草业学报 ›› 2024, Vol. 33 ›› Issue (7): 68-83.DOI: 10.11686/cyxb2023335
张震欢1,2(), 姚立蓉1,3, 汪军成1,3, 司二静1,3, 张宏1,3, 杨轲1,3, 马小乐1,3, 孟亚雄1,3, 王化俊1,3, 李葆春1,2()
收稿日期:
2023-09-14
修回日期:
2023-11-03
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
李葆春
作者简介:
E-mail: libc@gsau.edu.cn基金资助:
Zhen-huan ZHANG1,2(), Li-rong YAO1,3, Jun-cheng WANG1,3, Er-jing SI1,3, Hong ZHANG1,3, Ke YANG1,3, Xiao-le MA1,3, Ya-xiong MENG1,3, Hua-jun WANG1,3, Bao-chun LI1,2()
Received:
2023-09-14
Revised:
2023-11-03
Online:
2024-07-20
Published:
2024-04-08
Contact:
Bao-chun LI
摘要:
为探究盐生草AKR基因家族的生物学功能和根系盐胁迫响应基因HgAKR42639的耐盐性,基于盐生草全长转录组测序鉴定醛酮还原酶基因(AKRs),采用生物信息学方法分析盐生草AKRs编码的蛋白质序列特性,并在200 mmol·L-1 NaCl胁迫0、6、12、24和48 h处理下,测定盐生草幼苗根系和转HgAKR42639基因拟南芥的目的基因表达量、生理指标和钠钾离子含量。结果表明:从盐生草转录组中鉴定出23个HgAKRs,编码的氨基酸数量在165~664 aa,亚细胞定位预测主要在细胞质中,AKR蛋白保守结构域高度相似,具有3个motif,启动子顺式作用元件分析存在核心元件、增强元件和胁迫响应元件;qRT-PCR结果显示HgAKR42639基因相对表达量在盐生草根系和拟南芥中均先上升后下降,24 h两者的表达量达到峰值;随着盐胁迫时间的增长两者的过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性和脯氨酸含量呈上升趋势,丙二醛(MDA)和可溶性蛋白含量呈下降趋势,在24 h达到最低;Na+和K+含量测定结果显示,两者于24 h盐胁迫处理下Na+含量下降,K+/Na+达到最大值。综上所述,本研究获得了盐生草AKR家族基因,为后续研究盐生草AKR基因响应盐胁迫的分子机制提供理论依据;以期为进一步验证HgAKR42639基因的耐盐性奠定基础。
张震欢, 姚立蓉, 汪军成, 司二静, 张宏, 杨轲, 马小乐, 孟亚雄, 王化俊, 李葆春. 盐生草AKR基因家族成员的鉴定及根系盐胁迫响应基因HgAKR42639的耐盐分析[J]. 草业学报, 2024, 33(7): 68-83.
Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639[J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83.
引物名称Name of primers | 引物序列Sequences of primers (5’→3’) | 用途Purpose |
---|---|---|
HgAKR42639-F | AGGAAGCACATCGTTGAGGG | 实时荧光定量PCR Real-time fluorescence quantitative PCR |
HgAKR42639-R | TTCATTGCCCGGACAGTCTC | |
HgActin-F | TGTTCTCAGTGGTGGTACAA | 盐生草内参基因引物 Reference gene primers in H. glomeratus |
HgActin-R | GTGCCACCACCTTAATCTTC | |
AtActin-F | ACCCAAAGGCCAACAGAGAG | 拟南芥内参基因引物 Reference gene primers in A. thaliana |
AtActin-R | CACGTCCAGCAAGGTCAAGA |
表1 实时荧光定量引物
Table 1 Real-time fluorescence quantitative primers
引物名称Name of primers | 引物序列Sequences of primers (5’→3’) | 用途Purpose |
---|---|---|
HgAKR42639-F | AGGAAGCACATCGTTGAGGG | 实时荧光定量PCR Real-time fluorescence quantitative PCR |
HgAKR42639-R | TTCATTGCCCGGACAGTCTC | |
HgActin-F | TGTTCTCAGTGGTGGTACAA | 盐生草内参基因引物 Reference gene primers in H. glomeratus |
HgActin-R | GTGCCACCACCTTAATCTTC | |
AtActin-F | ACCCAAAGGCCAACAGAGAG | 拟南芥内参基因引物 Reference gene primers in A. thaliana |
AtActin-R | CACGTCCAGCAAGGTCAAGA |
序号Number | 名称Name | 基因登录号Gene accession ID | 序号Number | 名称Name | 基因登录号Gene accession ID |
---|---|---|---|---|---|
1 | HgAKR01 | Hg02G012880.1 | 13 | HgAKR13 | Hg16G006890.1 |
2 | HgAKR02 | Hg02G012940.1 | 14 | HgAKR14 | Hg16G006900.1 |
3 | HgAKR03 | Hg03G002550.1 | 15 | HgAKR15 | Hg16G006910.1 |
4 | HgAKR04 | Hg07G000220.1 | 16 | HgAKR16 | Hg171G001710.2 |
5 | HgAKR05 | Hg09G006350.1 | 17 | HgAKR17 | Hg214G001090.1 |
6 | HgAKR06 | Hg09G010750.1 | 18 | HgAKR18 | Hg238G000730.2 |
