Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (8): 48-60.DOI: 10.11686/cyxb2022483
Previous Articles Next Articles
Lin-zhi LI1,2(), De-gang ZHANG1(), Yuan MA3, Zhu-zhu LUO2, Dong LIN1, Long HAI2, Lan-ge BAI2
Received:
2022-12-13
Revised:
2023-01-10
Online:
2023-08-20
Published:
2023-06-16
Contact:
De-gang ZHANG
Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation[J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60.
退化程度 Degradation | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant species | 植被盖度Vegetation coverage (%) |
---|---|---|---|---|---|
未退化Non degraded (ND) | 3008.3 | 37°13′05″ N | 102°44′11″ E | 珠芽蓼、垂穗披碱草、线叶嵩草Polygonum viviparum,Elymus dahuricus,Kobresia capillifolia | 98~100 |
轻度退化Light degraded (LD) | 2940.0 | 37°11′58″ N | 102°46′17″ E | 线叶嵩草、矮生嵩草、扁蓿豆K. capillifolia,Kobresia humilus,Trigonella ruthenica | 82~85 |
中度退化Moderate degraded (MD) | 2869.8 | 37°11′42″ N | 102°47′01″ E | 矮生嵩草、线叶嵩草、扁蓿豆K. humilus,K. capillifolia,T. ruthenica | 70~78 |
重度退化Severely degraded (SD) | 2893.6 | 37°12′05″ N | 102°45′59″ E | 乳白香青、矮生嵩草Anaphalis lacteal,K. humilus | 32~38 |
Table 1 Basic condition of plots
退化程度 Degradation | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant species | 植被盖度Vegetation coverage (%) |
---|---|---|---|---|---|
未退化Non degraded (ND) | 3008.3 | 37°13′05″ N | 102°44′11″ E | 珠芽蓼、垂穗披碱草、线叶嵩草Polygonum viviparum,Elymus dahuricus,Kobresia capillifolia | 98~100 |
轻度退化Light degraded (LD) | 2940.0 | 37°11′58″ N | 102°46′17″ E | 线叶嵩草、矮生嵩草、扁蓿豆K. capillifolia,Kobresia humilus,Trigonella ruthenica | 82~85 |
中度退化Moderate degraded (MD) | 2869.8 | 37°11′42″ N | 102°47′01″ E | 矮生嵩草、线叶嵩草、扁蓿豆K. humilus,K. capillifolia,T. ruthenica | 70~78 |
重度退化Severely degraded (SD) | 2893.6 | 37°12′05″ N | 102°45′59″ E | 乳白香青、矮生嵩草Anaphalis lacteal,K. humilus | 32~38 |
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 38.53±9.40aA | 10.54±0.61cA | 5.97±0.67cA | 10.47±1.29cAB | 10.41±1.65cAB | 24.09±6.40bC |
LD | 19.81±4.37bB | 3.92±0.20dB | 4.18±0.45dB | 15.46±4.81bcA | 11.45±2.43cdA | 45.18±6.10aB | |
MD | 8.82±4.45bcBC | 10.08±2.20bcA | 6.20±0.36cA | 9.93±0.50bcB | 12.23±1.81bA | 52.74±4.69aAB | |
SD | 7.04±3.03cC | 11.97±0.39bA | 5.21±0.73cAB | 6.79±1.31cB | 6.70±1.42cB | 62.29±1.17aA | |
10~20 cm | ND | 65.18±4.29aA | 6.61±0.08cB | 2.82±0.24cC | 4.70±0.68cB | 4.98±0.61cB | 15.72±2.80bB |
LD | 45.00±1.97aB | 11.90±0.57cA | 5.85±0.16eA | 8.71±0.54dA | 7.84±0.71dA | 20.69±0.01bB | |
MD | 41.70±4.82aB | 9.82±1.25cA | 3.46±0.31dB | 4.50±1.39dB | 3.73±0.47dC | 18.73±0.47bB | |
SD | 39.61±3.13aB | 9.63±2.45bA | 2.96±0.31cBC | 3.44±0.16cB | 3.38±0.66cC | 40.98±5.06aA | |
20~30 cm | ND | 61.11±7.02aA | 9.15±0.08cB | 3.42±0.53cA | 4.95±1.36cA | 5.06±1.45cA | 16.30±3.61bD |
LD | 51.36±4.02aB | 10.84±0.01cA | 3.51±0.14dA | 4.97±0.52dA | 4.87±0.58dA | 24.45±2.79bC | |
MD | 45.75±2.08aB | 9.40±0.66cB | 2.52±0.26dB | 3.55±0.23dAB | 3.94±0.20dAB | 34.84±1.27bB | |
SD | 45.58±1.58aB | 7.59±1.14cC | 2.08±0.21dB | 2.25±0.29dB | 2.55±0.28dB | 39.95±0.98bA |
