Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (2): 179-194.DOI: 10.11686/cyxb2025145
Previous Articles Next Articles
Meng-hui YANG(
), Ya-jie LIU, Na LI, Chun-xue YANG(
)
Received:2025-04-24
Revised:2025-06-16
Online:2026-02-20
Published:2025-12-24
Contact:
Chun-xue YANG
Meng-hui YANG, Ya-jie LIU, Na LI, Chun-xue YANG. Effects of common mycorrhizal networks on the growth and alkali tolerance of Pennisetum alopecuroides under different planting patterns[J]. Acta Prataculturae Sinica, 2026, 35(2): 179-194.
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 菌根依赖性Mycorrhizal dependence | 易提取球囊霉素相关土壤蛋白EE-GRSP (mg·g-1) | 总提取球囊霉素相关土壤蛋白T-GRSP (mg·g-1) | 难提取球囊霉素相关土壤蛋白D-GRSP (mg·g-1) |
|---|---|---|---|---|---|---|
| CK | NM | NP | - | 0.34±0.01f | 0.79±0.02e | 0.45±0.02f |
| PE | - | 0.33±0.01f | 0.81±0.02e | 0.47±0.01f | ||
| PL | - | 0.34±0.02f | 0.79±0.01e | 0.45±0.01f | ||
| CK | AM | NP | 1.12±0.06d | 1.06±0.03b | 2.28±0.05c | 1.22±0.06e |
| PE | 1.23±0.03c | 1.14±0.03a | 2.82±0.09a | 1.67±0.07a | ||
| PL | 1.15±0.02d | 0.95±0.08c | 2.54±0.03b | 1.59±0.05bc | ||
| ST | AM | NP | 1.48±0.01b | 0.56±0.02e | 2.09±0.02d | 1.53±0.01c |
| PE | 1.63±0.01a | 0.76±0.02d | 2.15±0.04d | 1.39±0.02d | ||
| PL | 1.49±0.02b | 0.54±0.02e | 2.15±0.01d | 1.60±0.03b |
Table 1 Mycorrhizal dependence and glomycin-related soil protein content in rhizosphere of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 菌根依赖性Mycorrhizal dependence | 易提取球囊霉素相关土壤蛋白EE-GRSP (mg·g-1) | 总提取球囊霉素相关土壤蛋白T-GRSP (mg·g-1) | 难提取球囊霉素相关土壤蛋白D-GRSP (mg·g-1) |
|---|---|---|---|---|---|---|
| CK | NM | NP | - | 0.34±0.01f | 0.79±0.02e | 0.45±0.02f |
| PE | - | 0.33±0.01f | 0.81±0.02e | 0.47±0.01f | ||
| PL | - | 0.34±0.02f | 0.79±0.01e | 0.45±0.01f | ||
| CK | AM | NP | 1.12±0.06d | 1.06±0.03b | 2.28±0.05c | 1.22±0.06e |
| PE | 1.23±0.03c | 1.14±0.03a | 2.82±0.09a | 1.67±0.07a | ||
| PL | 1.15±0.02d | 0.95±0.08c | 2.54±0.03b | 1.59±0.05bc | ||
| ST | AM | NP | 1.48±0.01b | 0.56±0.02e | 2.09±0.02d | 1.53±0.01c |
| PE | 1.63±0.01a | 0.76±0.02d | 2.15±0.04d | 1.39±0.02d | ||
| PL | 1.49±0.02b | 0.54±0.02e | 2.15±0.01d | 1.60±0.03b |
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 鲜重 Fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) | 组织含水量(占鲜重) Tissue water content (% fresh weight) |
|---|---|---|---|---|---|
| CK | NM | NP | 0.830±0.025c | 0.174±0.004d | 79.04±0.612b |
| PE | 0.846±0.034c | 0.172±0.001d | 79.60±0.812b | ||
| PL | 0.846±0.031c | 0.174±0.004d | 79.42±0.589b | ||
| AM | NP | 1.130±0.028b | 0.195±0.006c | 82.75±0.908a | |
| PE | 1.204±0.044a | 0.212±0.005a | 82.41±0.372a | ||
| PL | 1.132±0.050b | 0.200±0.001b | 82.31±0.811a | ||
| ST | NM | NP | 0.353±0.027e | 0.104±0.001f | 70.37±2.371c |
| PE | 0.358±0.018e | 0.103±0.001f | 71.03±1.431c | ||
| PL | 0.350±0.042e | 0.104±0.002f | 69.90±3.492c | ||
| AM | NP | 0.731±0.027d | 0.154±0.001e | 78.92±0.956b | |
| PE | 0.827±0.024c | 0.169±0.001d | 79.59±0.674b | ||
| PL | 0.729±0.027d | 0.155±0.001e | 78.73±0.780b |
Table 2 The biomass of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 鲜重 Fresh weight (g·plant-1) | 干重 Dry weight (g·plant-1) | 组织含水量(占鲜重) Tissue water content (% fresh weight) |
|---|---|---|---|---|---|
| CK | NM | NP | 0.830±0.025c | 0.174±0.004d | 79.04±0.612b |
| PE | 0.846±0.034c | 0.172±0.001d | 79.60±0.812b | ||
| PL | 0.846±0.031c | 0.174±0.004d | 79.42±0.589b | ||
| AM | NP | 1.130±0.028b | 0.195±0.006c | 82.75±0.908a | |
| PE | 1.204±0.044a | 0.212±0.005a | 82.41±0.372a | ||
| PL | 1.132±0.050b | 0.200±0.001b | 82.31±0.811a | ||
| ST | NM | NP | 0.353±0.027e | 0.104±0.001f | 70.37±2.371c |
| PE | 0.358±0.018e | 0.103±0.001f | 71.03±1.431c | ||
| PL | 0.350±0.042e | 0.104±0.002f | 69.90±3.492c | ||
