草业学报 ›› 2023, Vol. 32 ›› Issue (2): 110-118.DOI: 10.11686/cyxb2022238
• 研究论文 • 上一篇
魏露萍1,2,3(), 周青平1,2,3, 刘芳4, 林积圳4, 詹圆1,2,3, 汪辉1,2,3()
收稿日期:
2022-05-30
修回日期:
2022-07-02
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
汪辉
作者简介:
E-mail: zzbjwh@163.com基金资助:
Lu-ping WEI1,2,3(), Qing-ping ZHOU1,2,3, Fang LIU4, Ji-zhen LIN4, Yuan ZHAN1,2,3, Hui WANG1,2,3()
Received:
2022-05-30
Revised:
2022-07-02
Online:
2023-02-20
Published:
2022-12-01
Contact:
Hui WANG
摘要:
随着探索提高植物整体光合能力相关研究的不断开展,麦类作物穗部器官等植物非叶绿色器官光合潜力挖掘逐渐得到关注。本研究在成都平原秋播美达、贝勒、莫尼卡、摄政王、泰克和甜燕60等6个品种燕麦,设置遮穗、去颖2个试验处理,比较分析了各品种间穗部特征、穗部光合贡献率、颖片光合贡献率和茎光合物质转移率等差异。结果表明,燕麦穗部器官光合贡献率为28.56%~49.05%,其中甜燕60最高;6个品种燕麦的颖片光合贡献率为11.03%~36.88%,茎光合物质转移率为6.65%~35.81%。燕麦穗部器官对籽实增重表现了较高的光合贡献,当燕麦穗部器官光合受到限制时,燕麦单粒种子重和单穗种子数显著降低,尤其是影响双粒小穗数。
魏露萍, 周青平, 刘芳, 林积圳, 詹圆, 汪辉. 遮穗和去颖下燕麦穗部特征变化和穗部光合贡献率估算[J]. 草业学报, 2023, 32(2): 110-118.
Lu-ping WEI, Qing-ping ZHOU, Fang LIU, Ji-zhen LIN, Yuan ZHAN, Hui WANG. Variation in ear characteristics and estimation of photosynthetic contributions to oat ear development using techniques of ear shading and glume removal[J]. Acta Prataculturae Sinica, 2023, 32(2): 110-118.
品种代码 Variety code | 品种名称 Variety | 产地 Place of origin | 供种企业 Company |
---|---|---|---|
MD | 美达 Meida | 美国 America | 北京正道种业有限公司 Beijing Rytway Seed Co., Ltd. |
BL | 贝勒 Beile | 加拿大 Canada | 北京正道种业有限公司 Beijing Rytway Seed Co., Ltd. |
MNK | 莫尼卡 Monika | 美国 America | 北京百斯特草业有限公司 Beijing Best Grass Industry Co., Ltd. |
SZW | 摄政王Shezhengwang | 美国 America | 北京百斯特草业有限公司 Beijing Best Grass Industry Co., Ltd. |
TK | 泰克 Taike | 美国 America | 北京佰青源畜牧业科技发展有限公司 Beijing Green Animal Husbandry S&T Development Co., Ltd. |
T60 | 甜燕60 Tianyan60 | 加拿大 Canada | 北京佰青源畜牧业科技发展有限公司 Beijing Green Animal Husbandry S&T Development Co., Ltd. |
表1 试验材料
Table 1 Test materials
品种代码 Variety code | 品种名称 Variety | 产地 Place of origin | 供种企业 Company |
---|---|---|---|
MD | 美达 Meida | 美国 America | 北京正道种业有限公司 Beijing Rytway Seed Co., Ltd. |
BL | 贝勒 Beile | 加拿大 Canada | 北京正道种业有限公司 Beijing Rytway Seed Co., Ltd. |
MNK | 莫尼卡 Monika | 美国 America | 北京百斯特草业有限公司 Beijing Best Grass Industry Co., Ltd. |
SZW | 摄政王Shezhengwang | 美国 America | 北京百斯特草业有限公司 Beijing Best Grass Industry Co., Ltd. |
TK | 泰克 Taike | 美国 America | 北京佰青源畜牧业科技发展有限公司 Beijing Green Animal Husbandry S&T Development Co., Ltd. |