Table 2 Composition of soil aggregates in different degrees of degradation (%)
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 38.53±9.40aA | 10.54±0.61cA | 5.97±0.67cA | 10.47±1.29cAB | 10.41±1.65cAB | 24.09±6.40bC |
LD | 19.81±4.37bB | 3.92±0.20dB | 4.18±0.45dB | 15.46±4.81bcA | 11.45±2.43cdA | 45.18±6.10aB | |
MD | 8.82±4.45bcBC | 10.08±2.20bcA | 6.20±0.36cA | 9.93±0.50bcB | 12.23±1.81bA | 52.74±4.69aAB | |
SD | 7.04±3.03cC | 11.97±0.39bA | 5.21±0.73cAB | 6.79±1.31cB | 6.70±1.42cB | 62.29±1.17aA | |
10~20 cm | ND | 65.18±4.29aA | 6.61±0.08cB | 2.82±0.24cC | 4.70±0.68cB | 4.98±0.61cB | 15.72±2.80bB |
LD | 45.00±1.97aB | 11.90±0.57cA | 5.85±0.16eA | 8.71±0.54dA | 7.84±0.71dA | 20.69±0.01bB | |
MD | 41.70±4.82aB | 9.82±1.25cA | 3.46±0.31dB | 4.50±1.39dB | 3.73±0.47dC | 18.73±0.47bB | |
SD | 39.61±3.13aB | 9.63±2.45bA | 2.96±0.31cBC | 3.44±0.16cB | 3.38±0.66cC | 40.98±5.06aA | |
20~30 cm | ND | 61.11±7.02aA | 9.15±0.08cB | 3.42±0.53cA | 4.95±1.36cA | 5.06±1.45cA | 16.30±3.61bD |
LD | 51.36±4.02aB | 10.84±0.01cA | 3.51±0.14dA | 4.97±0.52dA | 4.87±0.58dA | 24.45±2.79bC | |
MD | 45.75±2.08aB | 9.40±0.66cB | 2.52±0.26dB | 3.55±0.23dAB | 3.94±0.20dAB | 34.84±1.27bB | |
SD | 45.58±1.58aB | 7.59±1.14cC | 2.08±0.21dB | 2.25±0.29dB | 2.55±0.28dB | 39.95±0.98bA |
因素 Variation source | 自由度 Degree of freedom | 土壤有机碳 Soil organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
粒级Aggregate size (A) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
退化程度Degree of degradation (D) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
土壤深度Soil depth (L) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×退化程度A×D | 15 | <0.001 | 0.477 | 0.014 | 0.349 | 0.017 | 0.320 |
退化程度×土壤深度D×L | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×土壤深度A×L | 10 | <0.001 | <0.001 | 0.230 | 0.149 | <0.001 | <0.001 |
粒级×土壤深度×退化程度A×L×D | 30 | <0.001 | 0.520 | <0.001 | 0.258 | 0.027 | 0.029 |
Table 3 Three-way AVOVA for soil aggregate organic carbon,total nitrogen,total phosphorus content and C/N,C/P,N/P
因素 Variation source | 自由度 Degree of freedom | 土壤有机碳 Soil organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
粒级Aggregate size (A) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
退化程度Degree of degradation (D) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
土壤深度Soil depth (L) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×退化程度A×D | 15 | <0.001 | 0.477 | 0.014 | 0.349 | 0.017 | 0.320 |
退化程度×土壤深度D×L | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×土壤深度A×L | 10 | <0.001 | <0.001 | 0.230 | 0.149 | <0.001 | <0.001 |
粒级×土壤深度×退化程度A×L×D | 30 | <0.001 | 0.520 | <0.001 | 0.258 | 0.027 | 0.029 |
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 16.39±3.10aA | 14.25±0.85aA | 16.15±0.28aA | 15.97±1.33aA | 15.29±0.32aA | 14.18±1.00aA |
LD | 14.13±0.27abAB | 13.44±0.75bcAB | 12.96±0.39cdB | 13.79±0.54bcBC | 14.87±0.73aA | 12.36±0.48dB | |
MD | 13.35±0.49bcAB | 12.66±0.68cB | 14.87±1.47abA | 15.50±1.11aAB | 15.53±0.91aA | 13.24±1.21bcAB | |
SD | 12.76±0.72cB | 11.13±0.20cC | 11.63±0.37cB | 12.42±0.28abC | 12.91±0.41aB | 11.87±0.10bcB | |