| AM | NP | 0.731±0.027d | 0.154±0.001e | 78.92±0.956b | |
| PE | 0.827±0.024c | 0.169±0.001d | 79.59±0.674b | ||
| PL | 0.729±0.027d | 0.155±0.001e | 78.73±0.780b |
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 净光合速率 Pn (μmol·m-2·s-1) | 叶片气孔导度 Gs (mmol·m-2·s-1) | 胞间二氧化碳浓度 Ci (μmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
|---|---|---|---|---|---|---|---|---|
| CK | NM | NP | 10.32±0.32b | 2.91±0.11b | 2.76±0.20b | 24.40±2.90b | 392.67±32.88ab | 1.14±0.08b |
| PE | 10.30±0.29b | 2.97±0.13b | 2.74±0.26b | 23.85±3.25b | 389.33±23.35ab | 1.18±0.02b | ||
| PL | 10.30±0.33b | 3.04±0.09b | 2.76±0.27b | 24.16±3.01b | 390.67±32.53ab | 1.16±0.05b | ||
| AM | NP | 12.64±0.23a | 3.27±0.10a | 2.94±0.43ab | 30.68±4.57a | 286.00±107.53b | 1.31±0.03a | |
| PE | 12.74±0.18a | 3.39±0.16a | 3.38±0.32a | 31.25±5.74a | 289.00±132.73b | 1.33±0.04a | ||
| PL | 12.72±0.23a | 3.34±0.23a | 3.04±0.41ab | 30.45±5.83a | 383.33±45.35ab | 1.33±0.03a | ||
| ST | NM | NP | 4.88±0.11e | 1.61±0.12e | 1.23±0.18e | 9.77±1.29d | 408.00±14.73a | 0.63±0.06d |
| PE | 4.79±0.13e | 1.57±0.16e | 1.18±0.18e | 10.64±1.05d | 407.67±45.79a | 0.63±0.05d | ||
| PL | 4.85±0.14e | 1.40±0.19e | 1.21±0.19e | 10.20±0.97d | 404.00±8.89a | 0.63±0.06d | ||
| AM | NP | 7.28±0.10d | 2.08±0.03d | 1.53±0.40de | 12.78±0.87cd | 392.67±27.50ab | 0.90±0.15c | |
| PE | 9.08±0.06c | 2.67±0.07c | 2.25±0.10c | 17.97±1.21c | 401.00±7.00a | 0.97±0.07c | ||
| PL | 7.42±0.02d | 2.18±0.06d | 1.84±0.11cd | 14.63±0.64cd | 402.33±33.08a | 0.96±0.08c |
Table 3 Chlorophyll and photosynthetic parameters of P. alopecuroides under different treatments
胁迫 Stress | 接菌 Inoculation | 邻体植物 Neighboring plants | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 净光合速率 Pn (μmol·m-2·s-1) | 叶片气孔导度 Gs (mmol·m-2·s-1) | 胞间二氧化碳浓度 Ci (μmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
|---|---|---|---|---|---|---|---|---|
| CK | NM | NP | 10.32±0.32b | 2.91±0.11b | 2.76±0.20b | 24.40±2.90b | 392.67±32.88ab | 1.14±0.08b |
| PE | 10.30±0.29b | 2.97±0.13b | 2.74±0.26b | 23.85±3.25b | 389.33±23.35ab | 1.18±0.02b | ||
| PL | 10.30±0.33b | 3.04±0.09b | 2.76±0.27b | 24.16±3.01b | 390.67±32.53ab | 1.16±0.05b | ||
| AM | NP | 12.64±0.23a | 3.27±0.10a | 2.94±0.43ab | 30.68±4.57a | 286.00±107.53b | 1.31±0.03a | |
| PE | 12.74±0.18a | 3.39±0.16a | 3.38±0.32a | 31.25±5.74a | 289.00±132.73b | 1.33±0.04a | ||
| PL | 12.72±0.23a | 3.34±0.23a | 3.04±0.41ab | 30.45±5.83a | 383.33±45.35ab | 1.33±0.03a | ||
| ST | NM | NP | 4.88±0.11e | 1.61±0.12e | 1.23±0.18e | 9.77±1.29d | 408.00±14.73a | 0.63±0.06d |
| PE | 4.79±0.13e | 1.57±0.16e | 1.18±0.18e | 10.64±1.05d | 407.67±45.79a | 0.63±0.05d | ||
| PL | 4.85±0.14e | 1.40±0.19e | 1.21±0.19e | 10.20±0.97d | 404.00±8.89a | 0.63±0.06d | ||
| AM | NP | 7.28±0.10d | 2.08±0.03d | 1.53±0.40de | 12.78±0.87cd | 392.67±27.50ab | 0.90±0.15c | |
| PE | 9.08±0.06c | 2.67±0.07c | 2.25±0.10c | 17.97±1.21c | 401.00±7.00a | 0.97±0.07c | ||
| PL | 7.42±0.02d | 2.18±0.06d | 1.84±0.11cd | 14.63±0.64cd | 402.33±33.08a | 0.96±0.08c |
指标 Index | CK | ST | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AM | NM | AM | NM | |||||||||
| PE | PL | NP | PE | PL | NP | PE | PL | NP | PE | PL | NP | |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.971 | 0.962 | 0.678 | 0.679 | 0.682 | 0.531 | 0.330 | 0.313 | 0.013 | 0.019 | 0.023 |
| 叶绿素b含量Chlorophyll b content | 0.914 | 0.890 | 0.862 | 0.732 | 0.759 | 0.706 | 0.600 | 0.386 | 0.345 | 0.123 | 0.051 | 0.138 |
| 类胡萝卜素含量Carotenoids content | 0.967 | 0.977 | 0.967 | 0.851 | 0.818 | 0.853 | 0.312 | 0.275 | 0.179 | 0.156 | 0.056 | 0.065 |
| 净光合速率Net Photosynthesis rate | 0.916 | 0.785 | 0.745 | 0.668 | 0.677 | 0.676 | 0.480 | 0.320 | 0.199 | 0.064 | 0.076 | 0.084 |