T60 | 甜燕60 Tianyan60 | 加拿大 Canada | 北京佰青源畜牧业科技发展有限公司 Beijing Green Animal Husbandry S&T Development Co., Ltd. |
品种 Variety | 处理 Treatment | 穗长 Ear length (cm) | 单穗重 Ear weight (g) | 单穗种子重 Seed weight per ear (g) | 单粒种子重 Single seed weight (g) |
---|---|---|---|---|---|
T60 | SE | 24.68±0.60ab | 2.88±0.21c | 2.305±0.177c | 0.0185±0.0006b |
GR | 22.96±0.62b | 3.30±0.28bc | 3.049±0.263b | 0.0207±0.0008b | |
CK | 26.55±0.81a | 5.28±0.35a | 4.602±0.376a | 0.0321±0.0012a | |
SZW | SE | 21.11±0.88a | 2.35±0.19c | 2.250±0.142c | 0.0196±0.0006c |
GR | 19.54±0.39a | 3.11±0.26b | 2.940±0.207b | 0.0225±0.0006b | |
CK | 19.73±0.43a | 4.04±0.33a | 3.560±0.227a | 0.0258±0.0005a | |
MNK | SE | 19.18±0.30b | 2.37±0.12c | 1.685±0.092c | 0.0190±0.0005c |
GR | 19.52±0.33ab | 3.01±0.14b | 2.792±0.136b | 0.0227±0.0005b | |
CK | 20.59±0.49a | 3.63±0.21a | 3.239±0.188a | 0.0279±0.0006a | |
MD | SE | 27.04±0.72b | 3.53±0.18b | 2.911±0.153c | 0.0224±0.0009a |
GR | 27.77±0.82b | 4.32±0.25b | 3.986±0.232b | 0.0238±0.0005a | |
CK | 32.33±0.99a | 6.32±0.22a | 5.530±0.197a | 0.0284±0.0007a | |
TK | SE | 25.81±0.42a | 2.60±0.21b | 2.158±0.182b | 0.0294±0.0005b |
GR | 25.42±0.30a | 3.03±0.09b | 2.764±0.090a | 0.0316±0.0008ab | |
CK | 25.66±0.49a | 3.57±0.18a | 3.017±0.152a | 0.0326±0.0006a | |
BL | SE | 27.91±0.61b | 4.54±0.33b | 3.643±0.305b | 0.0347±0.0009c |
GR | 27.19±0.62b | 4.67±0.29b | 4.133±0.301b | 0.0405±0.0015ab | |
CK | 30.35±1.04a | 6.70±0.22a | 5.788±0.221a | 0.0454±0.0018a |
表2 遮穗和去颖对燕麦穗长、重量指标的影响
Table 2 Effects of shading ear and glume removal on ear length and weight characteristics
品种 Variety | 处理 Treatment | 穗长 Ear length (cm) | 单穗重 Ear weight (g) | 单穗种子重 Seed weight per ear (g) | 单粒种子重 Single seed weight (g) |
---|---|---|---|---|---|
T60 | SE | 24.68±0.60ab | 2.88±0.21c | 2.305±0.177c | 0.0185±0.0006b |
GR | 22.96±0.62b | 3.30±0.28bc | 3.049±0.263b | 0.0207±0.0008b | |
CK | 26.55±0.81a | 5.28±0.35a | 4.602±0.376a | 0.0321±0.0012a | |
SZW | SE | 21.11±0.88a | 2.35±0.19c | 2.250±0.142c | 0.0196±0.0006c |
GR | 19.54±0.39a | 3.11±0.26b | 2.940±0.207b | 0.0225±0.0006b | |
CK | 19.73±0.43a | 4.04±0.33a | 3.560±0.227a | 0.0258±0.0005a | |
MNK | SE | 19.18±0.30b | 2.37±0.12c | 1.685±0.092c | 0.0190±0.0005c |
GR | 19.52±0.33ab | 3.01±0.14b | 2.792±0.136b | 0.0227±0.0005b | |
CK | 20.59±0.49a | 3.63±0.21a | 3.239±0.188a | 0.0279±0.0006a | |
