Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 15-29.DOI: 10.11686/cyxb2023485
Previous Articles Next Articles
Ya-si FENG1,2(), Wen-ting JIANG1,2, Yi-hong LIU1,2, Yan WANG1,2, Yuan LI3, You-chao CHEN1,2, Yan-jiang CAI1,2()
Received:
2023-12-18
Revised:
2024-03-18
Online:
2024-11-20
Published:
2024-09-09
Contact:
Yan-jiang CAI
Ya-si FENG, Wen-ting JIANG, Yi-hong LIU, Yan WANG, Yuan LI, You-chao CHEN, Yan-jiang CAI. Effects of plowing and plant residue mulching on soil nitrous oxide emissions in a black soil beach-type degraded grassland[J]. Acta Prataculturae Sinica, 2024, 33(11): 15-29.
基因Gene | 引物名称及序列 Primers names and sequences (5′-3′) | 片段长度Fragment length (bp) | 热循环Thermal condition |
---|---|---|---|
AOA-amoA | Arch-amoAF: STAATGGTCTGGCTTAGACG Arch-amoAR: GCGGCCATCCATCTGTATGT | 635 | 94 ℃预变性 5 min;94 ℃变性 30 s,55 ℃退火 45 s,72 ℃延伸 60 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 45 s and extension at 72 ℃ for 60 s |
AOB-amoA | amoA-1F: GGGGTTTCTACTGGTGGT amoA-2R: CCCCTCKGSAAAGCCTTCTTC | 491 | 94 ℃预变性 5 min;94 ℃变性 30 s,57 ℃退火 45 s,72 ℃延伸 30 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 57 ℃ for 45 s and extension at 72 ℃ for 30 s |
nirS | nirSCd3aF: GTSAACGTSAAGGARACSGG nirSR3cd: GASTTCGGRTGSGTCTTGA | 406 | 95 ℃预变性 3 min;95 ℃ 变性 10 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nirK | nirKF1aCu: ATCATGGTSCTGCCGCG nirKR3Cu: GCCTCGATCAGRTTGTGGTT | 473 | 95 ℃预变性 3 min;95 ℃变性 30 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 30 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nosZ I | NosZ1840F: CGCRACGGCAASAAGGTSMSSGT NosZ2090R: CAKRTGCAKSGCRTGGCAGAA | 259 | 95 ℃预变性 3 min;95 ℃变性 10 s,58 ℃退火 25 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 58 ℃ for 25 s and extension at 72 ℃ for 20 s |
Table 1 PCR primers and thermal cycling conditions for gene quantification
基因Gene | 引物名称及序列 Primers names and sequences (5′-3′) | 片段长度Fragment length (bp) | 热循环Thermal condition |
---|---|---|---|
AOA-amoA | Arch-amoAF: STAATGGTCTGGCTTAGACG Arch-amoAR: GCGGCCATCCATCTGTATGT | 635 | 94 ℃预变性 5 min;94 ℃变性 30 s,55 ℃退火 45 s,72 ℃延伸 60 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 45 s and extension at 72 ℃ for 60 s |
AOB-amoA | amoA-1F: GGGGTTTCTACTGGTGGT amoA-2R: CCCCTCKGSAAAGCCTTCTTC | 491 | 94 ℃预变性 5 min;94 ℃变性 30 s,57 ℃退火 45 s,72 ℃延伸 30 s,40 个循环Pre-denaturation at 94 ℃ for 5 min; 40 cycles of denaturation at 94 ℃ for 30 s, annealing at 57 ℃ for 45 s and extension at 72 ℃ for 30 s |
nirS | nirSCd3aF: GTSAACGTSAAGGARACSGG nirSR3cd: GASTTCGGRTGSGTCTTGA | 406 | 95 ℃预变性 3 min;95 ℃ 变性 10 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nirK | nirKF1aCu: ATCATGGTSCTGCCGCG nirKR3Cu: GCCTCGATCAGRTTGTGGTT | 473 | 95 ℃预变性 3 min;95 ℃变性 30 s,56 ℃退火 30 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 30 s, annealing at 56 ℃ for 30 s and extension at 72 ℃ for 20 s |
nosZ I | NosZ1840F: CGCRACGGCAASAAGGTSMSSGT NosZ2090R: CAKRTGCAKSGCRTGGCAGAA | 259 | 95 ℃预变性 3 min;95 ℃变性 10 s,58 ℃退火 25 s,72 ℃延伸 20 s,35 个循环Pre-denaturation at 95 ℃ for 3 min; 35 cycles of denaturation at 95 ℃ for 10 s, annealing at 58 ℃ for 25 s and extension at 72 ℃ for 20 s |
指标Index | CK | PL | MR | PL+MR |
---|---|---|---|---|
土壤质量含水量Soil water content (SWC, %) | 44.26±1.43b | 38.27±1.77c | 49.04±1.49a | 41.59±2.18bc |
土壤pH值Soil pH value | 5.37±0.02b | 5.51±0.04a | 5.44±0.03a | 5.48±0.03a |
土壤有机碳Soil organic carbon (SOC, g·kg-1) | 57.11±3.27a | 49.34±2.31b | 53.02±3.54ab | 52.63±1.98ab |