7 | HgAKR07 | Hg09G010800.1 | 19 | HgAKR19 | Hg248G001020.1 |
8 | HgAKR08 | Hg102G000790.1 | 20 | HgAKR20 | Hg30G002300.1 |
9 | HgAKR09 | Hg15G004360.1 | 21 | HgAKR21 | Hg465G000090.1 |
10 | HgAKR10 | Hg16G006840.1 | 22 | HgAKR22 | Hg53G002170.1 |
11 | HgAKR11 | Hg16G006850.1 | 23 | HgAKR42639 | Hg02G042639.1 |
12 | HgAKR12 | Hg16G006870.1 |
表2 盐生草AKR基因家族的基本信息
Table 2 Basic information of AKR gene family in H. glomeratus
序号Number | 名称Name | 基因登录号Gene accession ID | 序号Number | 名称Name | 基因登录号Gene accession ID |
---|---|---|---|---|---|
1 | HgAKR01 | Hg02G012880.1 | 13 | HgAKR13 | Hg16G006890.1 |
2 | HgAKR02 | Hg02G012940.1 | 14 | HgAKR14 | Hg16G006900.1 |
3 | HgAKR03 | Hg03G002550.1 | 15 | HgAKR15 | Hg16G006910.1 |
4 | HgAKR04 | Hg07G000220.1 | 16 | HgAKR16 | Hg171G001710.2 |
5 | HgAKR05 | Hg09G006350.1 | 17 | HgAKR17 | Hg214G001090.1 |
6 | HgAKR06 | Hg09G010750.1 | 18 | HgAKR18 | Hg238G000730.2 |
7 | HgAKR07 | Hg09G010800.1 | 19 | HgAKR19 | Hg248G001020.1 |
8 | HgAKR08 | Hg102G000790.1 | 20 | HgAKR20 | Hg30G002300.1 |
9 | HgAKR09 | Hg15G004360.1 | 21 | HgAKR21 | Hg465G000090.1 |
10 | HgAKR10 | Hg16G006840.1 | 22 | HgAKR22 | Hg53G002170.1 |
11 | HgAKR11 | Hg16G006850.1 | 23 | HgAKR42639 | Hg02G042639.1 |
12 | HgAKR12 | Hg16G006870.1 |
序号Number | 基因编号 Genetic code | 氨基酸数 Amino acid quantity (aa) | 等电点 Isoelectric point (PI) | 分子量 Molecular weight (Da) | 分子式 Molecular formula | 负电荷的残基总数Total number of negatively charged residues | 正电荷的残基总数Total number of positively charged residues | 脂肪 系数 Aliphatic index | 不稳定系数 Instability index | 亲水性平均值Grand average of hydropathicity |
---|---|---|---|---|---|---|---|---|---|---|
1 | HgAKR01 | 317 | 6.00 | 35036.93 | C1579H2455N419O465S9 | 34 | 30 | 89.53 | 43.19 | -0.240 |
2 | HgAKR02 | 316 | 5.57 | 34807.62 | C1562H2436N414O467S10 | 36 | 29 | 89.49 | 43.46 | -0.234 |
3 | HgAKR03 | 310 | 5.76 | 34512.44 | C1536H2435N421O460S11 | 41 | 34 | 92.81 | 27.01 | -0.215 |
4 | HgAKR04 | 311 | 5.84 | 34942.01 | C1573H2470N414O465S10 | 42 | 35 | 92.15 | 39.65 | -0.336 |
5 | HgAKR05 | 334 | 6.20 | 37468.25 | C1685H2659N447O488S15 | 38 | 35 | 93.65 | 45.44 | -0.244 |
6 | HgAKR06 | 324 | 6.34 | 35556.17 | C1606H2541N413O467S14 | 37 | 35 | 91.17 | 38.70 | -0.126 |
7 | HgAKR07 | 351 | 6.12 | 38937.70 | C1715H2739N469O521S21 | 43 | 39 | 84.96 | 34.53 | -0.300 |
8 | HgAKR08 | 350 | 5.66 | 38224.84 | C1700H2723N455O517S13 | 45 | 39 | 92.80 | 26.30 | -0.174 |
9 | HgAKR09 | 664 | 6.20 | 73942.76 | C3293H5210N898O977S29 | 90 | 80 | 85.78 | 40.27 | -0.320 |
10 | HgAKR10 | 338 | 5.70 | 37428.78 | C1664H2626N452O499S15 | 46 | 39 | 84.56 | 25.72 | -0.275 |
11 | HgAKR11 | 309 | 6.21 | 34774.88 | C1562H2453N415O459S12 | 43 | 39 | 90.91 | 22.12 | -0.238 |
12 | HgAKR12 | 165 | 6.20 | 18704.43 | C832H1313N227O247S8 | 21 | 19 | 87.45 | 25.62 | -0.250 |