| 叶片气孔导度Stomatal conductance | 0.807 | 0.778 | 0.787 | 0.547 | 0.558 | 0.566 | 0.340 | 0.222 | 0.158 | 0.082 | 0.067 | 0.052 |
| 叶长Leaf length | 0.864 | 0.831 | 0.944 | 0.703 | 0.582 | 0.669 | 0.483 | 0.342 | 0.675 | 0.195 | 0.056 | 0.319 |
| 叶宽Leaf width | 0.909 | 0.864 | 0.924 | 0.424 | 0.409 | 0.409 | 0.652 | 0.591 | 0.727 | 0.091 | 0.045 | 0.030 |
| 叶面积Leaf area | 0.884 | 0.900 | 0.964 | 0.515 | 0.450 | 0.478 | 0.523 | 0.426 | 0.723 | 0.146 | 0.092 | 0.109 |
| 株高Plant height | 0.854 | 0.833 | 0.917 | 0.667 | 0.646 | 0.729 | 0.375 | 0.313 | 0.563 | 0.125 | 0.146 | 0.146 |
| 茎粗Stem diameter | 0.785 | 0.788 | 0.885 | 0.448 | 0.417 | 0.538 | 0.729 | 0.809 | 0.781 | 0.208 | 0.122 | 0.052 |
| 总根长Total root length | 0.862 | 0.756 | 0.797 | 0.575 | 0.596 | 0.622 | 0.501 | 0.391 | 0.405 | 0.079 | 0.167 | 0.155 |
| 表面积Surface area | 0.854 | 0.732 | 0.714 | 0.341 | 0.333 | 0.329 | 0.448 | 0.196 | 0.180 | 0.063 | 0.051 | 0.069 |
| 体积Volume | 0.705 | 0.794 | 0.696 | 0.477 | 0.482 | 0.480 | 0.417 | 0.460 | 0.404 | 0.054 | 0.070 | 0.067 |
| 平均直径Mean diameter | 0.775 | 0.714 | 0.664 | 0.406 | 0.433 | 0.447 | 0.286 | 0.294 | 0.289 | 0.119 | 0.086 | 0.111 |
| 鲜重Fresh weight | 0.951 | 0.874 | 0.874 | 0.572 | 0.575 | 0.558 | 0.554 | 0.453 | 0.456 | 0.063 | 0.053 | 0.056 |
| 干重Dry weight | 0.944 | 0.833 | 0.778 | 0.583 | 0.611 | 0.611 | 0.583 | 0.472 | 0.444 | 0.000 | 0.028 | 0.000 |
| CAT活性CAT activity | 0.280 | 0.280 | 0.120 | 0.440 | 0.413 | 0.402 | 0.934 | 0.974 | 0.720 | 0.587 | 0.587 | 0.605 |
| POD活性POD activity | 0.053 | 0.044 | 0.062 | 0.025 | 0.024 | 0.020 | 0.968 | 0.955 | 0.916 | 0.797 | 0.808 | 0.810 |
| SOD活性SOD activity | 0.079 | 0.070 | 0.042 | 0.070 | 0.060 | 0.041 | 0.995 | 0.982 | 0.965 | 0.615 | 0.626 | 0.627 |
| PAL活性PAL activity | 0.344 | 0.341 | 0.338 | 0.004 | 0.003 | 0.004 | 0.931 | 0.915 | 0.934 | 0.625 | 0.697 | 0.645 |
| 脯氨酸含量Proline content | 0.031 | 0.045 | 0.041 | 0.046 | 0.043 | 0.044 | 0.984 | 0.983 | 0.989 | 0.569 | 0.570 | 0.575 |
| 可溶性蛋白含量Soluble protein content | 0.070 | 0.067 | 0.071 | 0.035 | 0.034 | 0.037 | 0.974 | 0.978 | 0.875 | 0.467 | 0.461 | 0.477 |
| 可溶性糖含量Soluble sugars content | 0.191 | 0.214 | 0.207 | 0.129 | 0.163 | 0.114 | 0.703 | 0.961 | 0.788 | 0.503 | 0.474 | 0.479 |
超氧阴离子自由基含量 Superoxide anion radical content | 0.969 | 0.942 | 0.922 | 0.875 | 0.886 | 0.884 | 0.528 | 0.521 | 0.521 | 0.074 | 0.056 | 0.043 |
| 丙二醛含量MDA content | 0.961 | 0.871 | 0.956 | 0.875 | 0.878 | 0.927 | 0.594 | 0.548 | 0.465 | 0.143 | 0.144 | 0.122 |
| 隶属函数平均值Subjection average value | 0.678 | 0.648 | 0.650 | 0.467 | 0.461 | 0.473 | 0.617 | 0.564 | 0.561 | 0.238 | 0.224 | 0.234 |
| 排序Rank | 1 | 3 | 2 | 8 | 9 | 7 | 4 | 5 | 6 | 10 | 12 | 11 |
Table 4 Subordinative function values and comprehensive evaluation of the various indicators of P. alopecuroides under different treatments
指标 Index | CK | ST | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AM | NM | AM | NM | |||||||||
| PE | PL | NP | PE | PL | NP | PE | PL | NP | PE | PL | NP | |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.971 | 0.962 | 0.678 | 0.679 | 0.682 | 0.531 | 0.330 | 0.313 | 0.013 | 0.019 | 0.023 |
| 叶绿素b含量Chlorophyll b content | 0.914 | 0.890 | 0.862 | 0.732 | 0.759 | 0.706 | 0.600 | 0.386 | 0.345 | 0.123 | 0.051 | 0.138 |
| 类胡萝卜素含量Carotenoids content | 0.967 | 0.977 | 0.967 | 0.851 | 0.818 | 0.853 | 0.312 | 0.275 | 0.179 | 0.156 | 0.056 | 0.065 |
| 净光合速率Net Photosynthesis rate | 0.916 | 0.785 | 0.745 | 0.668 | 0.677 | 0.676 | 0.480 | 0.320 | 0.199 | 0.064 | 0.076 | 0.084 |
| 叶片气孔导度Stomatal conductance | 0.807 | 0.778 | 0.787 | 0.547 | 0.558 | 0.566 | 0.340 | 0.222 | 0.158 | 0.082 | 0.067 | 0.052 |
| 叶长Leaf length | 0.864 | 0.831 | 0.944 | 0.703 | 0.582 | 0.669 | 0.483 | 0.342 | 0.675 | 0.195 | 0.056 | 0.319 |