总氮Total nitrogen (TN, g·kg-1) | 4.82±0.15a | 4.62±0.17a | 4.54±0.24a | 4.79±0.19a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 5.88±0.50a | 4.32±0.58b | 3.56±0.40b | 3.75±0.46b |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 40.23±3.69b | 37.06±1.41b | 48.22±2.62a | 36.61±2.42b |
可溶性有机碳Dissolved organic carbon (DOC, mg·kg-1) | 53.15±8.33c | 164.51±10.39a | 54.12±2.50c | 143.37±4.93b |
可溶性有机氮Dissolved organic nitrogen (DON, mg·kg-1) | 23.08±2.85a | 12.81±5.41b | 21.65±3.89a | 14.91±2.19ab |
土壤C/N Soil C/N | 12.05±0.04a | 10.69±0.09c | 11.82±0.07b | 10.77±0.08c |
Table 2 Soil physical and chemical properties under different treatments
指标Index | CK | PL | MR | PL+MR |
---|---|---|---|---|
土壤质量含水量Soil water content (SWC, %) | 44.26±1.43b | 38.27±1.77c | 49.04±1.49a | 41.59±2.18bc |
土壤pH值Soil pH value | 5.37±0.02b | 5.51±0.04a | 5.44±0.03a | 5.48±0.03a |
土壤有机碳Soil organic carbon (SOC, g·kg-1) | 57.11±3.27a | 49.34±2.31b | 53.02±3.54ab | 52.63±1.98ab |
总氮Total nitrogen (TN, g·kg-1) | 4.82±0.15a | 4.62±0.17a | 4.54±0.24a | 4.79±0.19a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 5.88±0.50a | 4.32±0.58b | 3.56±0.40b | 3.75±0.46b |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 40.23±3.69b | 37.06±1.41b | 48.22±2.62a | 36.61±2.42b |
可溶性有机碳Dissolved organic carbon (DOC, mg·kg-1) | 53.15±8.33c | 164.51±10.39a | 54.12±2.50c | 143.37±4.93b |
可溶性有机氮Dissolved organic nitrogen (DON, mg·kg-1) | 23.08±2.85a | 12.81±5.41b | 21.65±3.89a | 14.91±2.19ab |
土壤C/N Soil C/N | 12.05±0.04a | 10.69±0.09c | 11.82±0.07b | 10.77±0.08c |
1 | IPCC. In climate change 2021: The physical science basis//Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021: 673-816. |
2 | Syakila A, Kroeze C. The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 2011, 1(1): 17-26. |
3 | Dangal S R S, Tian H Q, Xu R T, et al. Global nitrous oxide emissions from pasturelands and rangelands: Magnitude, spatiotemporal patterns, and attribution. Global Biogeochemical Cycles, 2019, 33(2): 200-222. |
4 | Wang Q J, Jing Z C, Wang W Y, et al. The study of grassland resource, ecological environment and sustainable development in Qinghai-Xizang Plateau. Qinghai Prataculture, 1997(3): 1-11. |
王启基, 景增春, 王文颖, 等. 青藏高原高寒草甸草地资源环境及可持续发展研究. 青海草业, 1997(3): 1-11. | |
5 | Zhang Y. The Spatio-temporal patterns and controls of net primary productivity in China’s grasslands and their responses to reserve policy. Lanzhou: Lanzhou University, 2022. |
张意. 中国草地植被生产力时空格局、成因及其对保护区政策的响应. 兰州: 兰州大学, 2022. | |
6 | Fayiah M, Dong S K, Khomera S W, et al. Status and challenges of Qinghai-Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability, 2020, 12(3): 1099. |
7 | Luo Z M, Liu J X, Hu Y Q, et al. Taxonomic and functional diversity of soil microbial communities in subalpine meadows with different degradation degrees in Mount Wutai. Environmental Science, 2023, 44(5): 2918-2927. |
罗正明, 刘晋仙, 胡砚秋, 等. 五台山不同退化程度亚高山草甸土壤微生物群落分类与功能多样性特征. 环境科学, 2023, 44(5): 2918-2927. | |
8 | Li Y Y, Dong S K, Liu S L, et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry, 2015, 80: 306-314. |
9 | Guo X W, Dai L C, Li Y K, et al. Major greenhouse gas fluxes in different degradation levels of alpine meadow on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 2019, 26(5): 188-194, 209. |
郭小伟, 戴黎聪, 李以康, 等. 不同退化程度下的高寒草甸主要温室气体通量. 水土保持研究, 2019, 26(5): 188-194, 209. | |
10 | Yuan Q, Yuan Q Z, Ren P. Coupled effect of climate change and human activities on the restoration/degradation of the Qinghai-Tibet Plateau grassland. Journal of Geographical Sciences, 2021, 31(9): 1299-1327. |