13 | HgAKR13 | 338 | 5.68 | 37512.86 | C1668H2630N452O501S15 | 46 | 38 | 85.12 | 29.62 | -0.272 |
14 | HgAKR14 | 343 | 5.57 | 37951.12 | C1671H2652N462O516S15 | 48 | 39 | 83.06 | 37.63 | -0.385 |
15 | HgAKR15 | 317 | 8.38 | 35411.57 | C1582H2493N429O467S13 | 35 | 38 | 87.03 | 34.98 | -0.298 |
16 | HgAKR16 | 371 | 9.07 | 41209.57 | C1857H2926N488O538S16 | 28 | 36 | 91.48 | 34.66 | -0.149 |
17 | HgAKR17 | 322 | 5.48 | 35141.09 | C1563H2487N415O481S11 | 42 | 34 | 94.50 | 33.28 | -0.170 |
18 | HgAKR18 | 328 | 7.59 | 36492.74 | C1634H2569N439O484S12 | 37 | 38 | 87.68 | 34.03 | -0.295 |
19 | HgAKR19 | 298 | 9.03 | 33006.76 | C1487H2339N399O436S7 | 31 | 37 | 89.36 | 12.19 | -0.308 |
20 | HgAKR20 | 323 | 6.24 | 36545.87 | C1621H2552N454O475S17 | 44 | 39 | 84.18 | 41.19 | -0.401 |
21 | HgAKR21 | 220 | 5.71 | 24337.91 | C1080H1718N296O323S10 | 30 | 25 | 94.41 | 36.36 | -0.156 |
22 | HgAKR22 | 384 | 7.57 | 42245.83 | C1879H2974N518O575S7 | 46 | 47 | 87.89 | 24.76 | -0.396 |
23 | HgAKR42639 | 317 | 6.25 | 35151.21 | C1575H2473N419O468S12 | 36 | 34 | 90.41 | 32.06 | -0.219 |
表3 盐生草AKR基因家族成员的理化性质
Table 3 Physical and chemical properties of AKR gene family in H. glomeratus
序号Number | 基因编号 Genetic code | 氨基酸数 Amino acid quantity (aa) | 等电点 Isoelectric point (PI) | 分子量 Molecular weight (Da) | 分子式 Molecular formula | 负电荷的残基总数Total number of negatively charged residues | 正电荷的残基总数Total number of positively charged residues | 脂肪 系数 Aliphatic index | 不稳定系数 Instability index | 亲水性平均值Grand average of hydropathicity |
---|---|---|---|---|---|---|---|---|---|---|
1 | HgAKR01 | 317 | 6.00 | 35036.93 | C1579H2455N419O465S9 | 34 | 30 | 89.53 | 43.19 | -0.240 |
2 | HgAKR02 | 316 | 5.57 | 34807.62 | C1562H2436N414O467S10 | 36 | 29 | 89.49 | 43.46 | -0.234 |
3 | HgAKR03 | 310 | 5.76 | 34512.44 | C1536H2435N421O460S11 | 41 | 34 | 92.81 | 27.01 | -0.215 |
4 | HgAKR04 | 311 | 5.84 | 34942.01 | C1573H2470N414O465S10 | 42 | 35 | 92.15 | 39.65 | -0.336 |
5 | HgAKR05 | 334 | 6.20 | 37468.25 | C1685H2659N447O488S15 | 38 | 35 | 93.65 | 45.44 | -0.244 |
6 | HgAKR06 | 324 | 6.34 | 35556.17 | C1606H2541N413O467S14 | 37 | 35 | 91.17 | 38.70 | -0.126 |
7 | HgAKR07 | 351 | 6.12 | 38937.70 | C1715H2739N469O521S21 | 43 | 39 | 84.96 | 34.53 | -0.300 |
8 | HgAKR08 | 350 | 5.66 | 38224.84 | C1700H2723N455O517S13 | 45 | 39 | 92.80 | 26.30 | -0.174 |
9 | HgAKR09 | 664 | 6.20 | 73942.76 | C3293H5210N898O977S29 | 90 | 80 | 85.78 | 40.27 | -0.320 |
10 | HgAKR10 | 338 | 5.70 | 37428.78 | C1664H2626N452O499S15 | 46 | 39 | 84.56 | 25.72 | -0.275 |
11 | HgAKR11 | 309 | 6.21 | 34774.88 | C1562H2453N415O459S12 | 43 | 39 | 90.91 | 22.12 | -0.238 |
12 | HgAKR12 | 165 | 6.20 | 18704.43 | C832H1313N227O247S8 | 21 | 19 | 87.45 | 25.62 | -0.250 |
13 | HgAKR13 | 338 | 5.68 | 37512.86 | C1668H2630N452O501S15 | 46 | 38 | 85.12 | 29.62 | -0.272 |