MD | SE | 27.04±0.72b | 3.53±0.18b | 2.911±0.153c | 0.0224±0.0009a |
GR | 27.77±0.82b | 4.32±0.25b | 3.986±0.232b | 0.0238±0.0005a | |
CK | 32.33±0.99a | 6.32±0.22a | 5.530±0.197a | 0.0284±0.0007a | |
TK | SE | 25.81±0.42a | 2.60±0.21b | 2.158±0.182b | 0.0294±0.0005b |
GR | 25.42±0.30a | 3.03±0.09b | 2.764±0.090a | 0.0316±0.0008ab | |
CK | 25.66±0.49a | 3.57±0.18a | 3.017±0.152a | 0.0326±0.0006a | |
BL | SE | 27.91±0.61b | 4.54±0.33b | 3.643±0.305b | 0.0347±0.0009c |
GR | 27.19±0.62b | 4.67±0.29b | 4.133±0.301b | 0.0405±0.0015ab | |
CK | 30.35±1.04a | 6.70±0.22a | 5.788±0.221a | 0.0454±0.0018a |
品种 Variety | 处理 Treatment | 轮层数 Round | 三粒小穗数 Triple seed spikelet | 双粒小穗数 Double seed spikelet | 单粒小穗数 Single seed spikelet | 单穗种子数 Seed number per ear | 单穗小穗数 Spikelet number per ear |
---|---|---|---|---|---|---|---|
T60 | SE | 9.00±0.15a | 0.71±0.38a | 50.14±5.06b | 23.36±2.51a | 125.79±9.94a | 90.57±9.19a |
GR | 8.53±0.19a | 0.87±0.43a | 68.13±4.88a | 7.20±1.64b | 146.07±10.29a | 94.00±9.69a | |
CK | 9.20±0.33a | 0.20±0.20a | 63.30±4.40ab | 15.40±2.81b | 142.60±9.86a | 88.10±5.82a | |
SZW | SE | 8.93±0.16a | 0.00±0.00a | 28.43±2.91c | 33.36±2.44a | 90.21±6.08b | 69.21±3.14a |
GR | 8.60±0.13a | 0.07±0.06a | 57.60±4.45a | 6.40±1.06c | 121.80±9.01a | 65.27±4.43a | |
CK | 8.80±0.41a | 0.07±0.06a | 54.13±12.68ab | 13.00±6.48b | 121.47±26.59a | 72.67±14.66a | |
MNK | SE | 8.33±0.19a | 0.00±0.00a | 26.07±2.80c | 36.60±2.39a | 88.73±4.88c | 73.13±2.30a |
GR | 8.40±0.16a | 0.07±0.06a | 58.60±3.16a | 5.80±0.96c | 123.20±5.80a | 67.20±2.91a | |
CK | 8.29±0.13a | 0.00±0.00a | 52.00±2.96ab | 12.36±1.72b | 116.36±6.16ab | 71.07±3.32a | |
MD | SE | 9.27±0.15a | 0.47±0.04a | 48.67±4.21c | 33.53±5.42a | 132.27±7.88c | 129.20±5.62ab |
GR | 9.47±0.17a | 0.27±0.15a | 72.80±4.26ab | 20.53±2.10b | 166.93±8.45ab | 106.60±4.86c | |
CK | 9.33±0.21a | 0.27±0.15a | 84.87±3.58a | 24.87±2.44ab | 195.40±6.19a | 130.73±4.43a | |
TK | SE | 8.07±0.25a | 2.21±0.75a | 27.29±2.74a | 12.21±1.09a | 73.43±5.89b | 46.00±2.39a |
GR | 7.93±0.17a | 6.07±1.71a | 31.07±2.54a | 8.21±1.02b | 88.57±4.08ab | 47.43±1.68a | |
CK | 7.80±0.14a | 5.33±1.74a | 35.00±3.55a | 7.60±0.75b | 93.60±6.04a | 49.27±2.80a | |
BL | SE | 8.29±0.13a | 0.00±0.00a | 38.21±5.06a | 29.50±3.75a | 105.93±8.91a | 98.14±5.01a |