10~20 cm | ND | 11.58±0.93aA | 12.07±1.21aA | 12.56±1.31aA | 12.36±0.99aA | 13.54±1.10aA | 12.91±0.84aA |
LD | 12.77±1.86aA | 11.12±0.47aAB | 11.47±1.57aA | 11.52±0.27aA | 12.42±0.18aAB | 11.03±0.31aB | |
MD | 11.67±0.36aA | 10.84±0.76aAB | 11.27±0.11aA | 11.38±0.31aA | 11.31±1.15aB | 11.05±0.93aB | |
SD | 10.90±0.50bcA | 10.49±0.28cB | 11.03±0.69abcA | 11.58±0.50abA | 11.85±0.23aB | 11.09±0.15abcB | |
20~30 cm | ND | 12.34±0.78aA | 12.59±0.78aA | 13.00±0.78aA | 12.67±0.54aA | 12.49±0.61aA | 12.44±1.57aA |
LD | 11.06±0.68aA | 11.13±0.27aB | 11.54±0.61aB | 11.10±0.63aB | 11.89±0.45aA | 11.15±0.38aA | |
MD | 11.36±1.18abA | 11.02±0.36bB | 11.39±0.59abB | 12.14±0.93abAB | 13.78±2.76aA | 11.81±0.88abA | |
SD | 11.00±0.50aA | 11.09±0.93aB | 11.37±0.48aB | 12.12±0.26aAB | 11.81±0.67aA | 11.31±0.88aA |
Table 4 Distribution of C/N in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 16.39±3.10aA | 14.25±0.85aA | 16.15±0.28aA | 15.97±1.33aA | 15.29±0.32aA | 14.18±1.00aA |
LD | 14.13±0.27abAB | 13.44±0.75bcAB | 12.96±0.39cdB | 13.79±0.54bcBC | 14.87±0.73aA | 12.36±0.48dB | |
MD | 13.35±0.49bcAB | 12.66±0.68cB | 14.87±1.47abA | 15.50±1.11aAB | 15.53±0.91aA | 13.24±1.21bcAB | |
SD | 12.76±0.72cB | 11.13±0.20cC | 11.63±0.37cB | 12.42±0.28abC | 12.91±0.41aB | 11.87±0.10bcB | |
10~20 cm | ND | 11.58±0.93aA | 12.07±1.21aA | 12.56±1.31aA | 12.36±0.99aA | 13.54±1.10aA | 12.91±0.84aA |
LD | 12.77±1.86aA | 11.12±0.47aAB | 11.47±1.57aA | 11.52±0.27aA | 12.42±0.18aAB | 11.03±0.31aB | |
MD | 11.67±0.36aA | 10.84±0.76aAB | 11.27±0.11aA | 11.38±0.31aA | 11.31±1.15aB | 11.05±0.93aB | |
SD | 10.90±0.50bcA | 10.49±0.28cB | 11.03±0.69abcA | 11.58±0.50abA | 11.85±0.23aB | 11.09±0.15abcB | |
20~30 cm | ND | 12.34±0.78aA | 12.59±0.78aA | 13.00±0.78aA | 12.67±0.54aA | 12.49±0.61aA | 12.44±1.57aA |
LD | 11.06±0.68aA | 11.13±0.27aB | 11.54±0.61aB | 11.10±0.63aB | 11.89±0.45aA | 11.15±0.38aA | |
MD | 11.36±1.18abA | 11.02±0.36bB | 11.39±0.59abB | 12.14±0.93abAB | 13.78±2.76aA | 11.81±0.88abA | |
SD | 11.00±0.50aA | 11.09±0.93aB | 11.37±0.48aB | 12.12±0.26aAB | 11.81±0.67aA | 11.31±0.88aA |
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 84.13±4.03aA | 79.01±4.46aAB | 84.26±8.01aB | 86.69±10.21aBC | 88.72±4.28aB | 79.16±0.71aB |
LD | 90.34±2.84bcA | 87.43±6.57cA | 88.03±7.54cB | 98.45±4.16bB | 110.09±3.77aA | 94.67±4.20bcA | |
MD | 83.59±12.54cA | 86.30±9.33cA | 104.76±9.51abA | 113.46±4.94aA | 109.96±5.33aA | 94.59±3.84bcA | |
SD | 69.26±1.28cdB | 68.52±1.29dB | 67.61±2.93dC | 78.29±4.18abC | 84.42±4.86aB | 74.85±1.99bcB | |
10~20 cm | ND | 59.66±2.76aC | 55.77±5.74aB | 60.44±7.48aB | 64.01±6.08aBC | 63.12±4.35aC | 62.37±5.48aB |
LD | 79.56±4.96aA | 89.67±9.51aA | 81.62±8.72aA | 81.68±2.54aA | 87.66±4.12aA | 77.68±7.75aA | |
MD | 68.55±2.66aB | 66.29±2.80aB | 69.96±4.62aAB | 69.64±2.27aB | 74.13±4.77aB | 69.32±6.77aAB | |
SD | 57.68±1.19cC | 55.82±1.69cB | 59.89±4.14bcB | 62.53±1.81abC | 64.55±2.39aC | 62.84±1.96abB | |
20~30 cm | ND | 55.46±3.87aBC | 53.71±5.37aB | 55.42±2.83aB | 58.14±4.81aB | 58.70±2.50aB | 54.90±6.76aBC |