11 | Shang Z H, Dong Q M, Shi J J, et al. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau-Concurrently discuss of ecological restoration in Sanjiangyuan region. Acta Agrestia Sinica, 2018, 26(1): 1-21. |
尚占环, 董全民, 施建军, 等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展-兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. | |
12 | Ma Y S. Studies on formation mechanism of ‘black soil type’ degraded grassland restoring pattern in the source region of Yangtze, Yellow and Lantsang Rivers. Lanzhou: Gansu Agricultural University, 2007. |
马玉寿. 三江源区“黑土型”退化草地形成机理与恢复模式研究. 兰州: 甘肃农业大学, 2007. | |
13 | Zhang G R, Li W Q, Zhang F W, et al. Responses of key ecological attributes to multi-path restoration measures of degraded alpine meadows. Acta Ecologica Sinica, 2020, 40(18): 6293-6303. |
张光茹, 李文清, 张法伟, 等. 退化高寒草甸关键生态属性对多途径恢复措施的响应特征. 生态学报, 2020, 40(18): 6293-6303. | |
14 | Qu W J, Song N P, Chen L, et al. Responses of two types of desertification grasslands in desert steppe to shallow ploughing. Research of Soil and Water Conservation, 2014, 21(1): 85-89, 94. |
曲文杰, 宋乃平, 陈林, 等. 荒漠草原两种沙化草地对浅耕翻的响应. 水土保持研究, 2014, 21(1): 85-89, 94. | |
15 | Li Y, Li Z, Cui S, et al. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil and Tillage Research, 2019, 194: 104292. |
16 | Zhang L, Hao B T, Qi L X, et al. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration. Chinese Journal of Plant Ecology, 2018, 42(3): 317-326. |
张璐, 郝匕台, 齐丽雪, 等. 草原群落生物量和土壤有机质含量对改良措施的动态响应. 植物生态学报, 2018, 42(3): 317-326. | |
17 | Laudicina V A, Palazzolo E, Catania P, et al. Soil quality indicators as affected by shallow tillage in a vineyard grown in a semiarid mediterranean environment. Land Degradation & Development, 2017, 28(3): 1038-1046. |
18 | Gu C, Jia Z Q, Du B B, et al. Reviews and prospects of ecological restoration measures for degraded grasslands of China. Ecology and Environmental Sciences, 2022, 31(7): 1465-1475. |
古琛, 贾志清, 杜波波, 等. 中国退化草地生态修复措施综述与展望. 生态环境学报, 2022, 31(7): 1465-1475. | |
19 | Feng J H, Huang J F, Liu T Q, et al. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield. Acta Agronomica Sinica, 2019, 45(8): 1250-1259. |
冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45(8): 1250-1259. | |
20 | Li Z X, Zhang Q Y, Li Z, et al. Effects of no-tillage on greenhouse gas emissions in maize fields in a semi-humid temperate climate region. Environmental Pollution, 2022, 309: 119747. |
21 | Wang W Y, Yang M, Shen P F, et al. Conservation tillage reduces nitrous oxide emissions by regulating functional genes for ammonia oxidation and denitrification in a winter wheat ecosystem. Soil and Tillage Research, 2019, 194: 104347. |
22 | Badagliacca G, Benitez E, Amato G, et al. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed mediterranean conditions. Science of the Total Environment, 2018, 639: 350-359. |
23 | Zhang Z S, Chen J, Liu T Q, et al. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmospheric Environment, 2016, 144: 274-281. |
24 | Liu Y Q, Wang J L, Li Z Z. Research process on the effects of straw mulch on soil moisture and soil erosion. Research of Soil and Water Conservation, 2021, 28(6): 429-436. |
刘燕青, 王计磊, 李子忠. 秸秆覆盖对土壤水分和侵蚀的影响研究进展. 水土保持研究, 2021, 28(6): 429-436. | |
25 | Berhane M, Xu M, Liang Z Y, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology, 2020, 26(4): 2686-2701. |
26 | Lin J T, Xu Z Y, Xue Y H, et al. N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes. Agriculture, Ecosystems & Environment, 2023, 341: 108217. |
27 | Hu N, Wang B, Gu Z, et al. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agriculture, Ecosystems & Environment, 2016, 223: 115-122. |