GR | 8.27±0.18a | 0.67±0.53a | 35.40±4.37a | 32.27±4.12a | 105.07±8.57a | 96.00±5.33a | |
CK | 8.27±0.23a | 0.33±0.23a | 49.93±3.99a | 28.80±3.89a | 129.67±6.55a | 91.93±4.35a |
表3 遮穗和去颖对燕麦穗部特征数量指标的影响
Table 3 Effects of shading ear and glume removal on quantity characteristics of ear (No.)
品种 Variety | 处理 Treatment | 轮层数 Round | 三粒小穗数 Triple seed spikelet | 双粒小穗数 Double seed spikelet | 单粒小穗数 Single seed spikelet | 单穗种子数 Seed number per ear | 单穗小穗数 Spikelet number per ear |
---|---|---|---|---|---|---|---|
T60 | SE | 9.00±0.15a | 0.71±0.38a | 50.14±5.06b | 23.36±2.51a | 125.79±9.94a | 90.57±9.19a |
GR | 8.53±0.19a | 0.87±0.43a | 68.13±4.88a | 7.20±1.64b | 146.07±10.29a | 94.00±9.69a | |
CK | 9.20±0.33a | 0.20±0.20a | 63.30±4.40ab | 15.40±2.81b | 142.60±9.86a | 88.10±5.82a | |
SZW | SE | 8.93±0.16a | 0.00±0.00a | 28.43±2.91c | 33.36±2.44a | 90.21±6.08b | 69.21±3.14a |
GR | 8.60±0.13a | 0.07±0.06a | 57.60±4.45a | 6.40±1.06c | 121.80±9.01a | 65.27±4.43a | |
CK | 8.80±0.41a | 0.07±0.06a | 54.13±12.68ab | 13.00±6.48b | 121.47±26.59a | 72.67±14.66a | |
MNK | SE | 8.33±0.19a | 0.00±0.00a | 26.07±2.80c | 36.60±2.39a | 88.73±4.88c | 73.13±2.30a |
GR | 8.40±0.16a | 0.07±0.06a | 58.60±3.16a | 5.80±0.96c | 123.20±5.80a | 67.20±2.91a | |
CK | 8.29±0.13a | 0.00±0.00a | 52.00±2.96ab | 12.36±1.72b | 116.36±6.16ab | 71.07±3.32a | |
MD | SE | 9.27±0.15a | 0.47±0.04a | 48.67±4.21c | 33.53±5.42a | 132.27±7.88c | 129.20±5.62ab |
GR | 9.47±0.17a | 0.27±0.15a | 72.80±4.26ab | 20.53±2.10b | 166.93±8.45ab | 106.60±4.86c | |
CK | 9.33±0.21a | 0.27±0.15a | 84.87±3.58a | 24.87±2.44ab | 195.40±6.19a | 130.73±4.43a | |
TK | SE | 8.07±0.25a | 2.21±0.75a | 27.29±2.74a | 12.21±1.09a | 73.43±5.89b | 46.00±2.39a |
GR | 7.93±0.17a | 6.07±1.71a | 31.07±2.54a | 8.21±1.02b | 88.57±4.08ab | 47.43±1.68a | |
CK | 7.80±0.14a | 5.33±1.74a | 35.00±3.55a | 7.60±0.75b | 93.60±6.04a | 49.27±2.80a | |
BL | SE | 8.29±0.13a | 0.00±0.00a | 38.21±5.06a | 29.50±3.75a | 105.93±8.91a | 98.14±5.01a |
GR | 8.27±0.18a | 0.67±0.53a | 35.40±4.37a | 32.27±4.12a | 105.07±8.57a | 96.00±5.33a | |
CK | 8.27±0.23a | 0.33±0.23a | 49.93±3.99a | 28.80±3.89a | 129.67±6.55a | 91.93±4.35a |
图2 遮穗和去颖对燕麦不同类型小穗占比的影响同一品种不同小写字母表示在P<0.05水平上差异显著。Different lowercase letters indicated significant differences among treatments of the same variety at the P<0.05 level.