| 叶宽Leaf width | 0.909 | 0.864 | 0.924 | 0.424 | 0.409 | 0.409 | 0.652 | 0.591 | 0.727 | 0.091 | 0.045 | 0.030 |
| 叶面积Leaf area | 0.884 | 0.900 | 0.964 | 0.515 | 0.450 | 0.478 | 0.523 | 0.426 | 0.723 | 0.146 | 0.092 | 0.109 |
| 株高Plant height | 0.854 | 0.833 | 0.917 | 0.667 | 0.646 | 0.729 | 0.375 | 0.313 | 0.563 | 0.125 | 0.146 | 0.146 |
| 茎粗Stem diameter | 0.785 | 0.788 | 0.885 | 0.448 | 0.417 | 0.538 | 0.729 | 0.809 | 0.781 | 0.208 | 0.122 | 0.052 |
| 总根长Total root length | 0.862 | 0.756 | 0.797 | 0.575 | 0.596 | 0.622 | 0.501 | 0.391 | 0.405 | 0.079 | 0.167 | 0.155 |
| 表面积Surface area | 0.854 | 0.732 | 0.714 | 0.341 | 0.333 | 0.329 | 0.448 | 0.196 | 0.180 | 0.063 | 0.051 | 0.069 |
| 体积Volume | 0.705 | 0.794 | 0.696 | 0.477 | 0.482 | 0.480 | 0.417 | 0.460 | 0.404 | 0.054 | 0.070 | 0.067 |
| 平均直径Mean diameter | 0.775 | 0.714 | 0.664 | 0.406 | 0.433 | 0.447 | 0.286 | 0.294 | 0.289 | 0.119 | 0.086 | 0.111 |
| 鲜重Fresh weight | 0.951 | 0.874 | 0.874 | 0.572 | 0.575 | 0.558 | 0.554 | 0.453 | 0.456 | 0.063 | 0.053 | 0.056 |
| 干重Dry weight | 0.944 | 0.833 | 0.778 | 0.583 | 0.611 | 0.611 | 0.583 | 0.472 | 0.444 | 0.000 | 0.028 | 0.000 |
| CAT活性CAT activity | 0.280 | 0.280 | 0.120 | 0.440 | 0.413 | 0.402 | 0.934 | 0.974 | 0.720 | 0.587 | 0.587 | 0.605 |
| POD活性POD activity | 0.053 | 0.044 | 0.062 | 0.025 | 0.024 | 0.020 | 0.968 | 0.955 | 0.916 | 0.797 | 0.808 | 0.810 |
| SOD活性SOD activity | 0.079 | 0.070 | 0.042 | 0.070 | 0.060 | 0.041 | 0.995 | 0.982 | 0.965 | 0.615 | 0.626 | 0.627 |
| PAL活性PAL activity | 0.344 | 0.341 | 0.338 | 0.004 | 0.003 | 0.004 | 0.931 | 0.915 | 0.934 | 0.625 | 0.697 | 0.645 |
| 脯氨酸含量Proline content | 0.031 | 0.045 | 0.041 | 0.046 | 0.043 | 0.044 | 0.984 | 0.983 | 0.989 | 0.569 | 0.570 | 0.575 |
| 可溶性蛋白含量Soluble protein content | 0.070 | 0.067 | 0.071 | 0.035 | 0.034 | 0.037 | 0.974 | 0.978 | 0.875 | 0.467 | 0.461 | 0.477 |
| 可溶性糖含量Soluble sugars content | 0.191 | 0.214 | 0.207 | 0.129 | 0.163 | 0.114 | 0.703 | 0.961 | 0.788 | 0.503 | 0.474 | 0.479 |
超氧阴离子自由基含量 Superoxide anion radical content | 0.969 | 0.942 | 0.922 | 0.875 | 0.886 | 0.884 | 0.528 | 0.521 | 0.521 | 0.074 | 0.056 | 0.043 |
| 丙二醛含量MDA content | 0.961 | 0.871 | 0.956 | 0.875 | 0.878 | 0.927 | 0.594 | 0.548 | 0.465 | 0.143 | 0.144 | 0.122 |
| 隶属函数平均值Subjection average value | 0.678 | 0.648 | 0.650 | 0.467 | 0.461 | 0.473 | 0.617 | 0.564 | 0.561 | 0.238 | 0.224 | 0.234 |
| 排序Rank | 1 | 3 | 2 | 8 | 9 | 7 | 4 | 5 | 6 | 10 | 12 | 11 |
| [1] | Hamoud Y A, Saleem T, Zia-ur-Rehman M, et al. Synergistic effect of biochar with gypsum, lime, and farm manure on the growth and tolerance in rice plants under different salt-affected soils. Chemosphere, 2024, 360: 142357. |
| [2] | Jaffar M T, Chang W, Zhang J, et al. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. Journal of Environmental Management, 2024, 363: 121418. |
| [3] | Zhang K Y. Effects of saline-alkali stress on ecological stoichiometric characteristics of manganese and zinc in Leymus chinensis and implications for ecological restoration. Changchun: Jinlin University, 2024. |
| 张可依. 盐碱胁迫对羊草锰锌生态化学计量特征的影响及生态修复启示. 长春: 吉林大学, 2024. | |
| [4] | Cong S. Effects of different amelioration techniques on soil saline-alkali characteristics in Songnen Plain. Beijing: University of Chinese Academy of Sciences, 2022. |
| 丛山. 不同改良技术对松嫩平原盐碱地土壤盐碱特征的影响. 北京: 中国科学院大学, 2022. | |
| [5] | Chebotar V K, Chizhevskaya E P, Khonina O V, et al. Biotechnological potential of galophytes and their microbiomes for agriculture in Russia and Kazakhstan. Russian Journal of Plant Physiology, 2023, 70(8): 183. |
| [6] | Elmeknassi M, Elghali A, de Carvalho H W P, et al. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Science of The Total Environment, 2024, 921: 171087. |