14 | HgAKR14 | 343 | 5.57 | 37951.12 | C1671H2652N462O516S15 | 48 | 39 | 83.06 | 37.63 | -0.385 |
15 | HgAKR15 | 317 | 8.38 | 35411.57 | C1582H2493N429O467S13 | 35 | 38 | 87.03 | 34.98 | -0.298 |
16 | HgAKR16 | 371 | 9.07 | 41209.57 | C1857H2926N488O538S16 | 28 | 36 | 91.48 | 34.66 | -0.149 |
17 | HgAKR17 | 322 | 5.48 | 35141.09 | C1563H2487N415O481S11 | 42 | 34 | 94.50 | 33.28 | -0.170 |
18 | HgAKR18 | 328 | 7.59 | 36492.74 | C1634H2569N439O484S12 | 37 | 38 | 87.68 | 34.03 | -0.295 |
19 | HgAKR19 | 298 | 9.03 | 33006.76 | C1487H2339N399O436S7 | 31 | 37 | 89.36 | 12.19 | -0.308 |
20 | HgAKR20 | 323 | 6.24 | 36545.87 | C1621H2552N454O475S17 | 44 | 39 | 84.18 | 41.19 | -0.401 |
21 | HgAKR21 | 220 | 5.71 | 24337.91 | C1080H1718N296O323S10 | 30 | 25 | 94.41 | 36.36 | -0.156 |
22 | HgAKR22 | 384 | 7.57 | 42245.83 | C1879H2974N518O575S7 | 46 | 47 | 87.89 | 24.76 | -0.396 |
23 | HgAKR42639 | 317 | 6.25 | 35151.21 | C1575H2473N419O468S12 | 36 | 34 | 90.41 | 32.06 | -0.219 |
序号 Number | 盐生草AKR基因家族编号 Halophytes AKR gene family number | 信号肽 Signal peptides | 亲疏水性 Hydrophilicity | 亚细胞定位 Subcellular localization (%) |
---|---|---|---|---|
1 | HgAKR01 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 67.04 |
2 | HgAKR02 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 55.20 |
3 | HgAKR03 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 95.71 |
4 | HgAKR04 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 92.48 |
5 | HgAKR05 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 80.73 |
6 | HgAKR06 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 59.94 |
7 | HgAKR07 | 无Without | 疏水性Hydrophobicity | 线粒体Mitochondrion 69.34 |
8 | HgAKR08 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 99.87 |
9 | HgAKR09 | 无Without | 疏水性Hydrophobicity | 细胞骨架Cytoskeleton 99.81 |
10 | HgAKR10 | 无Without | 疏水性Hydrophobicity | 细胞骨架Cytoskeleton 98.79 |
11 | HgAKR11 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.81 |
12 | HgAKR12 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.06 |
13 | HgAKR13 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.84 |
14 | HgAKR14 | 无Without | 疏水性Hydrophobicity | 线粒体Mitochondrion 68.73 |
15 | HgAKR15 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 57.76 |
16 | HgAKR16 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 70.28 |
17 | HgAKR17 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 63.66 |
18 | HgAKR18 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 73.73 |
19 | HgAKR19 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 66.95 |
20 | HgAKR20 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 91.95 |
21 | HgAKR21 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 67.89 |
22 | HgAKR22 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 94.25 |
23 | HgAKR42639 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 60.90 |