Fig.2 Influence of shading ear and glume removal on percent of different type spikelets
项目 Item | 穗长 Ear length | 轮层数 Round | 三粒小穗数 Triple seed spikelet | 双粒小穗数 Double seed spikelet | 单粒小穗数 Single seed spikelet | 单穗种子数 Seed number per ear | 单穗小穗数 Spikelet number per ear | 单粒种子重 Single seed weight |
---|---|---|---|---|---|---|---|---|
相关系数Correlation coefficient | 0.56** | 0.17** | -0.04 | 0.61** | 0.07 | 0.67** | 0.49** | 0.49** |
直接通径系数Direct path coefficient | -0.06 | 0.04 | 0.01 | 0.26 | 0.12 | 0.58** | -0.09 | 0.63** |
表4 燕麦穗部特征指标与单穗种子重的相关分析与通径分析
Table 4 Correlation analysis and path analysis between ear characteristics and seed weight per ear in oat
项目 Item | 穗长 Ear length | 轮层数 Round | 三粒小穗数 Triple seed spikelet | 双粒小穗数 Double seed spikelet | 单粒小穗数 Single seed spikelet | 单穗种子数 Seed number per ear | 单穗小穗数 Spikelet number per ear | 单粒种子重 Single seed weight |
---|---|---|---|---|---|---|---|---|
相关系数Correlation coefficient | 0.56** | 0.17** | -0.04 | 0.61** | 0.07 | 0.67** | 0.49** | 0.49** |
直接通径系数Direct path coefficient | -0.06 | 0.04 | 0.01 | 0.26 | 0.12 | 0.58** | -0.09 | 0.63** |
图3 不同品种燕麦穗部光合贡献率不同小写字母表示在P<0.05水平上差异显著。下同。Different lowercase letters indicated significant differences at the P<0.05 level. The same below.