LD | 67.20±1.63aA | 67.98±0.78aA | 66.28±2.99aA | 70.11±5.17aA | 73.56±3.44aA | 67.21±3.74aA | |
MD | 58.73±4.32aB | 52.87±2.45aB | 58.44±2.43aB | 59.18±5.25aB | 69.66±7.27aA | 59.90±5.57aAB | |
SD | 52.09±1.28abC | 51.14±2.11abB | 50.19±2.14abC | 51.14±0.84abB | 53.85±3.58aB | 49.03±3.30bC |
Table 5 Distribution of C/P in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 84.13±4.03aA | 79.01±4.46aAB | 84.26±8.01aB | 86.69±10.21aBC | 88.72±4.28aB | 79.16±0.71aB |
LD | 90.34±2.84bcA | 87.43±6.57cA | 88.03±7.54cB | 98.45±4.16bB | 110.09±3.77aA | 94.67±4.20bcA | |
MD | 83.59±12.54cA | 86.30±9.33cA | 104.76±9.51abA | 113.46±4.94aA | 109.96±5.33aA | 94.59±3.84bcA | |
SD | 69.26±1.28cdB | 68.52±1.29dB | 67.61±2.93dC | 78.29±4.18abC | 84.42±4.86aB | 74.85±1.99bcB | |
10~20 cm | ND | 59.66±2.76aC | 55.77±5.74aB | 60.44±7.48aB | 64.01±6.08aBC | 63.12±4.35aC | 62.37±5.48aB |
LD | 79.56±4.96aA | 89.67±9.51aA | 81.62±8.72aA | 81.68±2.54aA | 87.66±4.12aA | 77.68±7.75aA | |
MD | 68.55±2.66aB | 66.29±2.80aB | 69.96±4.62aAB | 69.64±2.27aB | 74.13±4.77aB | 69.32±6.77aAB | |
SD | 57.68±1.19cC | 55.82±1.69cB | 59.89±4.14bcB | 62.53±1.81abC | 64.55±2.39aC | 62.84±1.96abB | |
20~30 cm | ND | 55.46±3.87aBC | 53.71±5.37aB | 55.42±2.83aB | 58.14±4.81aB | 58.70±2.50aB | 54.90±6.76aBC |
LD | 67.20±1.63aA | 67.98±0.78aA | 66.28±2.99aA | 70.11±5.17aA | 73.56±3.44aA | 67.21±3.74aA | |
MD | 58.73±4.32aB | 52.87±2.45aB | 58.44±2.43aB | 59.18±5.25aB | 69.66±7.27aA | 59.90±5.57aAB | |
SD | 52.09±1.28abC | 51.14±2.11abB | 50.19±2.14abC | 51.14±0.84abB | 53.85±3.58aB | 49.03±3.30bC |
土层 Soil depth | 处理 Treatment | 粒级 Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 5.24±0.82aA | 5.55±0.13aC | 5.22±0.58aB | 5.43±0.51aC | 5.80±0.16aC | 5.60±0.36aB |
LD | 6.39±0.25cA | 6.50±0.16cAB | 6.79±0.47bcA | 7.14±0.07abAB | 7.41±0.36aA | 7.67±0.36aA | |
MD | 6.26±0.92aA | 6.81±0.54aA | 7.05±0.27aA | 7.36±0.83aA | 7.09±0.15aAB | 7.18±0.66aA | |
SD | 5.44±0.27cA | 6.16±0.16abB | 5.81±0.18bcB | 6.30±0.22abBc | 6.54±0.50aB | 6.31±0.20abB | |
10~20 cm | ND | 5.17±0.22aC | 4.62±0.01aC | 4.81±0.32aD | 5.20±0.59aC | 4.68±0.40aC | 4.84±0.37aC |
LD | 6.29±0.58bA | 8.07±0.83aA | 7.14±0.23bA | 7.10±0.28bA | 7.06±0.24bA | 7.04±0.51bA | |
MD | 5.88±0.06bAB | 6.13±0.18abB | 6.21±0.45abB | 6.12±0.32abB | 6.57±0.28aA | 6.28±0.36abB | |
SD | 5.30±0.18aBC | 5.33±0.25aBC | 5.43±0.16aC | 5.41±0.32aC | 5.45±0.16aB | 5.66±0.12aB | |
20~30 cm | ND | 4.51±0.46aB | 4.27±0.37aB | 4.27±0.36aC | 4.59±0.21aB | 4.70±0.03aB | 4.42±0.27aC |
LD | 6.10±0.53aA | 6.11±0.13aA | 5.75±0.04aA | 6.33±0.63aA | 6.19±0.31aA | 6.03±0.40aA | |
MD | 5.18±0.18aB | 4.81±0.37aB | 5.13±0.06aB | 4.87±0.22aB | 5.12±0.50aB | 5.07±0.34aB | |
SD | 4.74±0.12aB | 4.62±0.21abB | 4.42±0.18bcdC | 4.22±0.14cB | 4.56±0.05abcB | 4.34±0.09cdC |
Table 6 Distribution of N/P in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级 Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 5.24±0.82aA | 5.55±0.13aC | 5.22±0.58aB | 5.43±0.51aC | 5.80±0.16aC | 5.60±0.36aB |