| [7] | Zriba Z, Karbout N, Azaiez F E B, et al. Effect of different soil amendments on irrigation and crop yields in the oases of southern Tunisia. Emirates Journal of Food and Agriculture, 2023, 35(4): 297-304. |
| [8] | Yuan X L, Gao H, Li L, et al. Effects of microbial inoculants on crop yield and quality in saline-alkali land. New Farmer, 2024(1): 87-89. |
| 袁喜丽, 高慧, 李磊, 等. 微生物菌剂对盐碱地农作物产量与品质的影响研究. 新农民, 2024(1): 87-89. | |
| [9] | Zhang M X, Xu Y L. Screening of saline-alkali tolerant rhizosphere promoting bacteria. Agriculture and Technology, 2025, 45(1): 113-117. |
| 张梦雪, 许永利. 耐盐碱根际促生菌的筛选. 农业与技术, 2025, 45(1): 113-117. | |
| [10] | Zhang X L, Wang G L, Chang F D, et al. Effects of biological inoculants on physicochemical properties and microbial flora of rhizosphere saline soil. Journal of Ecological Environment, 2022, 31(10): 1984-1992. |
| 张晓丽, 王国丽, 常芳弟, 等. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响. 生态环境学报, 2022, 31(10): 1984-1992. | |
| [11] | Dong F X. The mechanism of arbuscular mycorrhizal fungi enhancing saline-alkali tolerance of Populus×xiaohei. Yangling: Northwest A & F University, 2023. |
| 董奉鑫. 丛枝菌根真菌增强小黑杨盐碱耐受性机制研究. 杨凌: 西北农林科技大学, 2023. | |
| [12] | Wang Z H, Liu Y J, Jin Y, et al. Effects of arbuscular mycorrhizal fungi inoculation and association with Chloris virgata on growth and physiological characteristics of Leymus chinensis under salt stress. Chinese Journal of Grassland, 2024, 46(6): 22-35. |
| 王子贺, 刘雅洁, 金蕴, 等. 盐胁迫下丛枝菌根真菌接种和虎尾草伴生对羊草生长和生理特性的影响. 中国草地学报, 2024, 46(6): 22-35. | |
| [13] | Zhang C N, Zhang R F, Wang H, et al. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops: a review. Bulletin of Microbiology, 2020, 47(11): 3880-3891. |
| 张春楠, 张瑞芳, 王红, 等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展. 微生物学通报, 2020, 47(11): 3880-3891. | |
| [14] | Pan Y, Zhang H, Li X, et al. Effects of salt-tolerant probiotic bacteria and their compound insects on growth, physiology and biochemistry of Pennisetum chinensis under salt stress. Guizhou Agricultural Sciences, 2023, 51(7): 39-49. |
| 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响. 贵州农业科学, 2023, 51(7): 39-49. | |
| [15] | Wang S R. A study on the adaptability of fourteen economic plants to soil salinization in the Songnen Plain. Beijing: Chinese Academy of Sciences, 2024. |
| 王世睿. 十四种经济植物对松嫩平原土壤盐碱化的适应性研究. 北京: 中国科学院大学, 2024. | |
| [16] | Kong L, Gong X W, Zhang X L, et al. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition, 2020, 43(5): 682-698. |
| [17] | Li X J, Gong J C, Li X X, et al. Effects of legume-grass mixtures on soil arbuscular mycorrhizal fungi community and plant nitrogen uptake. Chinese Journal of Grassland, 2023, 45(7): 71-80. |
| 李香君, 弓晋超, 李旭旭, 等. 豆禾混播对丛枝菌根真菌群落及氮素吸收的影响. 中国草地学报, 2023, 45(7): 71-80. | |
| [18] | Muneer M A, Chen X, Munir M Z, et al. Interplant transfer of nitrogen between C3 and C4 plants through common mycorrhizal networks under different nitrogen availability. Journal of Plant Ecology, 2023, 16(2): 763-775. |
| [19] | Wipf D, Krajinski F, Van T D, et al. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223: 1127-1142. |
| [20] | Yang G W, Liu N, Yang X, et al. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community. Acta Prataculturae Sinica, 2015, 24(6): 188-203. |
| 杨高文, 刘楠, 杨鑫, 等. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响. 草业学报, 2015, 24(6): 188-203. | |
| [21] | Ding C, Zhao Y, Zhang Q, et al. Cadmium transfer between maize and soybean plants via common mycorrhizal networks. Ecotoxicology and Environmental Safety, 2022, 232: 113273. |
| [22] | Merckx V S F T, Gomes S I F, Wang D, et al. Mycoheterotrophy in the wood-wide web. Nature Plants, 2024, 10(5): 710-718. |