Fig.3 Contribution rate of ear photosynthesis in different oat varieties
1 | Zhou Q P, Yan H B, Liang G L, et al. Analysis of the forage and grain productivity of oat cultivars. Acta Prataculturae Sinica, 2015, 24(10): 120-130. |
周青平, 颜红波, 梁国玲, 等. 不同燕麦品种饲草和籽粒生产性能分析. 草业学报, 2015, 24(10): 120-130. | |
2 | Zhou Q P, Gou X L, Tian L H, et al. Performances of early and late maturing oat varieties in cold regions. Chinese Science Bulletin, 2018, 63(17): 1722-1730. |
周青平, 苟小林, 田莉华, 等. 寒冷区早晚熟燕麦品种的生产性能分析. 科学通报, 2018, 63(17): 1722-1730. | |
3 | Ren Y, Ping H, Ren G X. Antioxidant property of naked oat core collections. Acta Agronomica Sinica, 2010, 36(6): 988-994. |
任祎, 平华, 任贵兴. 裸燕麦核心种质的抗氧化特性. 作物学报, 2010, 36(6): 988-994. | |
4 | Zhang Y H, Wang N F, Xu G C, et al. Effects of grassland supplementary sowing on the production characteristics of “bare land” degraded meadow in Gannan. China Herbivore Science, 2022, 42(3): 42-46. |
张永辉, 王汝富, 许国成, 等. 草地补播对甘南“黑土滩”型退化草甸生产特征的影响. 中国草食动物科学, 2022, 42(3): 42-46. | |
5 | Liu W H, Jia Z F, Zhou Q P, et al. Effect of phosphate fertilizer on seed yield and yield characteristics of Avena sativa cv. Qingyin No.1. Chinese Journal of Soil Science, 2010, 41(3): 651-655. |
刘文辉, 贾志锋, 周青平, 等. 施磷对青引1号燕麦种子产量和产量性状的影响. 土壤通报, 2010, 41(3): 651-655. | |
6 | Tong Y S, Liu Y F, Xu C L, et al. Effect of the sowing period on the yield and quality of seven oat varieties grown in the semi-arid region of Longxi. Pratacultural Science, 2021, 38(11): 2221-2236. |
童永尚, 刘耀峰, 徐长林, 等. 播期对半干旱区7个燕麦品种产量和品质的影响. 草业科学, 2021, 38(11): 2221-2236. | |
7 | Jia Z F, Ma X, Ju Z L, et al. Interactive effects of nitrogen and sowing rate on grain yield and panicle development of oat. Grassland and Turf, 2021, 41(4): 120-127. |
贾志锋, 马祥, 琚泽亮, 等. 氮肥与播种量互作对燕麦穗部性状及种子产量的影响. 草原与草坪, 2021, 41(4): 120-127. | |
8 | Liu K Q, Liu W H, Jia Z F, et al. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
刘凯强, 刘文辉, 贾志锋, 等. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响. 草业学报, 2021, 30(3): 177-188. | |
9 | Martinez D E, Luquez V M, Bartoli C G, et al. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum). Physiologia Plantarum, 2010, 119(4): 519-525. |
10 | Jia S, Lv J, Jiang S, et al. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 2015, 53(1): 95-109. |
11 | Wang Z M, Zhang Y H, Zhang Y P, et al. Review on photosynthetic performance of ear organs in Triticeae crops. Journal of Triticeae Crops, 2004, 24(4): 136-139. |
王志敏, 张英华, 张永平, 等. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136-139. | |
12 | Hu L, Zhang Y, Xia H, et al. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiologia Plantarum, 2019, 166(1): 226-239. |
13 | Araus J L, Brown H R, Febrero A, et al. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environment, 1993, 16: 383-392. |
14 | Maydup M L, Antonietta M, Guiamet J J, et al. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Research, 2010, 119(1): 48-58. |
15 | Wang Y, Xi W, Wang Z, et al. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. Journal of Integrative Agriculture, 2016, 15: 2247-2256. |
16 | Ren P. Effect of water stress on spike leaf physiological characters and yield of oats. Hohhot: Inner Mongolia Agricultural University, 2014. |
任鹏. 水分胁迫对燕麦穗叶生理特性与产量形成的影响. 呼和浩特: 内蒙古农业大学, 2014. | |