LD | 6.39±0.25cA | 6.50±0.16cAB | 6.79±0.47bcA | 7.14±0.07abAB | 7.41±0.36aA | 7.67±0.36aA | |
MD | 6.26±0.92aA | 6.81±0.54aA | 7.05±0.27aA | 7.36±0.83aA | 7.09±0.15aAB | 7.18±0.66aA | |
SD | 5.44±0.27cA | 6.16±0.16abB | 5.81±0.18bcB | 6.30±0.22abBc | 6.54±0.50aB | 6.31±0.20abB | |
10~20 cm | ND | 5.17±0.22aC | 4.62±0.01aC | 4.81±0.32aD | 5.20±0.59aC | 4.68±0.40aC | 4.84±0.37aC |
LD | 6.29±0.58bA | 8.07±0.83aA | 7.14±0.23bA | 7.10±0.28bA | 7.06±0.24bA | 7.04±0.51bA | |
MD | 5.88±0.06bAB | 6.13±0.18abB | 6.21±0.45abB | 6.12±0.32abB | 6.57±0.28aA | 6.28±0.36abB | |
SD | 5.30±0.18aBC | 5.33±0.25aBC | 5.43±0.16aC | 5.41±0.32aC | 5.45±0.16aB | 5.66±0.12aB | |
20~30 cm | ND | 4.51±0.46aB | 4.27±0.37aB | 4.27±0.36aC | 4.59±0.21aB | 4.70±0.03aB | 4.42±0.27aC |
LD | 6.10±0.53aA | 6.11±0.13aA | 5.75±0.04aA | 6.33±0.63aA | 6.19±0.31aA | 6.03±0.40aA | |
MD | 5.18±0.18aB | 4.81±0.37aB | 5.13±0.06aB | 4.87±0.22aB | 5.12±0.50aB | 5.07±0.34aB | |
SD | 4.74±0.12aB | 4.62±0.21abB | 4.42±0.18bcdC | 4.22±0.14cB | 4.56±0.05abcB | 4.34±0.09cdC |
1 | Shang Z H, Gibb M J, Leiber F, et al. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. The Rangeland Journal, 2014, 36(3): 267-296. |
2 | Zhou R, Hua R, Hua X Z, et al. Temporal and spatial dynamics of plant community structure under the disturbance of plateau pika(Ochotona curzoniae). Grassland and Turf, 2021, 41(1): 1-7. |
周睿, 花蕊, 华铣泽, 等. 高原鼠兔干扰下高寒草甸植物群落结构的时空动态特征. 草原与草坪, 2021, 41(1): 1-7. | |
3 | Zhou H K, Zhao X Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
4 | Li S L, Chen Y J, Guan S Y, et al. Relationships between soil degradation and rangeland degradation. Journal of Arid Land Resources and Environment, 2002, 16(1): 92-95. |
李绍良, 陈有君, 关世英, 等. 土壤退化与草地退化关系的研究. 干旱区资源与环境, 2002, 16(1): 92-95. | |
5 | Rabot E, Wiesmeier M, Schlüter S, et al. Soil structure as an indicator of soil functions: A review. Geoderma, 2018, 314: 122-137. |
6 | Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241(2): 155-176. |
7 | Denef K, Six J, Paustain K, et al. Importance of macroaggregate dynamics in controlling soil carbon stabilization: Short-term effects of physical disturbance induced by dry-wet cycles. Soil Biology and Biochemistry, 2002, 33(15): 2145-2153. |
8 | Jia L Y, Chen Q, Zhang L Z, et al. Effects of grazing and enclosure on physicochemical properties of soil aggregates in Leymus chinensis steppe, Inner Mongolia. Journal of Tianjin Normal University(Natural Science Edition), 2021, 41(6): 40-45. |
贾丽英, 陈清, 张洛梓, 等. 放牧和围封对内蒙古羊草草原土壤团聚体理化性质的影响. 天津师范大学学报(自然科学版), 2021, 41(6): 40-45. | |
9 | Yuan Z Q, Jiang X J, Liu G J, et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena, 2019, 178: 40-48. |
10 | Guggenberger G, Zech W, Thomas R J. Lignin and carbohydrate alteration in particle-size separates of an oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry, 1995, 27(12): 1629-1638. |
11 | Liu X D, Yin G L, Wu J, et al. Effect of organic carbon and total nitrogen distribution in alpine meadow soil aggregates with different nitrogen addition level. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 139-147. |