表4 盐生草AKR基因家族信号肽、亲疏水性和亚细胞定位预测
Table 4 Prediction of AKR gene family signaling peptides, hydrophilicity, and subcellular localization in H. glomeratus
序号 Number | 盐生草AKR基因家族编号 Halophytes AKR gene family number | 信号肽 Signal peptides | 亲疏水性 Hydrophilicity | 亚细胞定位 Subcellular localization (%) |
---|---|---|---|---|
1 | HgAKR01 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 67.04 |
2 | HgAKR02 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 55.20 |
3 | HgAKR03 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 95.71 |
4 | HgAKR04 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 92.48 |
5 | HgAKR05 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 80.73 |
6 | HgAKR06 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 59.94 |
7 | HgAKR07 | 无Without | 疏水性Hydrophobicity | 线粒体Mitochondrion 69.34 |
8 | HgAKR08 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 99.87 |
9 | HgAKR09 | 无Without | 疏水性Hydrophobicity | 细胞骨架Cytoskeleton 99.81 |
10 | HgAKR10 | 无Without | 疏水性Hydrophobicity | 细胞骨架Cytoskeleton 98.79 |
11 | HgAKR11 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.81 |
12 | HgAKR12 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.06 |
13 | HgAKR13 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 93.84 |
14 | HgAKR14 | 无Without | 疏水性Hydrophobicity | 线粒体Mitochondrion 68.73 |
15 | HgAKR15 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 57.76 |
16 | HgAKR16 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 70.28 |
17 | HgAKR17 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 63.66 |
18 | HgAKR18 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 73.73 |
19 | HgAKR19 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 66.95 |
20 | HgAKR20 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 91.95 |
21 | HgAKR21 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 67.89 |
22 | HgAKR22 | 无Without | 疏水性Hydrophobicity | 叶绿体Chloroplast 94.25 |
23 | HgAKR42639 | 无Without | 疏水性Hydrophobicity | 细胞质Cytoplasm 60.90 |
图1 HgAKR42639基因编码蛋白的信号肽、亲疏水性预测A、B分别为HgAKR42639基因编码蛋白的亲疏水性、信号肽预测结果。A and B predicted the hydrophilicity and signal peptide of the protein encoding the gene HgAKR42639.
Fig.1 Prediction of signaling peptide and hydrophilicity of HgAKR42639 gene-coding protein
图5 盐生草根系和转HgAKR42639基因拟南芥的qRT-PCR定量分析不同字母代表不同胁迫时间下差异显著(P<0.05);下同。Different letters represent significant difference among different stress time (P<0.05); The same below.
Fig.5 Quantitative analysis of qRT-PCR of H. glomeratus roots and A. thaliana to HgAKR42639 gene
图6 200 mmol·L-1 NaCl胁迫处理下盐生草根系(A)和转HgAKR42639基因拟南芥(B)不同处理时间的生物量变化
Fig.6 Changes in biomass of H. glomeratus roots (A) and A. thaliana transfer HgAKR42639 gene (B) treated at different times under 200 mmol·L-1 NaCl salt stress treatment
图7 200 mmol·L-1 NaCl胁迫处理下野生型和转HgAKR42639基因拟南芥表型的变化WT:野生型Wild-type.
