Wang F, et al. Fencing decreases microbial diversity but increases abundance in grassland soils on the Tibetan Plateau. Land Degradation & Development, 2020, 31(17): 2577-2590. |
17 | Wang J T, Zheng Y M, Hu H W, et al. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 2015, 15(5): 1224-1232. |
18 | Liu M, Mipam T D, Wang X X, et al. Contrasting effects of mammal grazing on foliar fungal diseases: patterns and potential mechanisms. New Phytologist, 2021, 232(1): 345-355. |
19 | Eldridge D J, Delgado-Baquerizo M. Functional groups of soil fungi decline under grazing. Plant and Soil, 2018, 426(1/2): 51-60. |
20 | Yang X, Chen J S, Shen Y, et al. Global negative effects of livestock grazing on arbuscular mycorrhizas: A meta-analysis. Science of the Total Environment, 2020, 708: 134553. |
21 | Mipam T D, Chen S Y, Liu J Q, et al. Short-term yak-grazing alters plant-soil stoichiometric relations in an alpine meadow on the eastern Tibetan Plateau. Plant and Soil, 2021, 458(1/2SI): 125-137. |
22 | Barberan A, Bates S T, Casamayor E O, et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. The International Society for Microbial Ecology Journal, 2012, 6(2): 343-351. |
23 | Guidi L, Chaffron S, Bittner L, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532(7600): 465-470. |
24 | Mipam T D, Zhong L L, Liu J Q, et al. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 2019, 10: 925. |
25 | Bao S D. Soil analysis in agricultural chemistry. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
26 | Eldridge D J, Delgado-Baquerizo M, Travers S K, et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology, 2017, 98(7): 1922-1931. |
27 | Vidal A, Schucknecht A, Toechterle P, et al. High resistance of soils to short-term re-grazing in a long-term abandoned alpine pasture. Agriculture, Ecosystems & Environment, 2020, 300: 107008. |
28 | Yang W G. Effects of yak dung decomposition on plant community characteristics and soil microenvironment of alpine meadow in Northwest Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
杨文高. 牦牛粪分解对川西北高寒草甸植物群落和土壤微环境的影响. 成都: 西南民族大学, 2020. | |
29 | Singh S, Madlala A M, Prior B A. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews, 2003, 27(1): 3-16. |
30 | Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 2011, 43(1): 86-96. |
31 | Hu J, Wu J, Ma M, et al. Nematode communities response to long-term grazing disturbance on Tibetan plateau. European Journal of Soil Biology, 2015, 100(69): 24-32. |
32 | Bauhus J, Khanna P K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles. Biology and Fertility of Soils, 1994, 17(3): 212-218. |
33 | Mori T, Lu X K, Aoyagi R, et al. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Functional Ecology, 2018, 32(5): 1145-1154. |
34 | Liu Y R, Delgado-Baquerizo M, Trivedi P, et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology and Biochemistry, 2017, 107: 208-217. |
35 | Yao F, Yang S, Wang Z R, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Frontiers in Microbiology, 2017, 8: 2071. |
36 | Lehmann A, Zheng W S, Soutschek K, et al. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports, 2019, 9(1): 1-9. |
37 | Hernandez D J, David A S, Menges E S, et al. Environmental stress destabilizes microbial networks. The International Society for Microbial Ecology Journal, 2021, 15(6): 1722-1734. |
38 | Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10(1): 4841. |
39 | Allison S D, Martiny J B. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(Suppl 1): 11512-11519. |
40 | Stouffer D B, Bascompte J. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3648-3652. |
41 | Yin Y L, Wang Y Q, Li S X, et al. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(1): 127-136. |
尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136. | |
42 | Peng L, Shan X L, Yang Y Z, et al. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. Plant, Cell & Environment, 2021, 44(8): 2793-2809. |
43 | Xu Z, Qu M S, Liu S L, et al. Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use and Management, 2020, 36(3): 536-546. |
44 | Liu J, Jia X Y, Yan W M, et al. Changes in soil microbial community structure during long‐term secondary succession. Land Degradation & Development, 2020, 31(9): 1151-1166. |
45 | Chai J L, Xu C L, Zhang J W, et al. Response of soil physical properties and microbial quantities to simulated trampling on alpine meadow. Acta Agrestia Sinica, 2016, 24(6): 1234-1240. |
柴锦隆, 徐长林, 张建文, 等. 高寒草甸土壤物理特性和微生物数量对模拟践踏的响应. 草地学报, 2016, 24(6): 1234-1240. | |
46 | Lin X R, Alspaugh J A, Liu H P, et al. Fungal morphogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5(2): a19679. |
47 | Zheng Q, Hu Y, Zhang S, et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136: 107521. |
[1] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[2] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[3] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[4] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[5] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[6] | 沈洁, 丁蕾, 辛晓平, 张翔, 徐大伟, 侯路路, 闫瑞瑞. 基于无人机激光雷达与多光谱数据的不同放牧强度下草原冠层尺度特征研究[J]. 草业学报, 2022, 31(3): 1-15. |
[7] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[8] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[9] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[10] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[11] | 孙世贤, 丁勇, 李夏子, 吴新宏, 闫志坚, 尹强, 李金卓. 放牧强度季节调控对荒漠草原土壤风蚀的影响[J]. 草业学报, 2020, 29(7): 23-29. |
[12] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[13] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[14] | 马海霞, 张德罡, 陈瑾, 郭春秀, 董永平, 马源, 康玉坤, 陈璐, 杜凯, 陈建纲. 祁连山东段高寒草甸土壤持水能力在小尺度不同坡面位置的分异特征[J]. 草业学报, 2020, 29(1): 28-37. |
[15] | 张灵菲, 卫万荣, 石高宇, 张卫国. 高寒草甸植物群落结构对高原鼠兔种群密度的影响[J]. 草业学报, 2019, 28(3): 93-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||