28 | Dai J H, Wu P F, Tang S S, et al. Effects of altered precipitation on soil nematode communities in alpine meadow. Acta Ecologica Sinica, 2023, 43(22): 9371-9383. |
代江慧, 吴鹏飞, 唐思思, 等. 降水变化对高寒草甸土壤线虫群落的影响. 生态学报, 2023, 43(22): 9371-9383. | |
29 | Tang L T, Mao R, Wang C T, et al. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
唐立涛, 毛睿, 王长庭, 等. 氮磷添加对高寒草甸植物群落根系特征的影响. 草业学报, 2021, 30(9): 105-116. | |
30 | Ma Y S, Lang B N, Li Q Y, et al. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 2002(9): 1-5. |
马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 2002(9): 1-5. | |
31 | Xiao X Q, Zhang H K, Feng Y S, et al. Effects of plant residues on C∶N∶P of soil, microbial biomass, and extracellular enzyme in an alpine meadow on the Qinghai-Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2023, 34(1): 58-66. |
肖向前, 张海阔, 冯娅斯, 等. 植物残体对青藏高原高寒草甸土壤、微生物和胞外酶C∶N∶P化学计量特征的影响. 应用生态学报, 2023, 34(1): 58-66. | |
32 | Lu R K. Analytical method of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
33 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
34 | Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. |
35 | Zhang H K, Zhang B G, Zhou Z Y, et al. Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China. Journal of Agro-Environment Science, 2022, 41(4): 826-833. |
张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响. 农业环境科学学报, 2022, 41(4): 826-833. | |
36 | Jiang W T, Tian L B, Zhu G D, et al. Effects of different forms of nitrogen addition on N2O emissions from the soil of Moso bamboo (Phyllostachys edulis) forest. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 857-868. |
蒋文婷, 田立斌, 朱高荻, 等. 不同形态氮添加对毛竹林土壤N2O排放的影响. 植物营养与肥料学报, 2022, 28(5): 857-868. | |
37 | Hart S C, Stark J M, Davidson E A, et al. Nitrogen mineralization, immobilization, and nitrification//Weaver R W, Angle S, Bottomley P, et al. Methods of soil analysis. America: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1994: 985-1018. |
38 | Welsh M K, McMillan S K, Vidon P G. Denitrification along the stream-riparian continuum in restored and unrestored agricultural streams. Journal of Environmental Quality, 2017, 46(5): 1010-1019. |
39 | Zhou Z Y, Zhang H K, Liang J H, et al. Soil denitrifying enzyme activity and its influencing factors in a bamboo forest riparian zone in the upper reaches of the Taihu Lake Basin, China. Chinese Journal of Applied Ecology, 2021, 32(9): 3070-3078. |
周钟昱, 张海阔, 梁佳辉, 等. 太湖流域上游竹林河岸带土壤反硝化酶活性及其影响因素. 应用生态学报, 2021, 32(9): 3070-3078. | |
40 | Zhang H K, Fang Y Y, Chen Y C, et al. Enhanced soil potential N2O emissions by land-use change are linked to AOB-amoA and nirK gene abundances and denitrifying enzyme activity in subtropics. Science of the Total Environment, 2022, 850: 158032. |
41 | Shi H A, Li L J, You M Y, et al. Impact of soil temperature and moisture on soil N2O emission from mollisols under different land-use types. Journal of Agro-Environment Science, 2013, 32(11): 2286-2292. |
石洪艾, 李禄军, 尤孟阳, 等. 不同土地利用方式下土壤温度与土壤水分对黑土N2O排放的影响. 农业环境科学学报, 2013, 32(11): 2286-2292. | |
42 | Zhao Y, Sun S N, Yan X B. Research status and development trends of soil nitrogen cycle in grasslands during 2010-2020. Pratacultural Science, 2021, 38(8): 1498-1512. |
赵仪, 孙盛楠, 严学兵. 2010-2020年草地土壤氮循环研究现状与发展趋势. 草业科学, 2021, 38(8): 1498-1512. | |
43 | Helfrich M, Nicolay G, Well R, et al. Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agriculture, Ecosystems & Environment, 2020, 298: 106975. |
44 | He M X, Duan P P, Li D J. Review on the pathways of soil nitrous oxide production and its research methods. Chinese Journal of Ecology, 2023, 42(6): 1497-1508. |