17 | Li Y X. Studies on differences of photosynthetic characteristics among different green photosynthetic organs in seed production. Changsha: Hunan Agricultural University, 2014. |
李云霞. 杂交水稻制种群体不同绿色光合器官的光合特性差异研究. 长沙: 湖南农业大学, 2014. | |
18 | Sanchez-Bragado R, Vicente R, Molero G, et al. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Current Opinion in Plant Biology, 2020, 56: 223-234. |
19 | Lin L F, Xiao H, Wu X Q. Comparison between Chauvenet’s Criterion and Grubbs Criterion. Physical Experiment of College, 2012, 25(6): 86-88. |
林丽芬, 肖化, 吴先球. 肖维勒准则和格拉布斯准则的比较. 大学物理实验, 2012, 25(6): 86-88. | |
20 | Li X, Du B, Wang H. Awn anatomy of common wheat (Triticum aestivum L.) and its relatives.Caryologia, 2010, 63(4): 391-397. |
21 | Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica, 2001, 39(2): 239-244. |
22 | Raven J A, Griffiths H. Photosynthesis in reproductive structures: Costs and benefits. Journal of Experimental Botany, 2015, 66(7): 1699-1705. |
23 | Sanchez-Bragado R, Molero G, Reynolds M P, et al. Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C. Journal of Experimental Botany, 2014, 65: 5401-5413. |
24 | Wei L P, Zhou Q P, Chen Y J, et al. Research progress on photosynthetic contribution of non-leaf green organs in plants. Plant Science Journal, 2022, 40(2): 269-280. |
魏露萍, 周青平, 陈有军, 等. 植物非叶绿色器官光合贡献研究进展. 植物科学学报, 2022, 40(2): 269-280. | |
25 | Wang H, Tian H Q, Mao P S, et al. Progress in research on the photosynthetic characteristics of green non-leaf organs in plants. Acta Prataculturae Sinica, 2021, 30(10): 191-200. |
汪辉, 田浩琦, 毛培胜, 等. 植物非叶绿色器官光合特征研究进展. 草业学报, 2021, 30(10): 191-200. | |
26 | Li M Y, Li T, Liu G R, et al. Effects of nitrogen application on photosynthetic characteristics and yield of grain amaranth. Acta Agrestia Sinica, 2018, 26(6): 1503-1507. |
李明雨, 李涛, 刘光瑞, 等. 施氮量对籽粒苋光合特性及产量的影响. 草地学报, 2018, 26(6): 1503-1507. | |
27 | Liu Z, Yang Y J, Wang Q, et al. Effects of nitrogen application on seed yield and its components of oat (Avena sativa L.). Heilongjiang Animal Science and Veterinary Medicine, 2020(16): 100-104. |
刘卓, 杨彦军, 王琼, 等. 施氮量对燕麦种子产量及其构成因子的影响. 黑龙江畜牧兽医, 2020(16): 100-104. | |
28 | Cai T G, Du C M, Hu Z X, et al. Effects of combined application of nitrogen and phosphorus on growth characteristics and dry matter distribution of oats. Journal of Shenyang University (Natural Science), 2021, 33(1): 20-26, 32. |
蔡天革, 杜春明, 胡智馨, 等. 氮磷配施对燕麦生长特性及产量的影响. 沈阳大学学报(自然科学版), 2021, 33(1): 20-26, 32. | |
29 | Zhang Z Y, Qi B J, Xing Y Y, et al. Analysis of the differences between different oat varieties yield and quality. Inner Mongolia Agricultural Science and Technology, 2014(6): 7-8, 37. |
张智勇, 齐冰洁, 邢义莹, 等. 不同燕麦品种产量和品质性状的差异分析. 内蒙古农业科技, 2014(6): 7-8, 37. | |
30 | De K J, Wang D L, Zhou Q P, et al. Effects of fertilization on seed production in oat (Avena sativa) on the Tibetan Plateau. Pratacultural Science, 2008(1): 26-30. |
德科加, 王德利, 周青平, 等. 施肥对青藏高原燕麦种子生产的增产效应. 草业科学, 2008(1): 26-30. | |
31 | Liu Y M, Nan M, Ren S L, et al. Introduction experiment of 12 oat varieties in Dingxi. Gansu Agricultural Science and Technology, 2015(3): 16-20. |
刘彦明, 南铭, 任生兰, 等. 12个燕麦品种在定西的引种试验. 甘肃农业科技, 2015(3): 16-20. | |
32 | Rivera-Amado C, Trujillo-Negrellos E, Molero G, et al. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 2019, 240: 154-167. |