Fig.7 Changes in A. thaliana phenotypes of wild-type and transfer HgAKR42639 gene under 200 mmol·L-1 NaCl salt stress treatment
图8 200 mmol·L-1 NaCl胁迫不同时间处理下盐生草根系和转HgAKR42639基因拟南芥CAT、POD、SOD活性和脯氨酸含量的变化
Fig.8 CAT, POD, SOD activity and proline content of H. glomeratus roots and A. thaliana transfer HgAKR42639 gene treated at different times under 200 mmol·L-1 NaCl salt stress treatment
图9 200 mmol·L-1 NaCl胁迫不同时间处理下盐生草根系和转HgAKR42639基因拟南芥MDA和可溶性蛋白含量的变化
Fig.9 MDA and soluble protein content of H. glomeratus roots and A. thaliana transfer HgAKR42639 gene treated at different times under 200 mmol·L-1 NaCl salt stress treatment
图10 200 mmol·L-1 NaCl胁迫不同时间处理下盐生草根系(A)和转HgAKR42639基因拟南芥(B)钠钾离子含量的变化
Fig.10 Changes in sodium-potassium ion content of H. glomeratus roots (A) and A. thaliana transfer HgAKR42639 gene (B) treated at different times under 200 mmol·L-1 NaCl salt stress treatment
1 | Li X, Jiao Y, Dai G, et al. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia. China Environmental Science, 2016, 36(1): 249-260. |
李新, 焦燕, 代钢, 等. 内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性. 中国环境科学, 2016, 36(1): 249-260. | |
2 | Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. |
杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. | |
3 | Zhang H O. An analysis of the distribution and evolutionary characteristics of saline soils in China. Agriculture and Technology, 2022, 42(5): 104-107. |
张海欧. 浅析中国盐渍土分布及演变特征. 农业与技术, 2022, 42(5): 104-107. | |
4 | Pan J, Huang C H, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants. Advances in Earth Science, 2018, 33(4): 361-372. |
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4): 361-372. | |
5 | Penning T M. The aldo-keto reductases (AKRs): Overview. Chemico Biological Interactions, 2015, 234(6): 236-246. |
6 | Sengupta D, Naik D, Reddy A R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. Plant Physiology and Biochemistry, 2015, 179(5): 40-55. |
7 | Noriaki O, Kazunori K, Masao H, et al. Aldo-keto reductase family 1 member B10 is regulated by nucleos (t) ide analogues for chronic hepatitis B. Biochemical and Biophysical Research Communications, 2023, 674(9): 133-139. |
8 | Tang R. Molecular mechanism of cholestanone metabolism mediated by aldo/keto reductase AKR2E9 in Mythimna separata. Yangling: Northwest A&F University, 2022. |
唐睿. 粘虫醛酮还原酶AKR2E9代谢胆甾烷酮的功能解析. 杨凌: 西北农林科技大学, 2022. | |
9 | Huo J X, Du B, Sun S F, et al. A novel aldo-keto reductase gene, IbAKR, from sweet potato confers higher tolerance to cadmium stress in tobacco. Frontiers of Agricultural Science and Engineering, 2018, 5(2): 206-213. |
10 | Lee E H, Song D G, Lee J Y, et al. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological & Pharmaceutical Bulletin, 2008, 31(8): 1626-1630. |
11 | Jin Y, Penning T M. Aldo-keto reductases and bioactivation/detoxication. Annual Review of Pharmacology and Toxicology, 2007, 47(2): 263-292. |
12 | Shu N, Chen Z J. The research progress of aldo keto reductase. Pharmaceutical Biotechnology, 2017, 24(2): 175-179. |
舒楠, 陈子珺. 醛酮还原酶的研究进展. 药物生物技术, 2017, 24(2): 175-179. | |
13 | Bartels D, Engelhardt K, Roncarati R, et al. An ABA and GA modulated gene expressed in the barley embryo encodes in aldose reductase related protein. The EMBO Journal, 1991, 5(7): 1037-1043. |
14 | Roncarati R, Salamini F, Bartels D. An aldose reductase homologous gene from barley: Regulation and function. The Plant Journal, 1995, 7(5): 809-822. |