| [23] | Cao B F, Jiang H X, Liu L, et al. Research progress on mechanism of arbuscular common mycorrhizal networks in plant-plant interactions. Journal of Applied Ecology, 2021, 32(9): 3385-3396. |
| 曹本福, 姜海霞, 刘丽, 等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展. 应用生态学报, 2021, 32(9): 3385-3396. | |
| [24] | MacColl K A, Tosi M, Chagnon P L, et al. Prairie restoration promotes the abundance and diversity of mutualistic arbuscular mycorrhizal fungi. Ecological Applications, 2024, 34(5): e2981. |
| [25] | Arai M, Ikazaki K, Terajima Y, et al. Effects of organic amendment on earthworm density and biomass in sugarcane fields with different soil pH. European Journal of Soil Biology, 2024, 122: 103645. |
| [26] | Bertagnoli B G P, Pimenta J A, Colozzi Filho A, et al. Occurrence of plant suppression gradients through common mycorrhizal networks across ecological groups during successional dynamics. Pedobiologia, 2024, 107: 151006. |
| [27] | Ma Q, Wang H, Wu E, et al. Comprehensive physiological, transcriptomic, and metabolomic analysis of the response of Panicum miliaceum L. roots to alkaline stress. Land Degradation & Development, 2023, 34(10): 2912-2930. |
| [28] | Lu X Y, Liu Y J, Bai C X, et al. Effects of Chloris virgata and arbuscular mycorrhizal fungi on the growth of Leymus chinensis under alkali stress. Acta Prataculturae Sinica, 2024, 33(11): 69-83. |
| 卢晓瑜, 刘雅洁, 白彩霞, 等. 虎尾草伴生和丛枝菌根真菌对碱胁迫下羊草生长的影响. 草业学报, 2024, 33(11): 69-83. | |
| [29] | Qiu L X, Xu K X, Guan D X, et al. Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice. Journal of Environmental Management, 2025, 373: 124005. |
| [30] | Gong M Q, Wang F Z, Chen Y, et al. Mycorrhizal dependency and inoculant effects on the growth of Betula alnoides seedlings. Journal of Forestry Research, 2000, 18(2): 101-104. |
| [31] | Li Y, Xu J, Hu J, et al. Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil. International Journal of Environmental Research and Public Health, 2022, 19(9): 5029. |
| [32] | Li Y L, Ma R, Ma Y J, et al. Effects of salt and drought stresses on seeds germination and seedlings growth of Kalidium foliatum. Acta Agrestia Sinica, 2023, 31(12): 3715-3723. |
| 李亚莉, 马瑞, 马彦军, 等. 盐旱胁迫对盐爪爪种子萌发及幼苗生长的影响. 草地学报, 2023, 31(12): 3715-3723. | |
| [33] | Deng Y F, Xiao S P, Liu X W, et al. Comprehensive evaluation of early-maturing cotton F1 materials by principal component analysis and membership function method. Subtropical Agriculture Research, 2022, 18(1): 1-6. |
| 邓艳凤, 肖水平, 刘新稳, 等. 主成分分析和隶属函数法对早熟棉F1代材料的综合评价. 亚热带农业研究, 2022, 18(1): 1-6. | |
| [34] | Lu J Y, Tian H, Xiong J B, et al. A multi-trait evaluation of cold resistance of 14 native Pennisetum alopecuroides germplasm lines at the seedling stage. Acta Prataculturae Sinica, 2024, 33(8): 98-111. |
| 陆姣云, 田宏, 熊军波, 等. 14份乡土狼尾草材料幼苗的耐冷性综合评价. 草业学报, 2024, 33(8): 98-111. | |
| [35] | Xu J M, Zhou Y H, Gao R M, et al. Effect of arbuscular mycorrhizal fungi on absorption of mineral elements of Taraxacum mongolicum under salt stress. Journal of Shanxi Agricultural Sciences, 2022, 50(2): 206-212. |
| 徐嘉美, 周昀晖, 高璿濛, 等. 盐胁迫下丛枝菌根真菌对蒲公英矿质元素吸收的影响. 山西农业科学, 2022, 50(2): 206-212. | |
| [36] | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. |
| 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. | |
| [37] | Duan H X, Luo C L, Shi Q, et al. Research progress in the effects of arbuscular mycorrhizal fungi on plant-soil systems. Acta Ecologica Sinica, 2025, 45(1): 475-491. |
| 段海霞, 罗崇亮, 师茜, 等. 丛枝菌根真菌对植物-土壤系统的影响研究进展. 生态学报, 2025, 45(1): 475-491. | |
| [38] | Lu J N. The effects of arbuscular mycorrhizal fungi on the growth of three grassland plants. Baoding: Hebei Agricultural University, 2023. |