何美霞, 段鹏鹏, 李德军. 土壤氧化亚氮产生路径及其研究方法进展. 生态学杂志, 2023, 42(6): 1497-1508. | |
45 | Liu L, Ma Y L, Yue F X, et al. Effects of biochar on nitrogen transformation functional genes abundances, arbuscular mycorrhizal fungi and N2O emission of rainfed maize season in cinnamon soil. Acta Ecologica Sinica, 2021, 41(7): 2803-2815. |
刘领, 马宜林, 悦飞雪, 等. 生物炭对褐土旱地玉米季氮转化功能基因、丛枝菌根真菌及N2O释放的影响. 生态学报, 2021, 41(7): 2803-2815. | |
46 | Wang W Y, Hou Y T, Pan W H, et al. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biology and Biochemistry, 2021, 157: 108239. |
47 | Sun G, Wu N, Luo P. Characteristics of soil nitrogen and carbon of pastures under different management in northwestern Sichuan. Chinese Journal of Plant Ecology, 2005(2): 304-310. |
孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响. 植物生态学报, 2005(2): 304-310. | |
48 | Hao D C, Su X Y, Xie H T, et al. Effects of tillage patterns and stover mulching on N2O production, nitrogen cycling genes and microbial dynamics in black soil. Journal of Environmental Management, 2023, 345: 118458. |
49 | Liu X T, Song X J, Li S P, et al. Understanding how conservation tillage promotes soil carbon accumulation: Insights into extracellular enzyme activities and carbon flows between aggregate fractions. Science of the Total Environment, 2023, 897: 165408. |
50 | Zheng J Q, Berns-Herrboldt E C, Gu B H, et al. Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma, 2022, 424: 116003. |
51 | Torabian S, Farhangi-Abriz S, Denton M D. Do tillage systems influence nitrogen fixation in legumes? A review. Soil and Tillage Research, 2019, 185: 113-121. |
52 | Zhong Y Q W, Yan W M, Canisares L P, et al. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: Evidence from a global meta-analysis. Global Ecology and Biogeography, 2023, 32(1): 145-165. |
53 | Tzanakakis V A, Taylor A E, Bakken L R, et al. Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biology and Biochemistry, 2019, 139: 107612. |
54 | O’Neill R M, Krol D J, Wall D, et al. Assessing the impact of long-term soil phosphorus on N-transformation pathways using 15N tracing. Soil Biology and Biochemistry, 2021, 152: 108066. |
55 | Jansen-Willems A B, Lanigan G J, Clough T J, et al. Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil. Soil, 2016, 2(4): 601-614. |
56 | Zhang J B, Müller C, Cai Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry, 2015, 84: 199-209. |
57 | Cai Y J, Ding W X, Xiang J. Mechanisms of nitrous oxide and nitric oxide production in soils: A review. Soils, 2012, 44(5): 712-718. |
蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展. 土壤, 2012, 44(5): 712-718. | |
58 | Liu S Y, Zhang X P, Zhao J, et al. Effects of long-term no tillage treatment on gross soil N transformations in black soil in Northeast China. Geoderma, 2017, 301: 42-46. |
59 | Yu X, Dijkstra F A. Carbon and nitrogen dynamics affected by litter and nitrogen addition in a grassland soil: Role of fungi. European Journal of Soil Biology, 2020, 100: 103211. |
60 | Bent E, Németh D, Wagner-Riddle C, et al. Residue management leading to higher field-scale N2O flux is associated with different soil bacterial nitrifier and denitrifier gene community structures. Applied Soil Ecology, 2016, 108: 288-299. |
61 | Abiven S, Menasseri S, Chenu C, et al. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biology and Biochemistry, 2009, 41(1): 1-12. |
62 | Daly E J, Hernandez-Ramirez G, Congreves K A, et al. Soil organic nitrogen priming to nitrous oxide: A synthesis. Soil Biology and Biochemistry, 2024, 189: 109254. |