刘晓东, 尹国丽, 武均, 等. 氮素补充对高寒草甸土壤团聚体有机碳、全氮分布的影响. 农业工程学报, 2015, 31(14): 139-147. | |
12 | Feng R Z, Zhou W H, Long R J, et al. Characteristics of soil physical, chemical and biological properties on degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Chinese Journal of Soil Science, 2010, 41(2): 263-269. |
冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究. 土壤通报, 2010, 41(2): 263-269. | |
13 | Zhang Y, Li P, Liu X, et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 2019, 351: 188-196. |
14 | Jiang R T, Li F C, Shen S T. Effects of degradation of alpine grassland on soil aggregates composition and stability in northwestern Sichuan Province. Research of Soil and Water Conservation, 2018, 25(4): 36-42. |
江仁涛, 李富程, 沈凇涛. 川西北高寒草地退化对土壤团聚体组成及稳定性的影响. 水土保持研究, 2018, 25(4): 36-42. | |
15 | Tang L, Wang S. Dynamics of soil aggregate-related C-N-P stoichiometric characteristics with stand age and soil depth in Chinese fir plantations. Land Degradation & Development, 2022, 33(8): 1290-1306. |
16 | Li W, Zheng Z C, Li T X. Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages. Chinese Journal of Applied Ecology, 2015, 26(1): 9-16. |
李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16. | |
17 | Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Science Society of America Journal, 2000, 64(2): 681-689. |
18 | Zhong Z, Han X, Xu Y, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development, 2019, 30(9): 1070-1082. |
19 | Ma W M, Liu C W, Zhou Q P, et al. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
马文明, 刘超文, 周青平, 等. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响. 草业学报, 2022, 31(1): 57-68. | |
20 | Jia W, Nie F Y, Yang W Q, et al. Ecological stoichiometry of soil carbon, nitrogen, and phosphorus with in soil aggregates of four plantations in the western edge of Sichuan Basin. Chinese Journal of Applied and Environmental Biology, 2018, 24(1): 112-118. |
家伟, 聂富育, 杨万勤, 等. 四川盆地西缘4种人工林土壤团聚体碳氮磷生态化学计量学特征. 应用与环境生物学报, 2018, 24(1): 112-118. | |
21 | Li Q, Qi H, He G X, et al. Response of soil enzymes activities and their stoichometric characteristics to altitude and aspect of alpine meadow in eastern Qilian Mountains. Journal of Soil and Water Conservation, 2022, 36(4): 357-364. |
李强, 漆昊, 何国兴, 等. 东祁连山高寒草甸土壤酶活性及其化学计量特征对海拔和坡向的响应. 水土保持学报, 2022, 36(4): 357-364. | |
22 | Duan C W, Li X L, Chai Y, et al. Eco-stoichiometric characteristics of carbon, nitrogen, and phosphorus in degraded alpine meadow under artificial restoration. Chinese Journal of Grassland, 2022, 44(7): 23-32. |
段成伟, 李希来, 柴瑜, 等. 人工修复下退化高寒草甸碳、氮、磷生态化学计量特征. 中国草地学报, 2022, 44(7): 23-32. | |
23 | Su D X, Zhang Z H, Chen Z Z. Parameters for degradation, sandification and salification of rangelands, GB19377-2003. Beijing: Standards Press of China, 2003. |
苏大学, 张自和, 陈佐忠. 天然草地退化、沙化、盐渍化的分级标准, GB19377-2003. 北京: 中国标准出版社, 2003. | |
24 | Institute of Soil Science, Chinese Academy of Sciences. Soil physicochemical analysis. Shanghai: Shanghai Scientific & Technical Publishers, 1983: 103-104. |