15 | Oberschall A, Deak M, Torok K, et al. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress. The Plant Journal, 2000, 24(7): 437-446. |
16 | Hegedus A, Erdei S, Janda T, et al. Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Science, 2004, 166(5): 1329-1333. |
17 | Turoczy Z, Kis P, Torok K, et al. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology, 2011, 75(1): 399-412. |
18 | Hideg E, Nagy T, Oberschall A, et al. Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (230-320 nm) stresses. Plant, Cell and Environment, 2003, 26(4): 513-522. |
19 | Eva C, Zelenyanszki H, Farkas R T, et al. Transgenic barley expressing the Arabidopsis AKR4C9 aldo-keto reductase enzyme exhibits enhanced freezing tolerance and regenerative capacity. South African Journal of Botany, 2004, 93(7): 179-184. |
20 | Kanayama Y, Mizutani R, Yaguchi S, et al. Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Phytochemistry, 2014, 104(8): 30-36. |
21 | Simpson P J, Tantitadapitak C, Reed A M, et al. Characterization of two novel aldo-keto reductases from Arabidopsis: Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. Journal of Molecular Biology, 2009, 392(2): 465-480. |
22 | Zhao Q, Zhang X M. A preliminary study on the characteristics of population families of the halophilous herbaceous plants in Qira Gobi Desert, Xinjiang. Arid Zone Research, 2003(3): 221-225. |
赵强, 张希明. 策勒戈壁盐生草种群特征的初步研究. 干旱区研究, 2003(3): 221-225. | |
23 | Qiao R, Hu N, Zhou J, et al. Analysis and evaluation on seed nutrition of halophyte Halogeton glomeratus in arid region of Northwest China. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 956-960. |
乔蕤, 胡娜, 周菁, 等. 西北旱区盐生植物盐生草籽营养成分分析与评价. 中国油料作物学报, 2019, 41(6): 956-960. | |
24 | He J J, Yao L R, Wang J C, et al. Effects of drought and salt stress on seed germination characteristics of Halogeton glomeratus. Acta Prataculturae Sinica, 2020, 29(11): 129-140. |
何建军, 姚立蓉, 汪军成, 等. 干旱和盐胁迫对盐生植物盐生草种子萌发特性的影响. 草业学报, 2020, 29(11): 129-140. | |
25 | Yao L R. Study on the salt uptake mechanisms of roots in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2018. |
姚立蓉. 盐生草根系对盐分吸收机理的研究. 兰州: 甘肃农业大学, 2018. | |
26 | Li S N, Zhao X W, Sun L P, et al. Identification and expression analysis of AKR superfamily in soybean (Glycine max). Journal of Agricultural Biotechnology, 2022, 30(11): 2061-2076. |
厉苏宁, 赵现伟, 孙丽萍, 等. 大豆醛酮还原酶超家族的鉴定及表达分析. 农业生物技术学报, 2022, 30(11): 2061-2076. | |
27 | Yu J. Cloning and functional analysis of aldehyde ketone reductase gene (MsAKR1) in response to salt stress in alfalfa. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
于洁. 苜蓿盐胁迫响应醛酮还原酶基因(MsAKR1)克隆及功能分析. 北京: 中国农业科学院, 2021. | |
28 | Ma Y N, Lu X, Wei Y C, et al. Identification and tissue specific expression analysis of AKR gene family in grape. Biotechnology Bulletin, 2021, 37(8): 141-151. |
马亚男, 卢旭, 魏云春, 等. 葡萄AKR基因家族的鉴定和组织特异性表达分析. 生物技术通报, 2021, 37(8): 141-151. | |
29 | Zhou X T, Liang G P, Lu S X, et al. Identification and expression analysis of adehlyde ktonee reductase (AKR) gene family in garpe. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(11): 1851-1861. |
周雪婷, 梁国平, 卢世雄, 等. 葡萄醛酮还原酶(AKR)基因家族的鉴定与表达分析. 西北植物学报, 2022, 42(11): 1851-1861. | |
30 | Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 1981, 17(6): 368-376. |
31 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
32 | Guo Y N, Ai J. Effects of salt stress on morphological and physiological indexes of Chinese cabbage. Journal of Yulin University, 2023, 33(2): 38-41. |