63 | Zhang R, Zhao X, Pu C, et al. Meta-analysis on effects of residue retention on soil N2O emissions and influence factors in China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 1-6. |
张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析. 农业工程学报, 2015, 31(22): 1-6. | |
64 | Liu X, Li Q Z, Liu M X, et al. Responses of N2O emissions to straw addition under different tillage soils: A 15N labelling study. Applied Soil Ecology, 2023, 183: 104744. |
65 | Gan G Y, Yan R Y, Zhao X M, et al. Effects of straw addition on phosphorus availability in paddy soil under different hydrothermal conditions. Soil and Fertilizer Sciences in China, 2023(9): 20-27. |
甘国渝, 严如玉, 赵希梅, 等. 不同水热条件下秸秆添加对水稻土磷素有效性的影响. 中国土壤与肥料, 2023(9): 20-27. | |
66 | Zhao Z X, Wang X Y, Tian Y J, et al. Effects of straw returning on soil ammonia volatilization under different production conditions based on Meta-analysis. Environmental Science, 2022, 43(3): 1678-1687. |
赵政鑫, 王晓云, 田雅洁, 等. 基于Meta分析的不同生产条件下秸秆还田对土壤氨挥发的影响. 环境科学, 2022, 43(3): 1678-1687. | |
67 | Allison S D, Weintraub M N, Gartner T B, et al. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil enzymology. Berlin: Springer Berlin Heidelberg, 2010: 229-243. |
68 | Chen H H, Liu Y, Lu L P, et al. Effects of no-tillage and stover mulching on the transformation and utilization of chemical fertilizer N in Northeast China. Soil and Tillage Research, 2021, 213: 105131. |
69 | Tu H Z, Lin S, Wang J, et al. Effects of straw addition on N2O and CO2 emissions from red soil subjected to different long-term fertilization. Environmental Science, 2024, 45(6): 3716-3724. |
涂昊泽, 林杉, 王军, 等. 秸秆添加对长期施肥旱地红壤N2O和CO2排放的影响. 环境科学, 2024, 45(6): 3716-3724. |
[1] | Yang-yi-dan HE, Chang-ming CHEN, Xiao-xia HUANG, Guo-mei SHI, Ke-jian HE. A study of the relationship between plant functional traits and environmental factors in the alpine meadows of western Sichuan [J]. Acta Prataculturae Sinica, 2024, 33(9): 28-39. |
[2] | Xiang-jiao TAN, Kui-cai DONG, Hua ZHANG, Chuan-chuan TANG, Yan YANG. Effects of snow addition on soil phosphorus availability in an alpine meadow of the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(7): 205-214. |
[3] | Rui-min QIN, Si-jia CHENG, Li MA, Zhong-hua ZHANG, Jing-jing WEI, Hong-ye SU, Zheng-chen SHI, Tao CHANG, Xue HU, De-ha-ze A, Fang YUAN, Shan LI, Hua-kun ZHOU. Effects of grazing exclusion and fertilization on alpine meadow community characteristics and vegetation carbon and nitrogen pools [J]. Acta Prataculturae Sinica, 2024, 33(4): 1-11. |
[4] | Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12. |
[5] | Yuan MA, Xiao-li WANG, Yu-shou MA, De-gang ZHANG. Effects of the degree of alpine meadow degradation on the rhizosphere soil fungal community and the ecological network of dominant species [J]. Acta Prataculturae Sinica, 2024, 33(2): 125-137. |
[6] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[7] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[8] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[9] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[10] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[11] | Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê [J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46. |
[12] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[13] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[14] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[15] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||