中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1983: 103-104. | |
25 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000: 25-76. |
鲍士旦. 土壤农业化学分析. 北京: 中国农业出版社, 2000: 25-76. | |
26 | Li C, Cao Z, Chang J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow. Catena, 2017, 156: 139-148. |
27 | Egan G, Crawley M J, Fornara D A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Science of the Total Environment, 2018, 613: 810-819. |
28 | Wang Y, Fang N, Zhang F, et al. Effects of erosion on the microaggregate organic carbon dynamics in a small catchment of the Loess Plateau, China. Soil and Tillage Research, 2017, 174: 205-213. |
29 | Qi Z C, Chang P J, Li Y S, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland. Arid Zone Research, 2021, 38(1): 87-94. |
祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响. 干旱区研究, 2021, 38(1): 87-94. | |
30 | Baumert V L, Forstner S J, Zethof J H T, et al. Root-induced fungal growth triggers macroaggregation in forest subsoils. Soil Biology and Biochemistry, 2021, 157: 108244. |
31 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1): 139-151. |
32 | Huang Y Z, Wang S Q, Ye S M. Effects of Cunninghamia lanceolata stand types on the changes of aggregate-related organic carbon and nutrients in surface soil. Chinese Journal of Applied Ecology, 2020, 31(9): 2857-2865. |
黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响. 应用生态学报, 2020, 31(9): 2857-2865. | |
33 | Li W, Shen F, Liu Y, et al. Soil depth determine the ecological stoichiometry of soil aggregates after returning ancient rice terraces to forest. Catena, 2022, 219: 106587. |
34 | Kou T J, Zhu P, Huang S, et al. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil and Tillage Research, 2012, 118: 132-138. |
35 | Osborne B B, Soper F M, Nasto M K, et al. Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology and Biochemistry, 2021, 158: 108247. |
36 | Wan T, Tu W G, Xi H, et al. Study on vegetation and soil characteristics of desertification grassland in north west Sichuan. Acta Agrestia Sinica, 2013, 21(4): 650-657. |
万婷, 涂卫国, 席欢, 等. 川西北不同程度沙化草地植被和土壤特征研究. 草地学报, 2013, 21(4): 650-657. | |
37 | Jastrow J D, Miller R M, Boutton T W. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal, 1996, 60(3): 801-807. |
38 | DeGryze S, Six J, Paustian K, et al. Soil organic carbon pool changes following land-use conversions. Global Change Biology, 2004, 10(7): 1120-1132. |
39 | Zhang Q C, Wang S Q, Huang Y Z, et al. Ecological stoichiometry of soil carbon,nitrogen,and phosphorus within soil aggregates of four plantations in different Cunninghamia lanceolata stand types. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1028-1035. |
张钱春, 王晟强, 黄永珍, 等. 不同杉木林分类型土壤团聚体生态化学计量特征. 西北植物学报, 2021, 41(6): 1028-1035. | |
40 | Adesodun J K, Adeyemi E F, Oyegoke C O. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil and Tillage Research, 2007, 92(1): 190-197. |
41 | Spaccini R, Mbagwu J S C, Igwe C A, et al. Carbohydrates and aggregation in lowland soils of Nigeria as influenced by organic inputs. Soil and Tillage Research, 2004, 75(2): 161-172. |