郭亚宁, 艾静. 盐胁迫对油白菜生长及其生理指标的影响. 榆林学院学报, 2023, 33(2): 38-41. | |
33 | Li H S. Principle and technology of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
34 | Wang Q Z, Liu Q, Gao Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. |
王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577. | |
35 | Wang J C. Study on the salt tolerance mechanisms of ion compartmentation in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2017. |
汪军成. 盐生草盐分区隔化耐盐机制研究. 兰州: 甘肃农业大学, 2017. | |
36 | Sun L J, He J J, Wang J C, et al. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
孙禄娟, 何建军, 汪军成, 等. 全长转录组测序的盐生草SSR标记开发及其遗传多样性分析. 草业学报, 2022, 31(8): 199-210. | |
37 | Chen Q, Xu X Y, Wang J C, et al. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
陈倩, 徐晓芸, 汪军成, 等. 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析. 草业学报, 2022, 31(12): 146-157. | |
38 | Zhang Z H, Xu J Y, Song M N, et al. Effects of NaCl stress on seed germination of Halogeton glomeratus in different regions of Gansu Province. Grassland and Turf, 2022, 42(5): 132-141. |
张泽华, 许静玉, 宋美妮, 等. NaCl胁迫对甘肃省不同地区盐生草种子萌发特性的影响. 草原与草坪, 2022, 42(5): 132-141. | |
39 | Peng Y P. Functional study of HgS5 gene of salt stress response in Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2021. |
彭亚萍. 盐生草盐胁迫响应基因HgS5功能研究. 兰州: 甘肃农业大学, 2021. | |
40 | Fu R, Zhang H Y, Liang X Y, et al. Physiological response of dandelion (Taraxacum mongolicum Hand.-Mazz. ) to single salt stress of NaCl and compound salt stress of seawater. Shandong Agricultural Sciences, 2020, 52(2): 33-37. |
付娆, 张海洋, 梁晓艳, 等. 蒲公英对NaCl单盐和海水复合盐胁迫的生理响应. 山东农业科学, 2020, 52(2): 33-37. | |
41 | Xue T X, Ren Z B, Ren S F. Impacts of NaCl stress on physiological characteristics of Forsythia intermedia. Jiangsu Agricultural Sciences, 2018, 46(11): 104-108. |
薛腾笑, 任子蓓, 任士福. NaCl胁迫对美国金钟连翘生理特性的影响. 江苏农业科学, 2018, 46(11): 104-108. | |
42 | Li Y X, Luo X L, Zhang T T, et al. Physiological changes and related gene expression analysis of Sesuvium portulacastrum under salt stress. Journal of Agricultural Biotechnology, 2022, 30(7): 1279-1289. |
李雨欣, 罗秀丽, 张婷婷, 等. 盐胁迫下海马齿生理指标变化及相关基因表达分析. 农业生物技术学报, 2022, 30(7): 1279-1289. | |
43 | Hao S H, Wang Y R, Yan Y X, et al. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 2021, 7(6): 132. |
[1] | 吴毅, 冯雅岚, 王添宁, 琚吉浩, 肖慧淑, 马超, 张均. 小麦及其祖先物种Hsp70基因家族鉴定与表达分析[J]. 草业学报, 2024, 33(7): 53-67. |
[2] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[3] | 王萌, 鲁雪莉, 王菊英, 张梦超, 宋奕汝, 孟晨, 张莉, 徐宗昌. 小黑麦种质萌发期苗期耐盐资源评价与筛选[J]. 草业学报, 2024, 33(5): 58-68. |
[4] | 胡尚钦, 汪军成, 姚立蓉, 司二静, 马小乐, 杨轲, 张宏, 孟亚雄, 王化俊, 李葆春. 盐生草根系基因HgAKR6C的克隆与初步功能分析[J]. 草业学报, 2024, 33(1): 61-74. |
[5] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
[6] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[7] | 孟晨, 鲁雪莉, 王菊英, 魏云冲, 张成省, 李义强, 徐宗昌. 不同类型盐胁迫对小黑麦种子萌发的影响[J]. 草业学报, 2023, 32(12): 171-180. |
[8] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
[9] | 谢文辉, 黄莉娟, 赵丽丽, 王雷挺, 赵文武. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
[10] | 刘亚男, 于人杰, 高燕丽, 康俊梅, 杨青川, 武志海, 王珍. 蒺藜苜蓿膜联蛋白MtANN2基因的表达模式及盐胁迫下的功能分析[J]. 草业学报, 2022, 31(5): 124-134. |
[11] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[12] | 陈倩, 徐晓芸, 汪军成, 姚立蓉, 司二静, 杨轲, 韦晓玲, 马小乐, 李葆春, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析[J]. 草业学报, 2022, 31(12): 146-157. |
[13] | 李娜娜, 刘同歌, 黄志慧, 郑宝江, 张玉红. 草本资源植物菥蓂对盐胁迫下生理生态及次生代谢产物响应[J]. 草业学报, 2022, 31(11): 181-190. |
[14] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[15] | 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||