33 | Evans L, Rawson H. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Australian Journal of Biological Sciences, 1970, 23(2): 245-254. |
34 | Jennings V M, Shibles R M. Genotypic differences in photosynthetic contributions of plant parts to grain yield in oats. Crop Science, 1968, 8(2): 173-175. |
35 | Hu Y Y. Photosynthetic characteristics and strategies of acclimation of non-foliar organs in cotton (Gossypium spp.) respond to water deficit. Shihezi: Shihezi University, 2003. |
胡渊渊. 棉花非叶绿色器官光合特性及对水分亏缺的适应机制. 石河子: 石河子大学, 2013. | |
36 | Tian L, Liu J H, Zhao B P, et al. Effects of combination of water-retaining agent and microbial fertilizer on dry matter accumulation, allocation, transportation, and yield of oat in rainfed farmland. Chinese Journal of Ecology, 2020, 39(9): 2996-3003. |
田露, 刘景辉, 赵宝平, 等. 保水剂和微生物菌肥配施对旱作燕麦干物质积累、分配、转运和产量的影响. 生态学杂志, 2020, 39(9): 2996-3003. | |
37 | Shi X K, Yu Z W, Zhao J Y, et al. Effects of nitrogen application rate on photosynthetic characteristics, dry matter accumulation and distribution and yield of high-yielding winter wheat. Journal of Triticeae Crops, 2021, 41(6): 713-721. |
史辛凯, 于振文, 赵俊晔, 等. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响. 麦类作物学报, 2021, 41(6): 713-721. | |
38 | Huang L, Zhao K, Shao M M, et al. Population dynamics and characteristics of dry matter accumulation and translocation of high-yielding wheat cultivars. Shandong Agricultural Sciences, 2021, 53(5): 162-166. |
黄玲, 赵凯, 邵敏敏, 等. 高产小麦群体动态及干物质积累与转运特性分析. 山东农业科学, 2021, 53(5): 162-166. | |
39 | Yang S R, Fu L P, Fei S P, et al. Accumulation and partitioning characteristics of photosynthetic product of 7 main cultivars in Northern Winter Wheat Zone. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1740-1750. |
杨舒蓉, 付路平, 费帅鹏, 等. 北部冬麦区主栽品种光合产物贮运特性研究. 核农学报, 2021, 35(8): 1740-1750. | |
40 | Wang Z H, Deng X P, Liu L S, et al. Effects of drought on photosynthesis of flag leaf and dry matter remobilization of main stem in different varieties of winter wheat. Agricultural Research in the Arid Areas, 2009, 27(5): 166-172. |
王征宏, 邓西平, 刘立生, 等. 干旱对不同抗旱性冬小麦旗叶光合及主茎干物质转运的影响. 干旱地区农业研究, 2009, 27(5): 166-172. |
[1] | 田吉鹏, 刘蓓一, 顾洪如, 丁成龙, 程云辉, 玉柱. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2022, 31(8): 157-166. |
[2] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[3] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[4] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[5] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
[6] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[7] | 李海萍, 关皓, 贾志锋, 刘文辉, 马祥, 刘勇, 汪辉, 马力, 周青平. 抗冻融乳酸菌的筛选及其对燕麦青贮品质和有氧稳定性的影响[J]. 草业学报, 2022, 31(12): 158-170. |
[8] | 王星宇, 程静, 高生, 李默涵, 杨满霞, 葛军勇, 周海涛, 李云霞, 臧华栋, 左文博. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性[J]. 草业学报, 2022, 31(12): 76-84. |
[9] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[10] | 南铭, 李晶, 赵桂琴, 柴继宽, 刘彦明. 茎秆基部节间特性和木质素合成与燕麦抗倒伏的关系[J]. 草业学报, 2022, 31(11): 172-180. |
[11] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[12] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[13] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
[14] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[15] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||