| 鲁佳男. 丛枝菌根真菌对3种草地植物生长的影响. 保定: 河北农业大学, 2023. | |
| [39] | Zhang H, Zhong X, Li S Z, et al. Responses of genes involved in mycorrhizal symbiosis to arbuscular mycorrhizal colonization in different wheat cultivars. Soil and Fertilizer Sciences in China, 2022(11): 199-211. |
| 张慧, 钟雄, 李素珍, 等. 菌根共生参与基因对不同品种小麦菌根侵染的响应. 中国土壤与肥料, 2022(11): 199-211. | |
| [40] | Holátko J, Brtnický M, Kučerík J, et al. Glomalin truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 2021, 153: 108116. |
| [41] | Gispert M, Phang C, Carrasco-Barea L. The role of soil as a carbon sink in coastal salt-marsh and agropastoral systems at La Pletera, NE Spain. Catena, 2020, 185: 104331. |
| [42] | Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. |
| 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643. | |
| [43] | Zhang S J, Chen X L, Qi J F, et al. Remediation of vanadium contaminated soil based on arbuscular mycorrhiza. Ecology and Environmental Sciences, 2025, 34(4): 631-641. |
| 张淑娟, 陈昕龙, 亓静凡, 等. 基于丛枝菌根的钒污染土壤修复. 生态环境学报, 2025, 34(4): 631-641. | |
| [44] | Yang X X, Li R J, Cui Z L, et al. Study on the characteristics of changes in glomalin-related soil proteins during the degradation and restoration of alpine meadow. Qinghai Technology, 2025, 32(1): 20-29. |
| 杨晓璇, 李润杰, 崔子龙, 等. 高寒草甸退化与恢复过程球囊霉素相关土壤蛋白变化特征研究. 青海科技, 2025, 32(1): 20-29. | |
| [45] | Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333(6044): 880-882. |
| [46] | Gong Y B, Hu J H, Hu D M, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological traits of Pyrus betulifolia under salt-alkali stress. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(8): 1320-1329. |
| 龚远博, 胡吉怀, 胡丁猛, 等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响. 西北植物学报, 2022, 42(8): 1320-1329. | |
| [47] | Peng Z C, Du H L, Wang M, et al. Research on AMF regulation of cotton growth and ion balance under salt alkali stress. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41. |
| 彭梓程, 杜洪力, 王铭, 等. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究. 中国农业科技导报, 2025, 27(2): 33-41. | |
| [48] | Liu Z N, Guo S X, Li W. Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii. Acta Prataculturae Sinica, 2017, 26(11): 85-93. |
| 刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响. 草业学报, 2017, 26(11): 85-93. | |
| [49] | Awaydul A, Zhu W, Yuan Y, et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza, 2019, 29: 29-38. |
| [50] | Zhang H, Wang X, Gao Y, et al. Short-term N transfer from alfalfa to maize is dependent more on arbuscular mycorrhizal fungi than root exudates in N deficient soil. Plant and Soil, 2020, 446: 23-41. |
| [51] | Russell M, Řezáčová V, Miller K S, et al. Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. Mycorrhiza, 2025, 35(1): 1-14. |
| [52] | Bian A N, Lin M, Wang W Q, et al. Effects of root salt stress on growth and allocation of mineral elements in halophyte and glycophyte seedlings. Journal of Tropical and Subtropical Botany, 2015, 23(4): 405-412. |
| [53] | Chen X, Wu X L, Liu S R, et al. Effects of AMF on photosynthetic characteristics and gene expressions of tea plants under drought stress. Horticultural Plant Journal, 2024, 51(10): 2358-2370. |
| 陈鑫, 邬晓龙, 刘升锐, 等. 干旱胁迫下AMF对茶树光合特性及其基因表达的影响. 园艺学报, 2024, 51(10): 2358-2370. | |
| [54] | Qiao X, Guo X, Li A. Common mycorrhizal networks contribute to overyielding in faba bean/coix intercropping systems. Agronomy Journal, 2020, 112(4): 2598-2607. |
| [55] | Zhang X. Physiological effects of boron deficiency and alkali stress on Pyrus calleryana and Pyrus betulifolia. Yangling: Northwest A & F University, 2024. |
| 张旭. 缺硼及碱胁迫对豆梨和杜梨的生理影响. 杨凌: 西北农林科技大学, 2024. | |
| [56] | Fahad S, Bajwa A A, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 2017, 8: 1147. |