42 | Wang S Q, Du L, Ye S M. Responses of soil aggregate-associated organic carbon and nutrients to tea cultivation age in southern Guangxi, China. Chinese Journal of Applied Ecology, 2020, 31(3): 837-844. |
王晟强, 杜磊, 叶绍明. 桂南茶园土壤团聚体有机碳和养分对植茶年限的响应. 应用生态学报, 2020, 31(3): 837-844. | |
43 | Ma Y, Li L Z, Zhang D G, et al. Responses of stoichiometric characteristics of rhizosphere soil to the degradation of alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(9): 3039-3048. |
马源, 李林芝, 张德罡, 等. 高寒草甸根际土壤化学计量特征对草地退化的响应. 应用生态学报, 2019, 30(9): 3039-3048. | |
44 | Bimüller C, Kreyling O, Kölbl A, et al. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research, 2016, 160: 23-33. |
45 | Müller M, Oelmann Y, Schickhoff U, et al. Himalayan treeline soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291: 21-32. |
46 | Ma P P. Stability and nutrition of soil aggregates in degraded alpine grassland. Lanzhou: Lanzhou University, 2019. |
马盼盼. 退化高寒草地土壤团聚体稳定性及其养分特征. 兰州: 兰州大学, 2019. | |
47 | Fan Y, Lu S, He M, et al. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma, 2021, 404: 115309. |
48 | Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests. Acta Ecologica Sinica, 2016, 36(21): 6879-6888. |
孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系. 生态学报, 2016, 36(21): 6879-6888. |
[1] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[2] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[3] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[4] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[5] | Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
[6] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[7] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[8] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[9] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[10] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
[11] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
[12] | Xin LI, Xue WEI, Chang-ting WANG, Xiao REN, Peng-fei WU. Effects of exogenous nutrient addition on alpine meadow soil arthropod communities [J]. Acta Prataculturae Sinica, 2022, 31(4): 155-164. |
[13] | Cai-cai SUN, Quan-min DONG, Wen-ting LIU, Bin FENG, Guang SHI, Yu-zhen LIU, Yang YU, Chun-ping ZHANG, Xiao-fang ZHANG, Cai-di LI, Zeng-zeng YANG, Xiao-xia YANG. Effects of grazing modes on the community structure and diversity of soil arthropod in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 62-75. |
[14] | Yuan-yuan DUAN, Jing ZHANG, Ling-ling WANG, Cai-feng LIU, Yi-mo WANG, Su ZHOU, Zheng-gang GUO. Effects of plateau pika on the relationship between plant species diversity and functional diversity in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(11): 25-35. |
[15] | Yong-hong WANG, Li-ming TIAN, Yi AI, Shi-yong CHEN, Tserang-donko MIPAM. Effects of short-term yak grazing on soil fungal communities in an alpine meadow on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(10): 41-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||