| [57] | Wang Z H, Huang S Q, Zou F, et al. Effects of temperature and NaCl on seed germination and seedling antioxidant enzyme activities of sweet sorghum. Journal of Agricultural Science and Technology, 2020, 22(9): 42-51. |
| 王志恒, 黄思麒, 邹芳, 等. 温度与NaCl处理对甜高粱种子萌发及幼苗抗氧化酶活性的影响. 中国农业科技导报, 2020, 22(9): 42-51. | |
| [58] | Zhang W Z, Gu L J, Duan T Y. Research progress on the mechanism of AM fungi for improving plant stress resistance. Pratacultural Science, 2018, 35(3): 491-507. |
| 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制. 草业科学, 2018, 35(3): 491-507. |
| [1] | Liang GUO, Yu-tong HU, Yu LIAO, Cheng-yu GONG, Xiao-yan YANG, Shang-qi GUAN, Cheng-qi JU. The impact of phosphorus addition and arbuscular mycorrhizal fungi on root architecture and nutrient utilization in Leymus chinensis [J]. Acta Prataculturae Sinica, 2025, 34(8): 165-178. |
| [2] | Yu-wan WANG, Ling-yun LIU, Yi-di GUO, Xi-feng FAN, Yue-sen YUE, Na MU, Guo-zeng XIAO, Ke TENG. Efficient transformation of Pennisetum alopecuroides using pollen transfected by DNA-coated magnetic nanoparticles [J]. Acta Prataculturae Sinica, 2025, 34(12): 183-194. |
| [3] | Ran ZHANG, Chen-zhuo LIU, Feng YUAN, Ya-ling LIU, Di DONG, Si-ning WANG, Bo-kun ZOU, Xiao-xia LI. Ion balance mechanism and transcriptome analysis of Elytrigia elongata in response to NaHCO3 stress [J]. Acta Prataculturae Sinica, 2025, 34(10): 174-186. |
| [4] | Xiang-qi BU, Shan-shan LI, Ying-na DUAN, Ying-chun WANG, Lin-lin ZHENG. Effects of nitric oxide on stress resistance and feed quality of Suaeda salsa under saline-alkali stress [J]. Acta Prataculturae Sinica, 2024, 33(9): 60-69. |
| [5] | Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Xin-jiang WU, Yang LIU, He-shan ZHANG. A multi-trait evaluation of cold resistance of 14 native Pennisetum alopecuroides germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2024, 33(8): 98-111. |
| [6] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
| [7] | Hai-xia DUAN, Qian SHI, Sheng-ping KANG, Hai-qing GOU, Chong-liang LUO, You-cai XIONG. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants [J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182. |
| [8] | Xin-yu CHENG, Ji-lian WANG, Mairiyangu·Yasheng, Ming-yuan LI. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum [J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121. |
| [9] | Lu-ping MA, Zhao-yong SHI, Wen-jing WEI, Shuang YANG. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology [J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109. |
| [10] | Xiao-yu LU, Ya-jie LIU, Cai-xia BAI, Jin-hua LI, Zi-he WANG, Chun-xue YANG. Effects of Chloris virgata and arbuscular mycorrhizal fungi on the growth of Leymus chinensis under alkali stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 69-83. |
| [11] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
| [12] | Yan-lan ZHAO, Xin-yi ZENG, Jin-chao GONG, Xiang-jun LI, Xu-xu LI, Shan LIU, Xin-quan ZHANG, Ji-qiong ZHOU. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens [J]. Acta Prataculturae Sinica, 2023, 32(3): 179-188. |
| [13] | Jian-xin LIU, Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI. Effects of exogenous hydrogen sulfide on amino acid metabolism in naked oat leaves under saline-alkali stress [J]. Acta Prataculturae Sinica, 2023, 32(2): 119-130. |
| [14] | Hong-jian WEI, Wen-yuan HE, Yue WANG, Ming TANG, Hui CHEN. The effects of arbuscular mycorrhizal fungi and melatonin on the heat tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2023, 32(12): 126-138. |
| [15] | Rui-qiang LI, Yu-xiang WANG, Yu-lan SUN, Lei ZHANG, Ai-ping CHEN. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties [J]. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||