Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (10): 74-84.DOI: 10.11686/cyxb2024453
Previous Articles Next Articles
Wen-jun ZHAO1,2(
), Ting LIANG3(
), Jian-song WANG1, Kui LIU1, Yu FENG4, Zheng-xu WANG1, Zi-he XU1, Yun-cong ZHU1, Meng-meng SUN1, Xiang-wei LI1, Li-bo FU5, Mei YIN5, Guo-peng ZHOU6, Hua CHEN5(
), Wei-dong CAO3(
)
Received:2024-11-19
Revised:2024-12-16
Online:2025-10-20
Published:2025-07-11
Contact:
Hua CHEN,Wei-dong CAO
Wen-jun ZHAO, Ting LIANG, Jian-song WANG, Kui LIU, Yu FENG, Zheng-xu WANG, Zi-he XU, Yun-cong ZHU, Meng-meng SUN, Xiang-wei LI, Li-bo FU, Mei YIN, Guo-peng ZHOU, Hua CHEN, Wei-dong CAO. Planting and incorporation of smooth vetch together with reduced nitrogen fertilizer application enhances tobacco yield and soil quality[J]. Acta Prataculturae Sinica, 2025, 34(10): 74-84.
| pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkaline hydrolysable nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|
| 7.10 | 22.1 | 0.90 | 76.1 | 145.0 | 30.7 |
Table 1 Soil basic physical and chemical properties
| pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkaline hydrolysable nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|
| 7.10 | 22.1 | 0.90 | 76.1 | 145.0 | 30.7 |
处理 Treatment | pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) |
|---|---|---|---|---|---|---|---|---|---|
| CK | 6.16±0.10ab | 26.0±1.45cd | 1.66±0.04b | 6.22±0.17d | 55±5.63f | 42.3±0.66b | 380±30.0d | 83±7.54b | 77±39.4d |
| F100 | 6.26±0.03a | 25.5±1.40d | 2.06±0.03a | 7.66±0.48d | 66±13.60ef | 43.3±2.08b | 412±6.0cd | 81±4.51b | 76±19.4d |
| F70G0.5 | 6.00±0.09bc | 28.6±1.43bcd | 2.10±0.04a | 8.62±1.39d | 121±7.04bcd | 44.6±4.65ab | 653±81.9ab | 112±9.33a | 185±12.2bc |
| F70G1.0 | 6.03±0.01bc | 28.9±0.58abcd | 2.06±0.12a | 14.50±1.00c | 140±15.60bc | 45.9±2.94ab | 583±18.6abc | 103±3.02a | 191±20.3bc |
| F70G1.5 | 5.95±0.08c | 29.2±1.52abcd | 2.09±0.15a | 18.40±1.02b | 101±12.50cde | 47.7±3.26ab | 625±60.6ab | 111±4.58a | 221±18.0ab |
| F70G2.0 | 5.95±0.07c | 32.7±1.43a | 2.17±0.11a | 22.60±2.73a | 104±18.70cde | 50.1±1.31ab | 660±48.1ab | 113±14.00a | 259±13.4a |
| F85G0.5 | 6.12±0.03abc | 29.5±0.81abc | 2.13±0.07a | 7.50±0.05d | 90±5.26def | 42.2±2.83b | 478±91.4bcd | 103±5.84a | 136±13.4cd |
| F85G1.0 | 5.99±0.05bc | 30.6±1.17ab | 2.01±0.04a | 6.55±0.33d | 143±21.30bc | 45.9±6.35ab | 503±58.6abcd | 112±6.78a | 228±18.5ab |
| F85G1.5 | 6.01±0.03bc | 31.8±1.63ab | 1.90±0.19ab | 14.10±1.40c | 151±13.50b | 46.5±0.95ab | 590±115.0abc | 116±3.00a | 209±20.7ab |
| F85G2.0 | 6.01±0.09bc | 32.4±1.33ab | 1.99±0.06a | 6.93±0.61d | 250±22.40a | 52.9±1.10a | 678±81.9a | 117±3.37a | 242±19.0ab |
Table 2 Soil nutrients in different treatments
处理 Treatment | pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) |
|---|---|---|---|---|---|---|---|---|---|
| CK | 6.16±0.10ab | 26.0±1.45cd | 1.66±0.04b | 6.22±0.17d | 55±5.63f | 42.3±0.66b | 380±30.0d | 83±7.54b | 77±39.4d |
| F100 | 6.26±0.03a | 25.5±1.40d | 2.06±0.03a | 7.66±0.48d | 66±13.60ef | 43.3±2.08b | 412±6.0cd | 81±4.51b | 76±19.4d |
| F70G0.5 | 6.00±0.09bc | 28.6±1.43bcd | 2.10±0.04a | 8.62±1.39d | 121±7.04bcd | 44.6±4.65ab | 653±81.9ab | 112±9.33a | 185±12.2bc |
| F70G1.0 | 6.03±0.01bc | 28.9±0.58abcd | 2.06±0.12a | 14.50±1.00c | 140±15.60bc | 45.9±2.94ab | 583±18.6abc | 103±3.02a | 191±20.3bc |
| F70G1.5 | 5.95±0.08c | 29.2±1.52abcd | 2.09±0.15a | 18.40±1.02b | 101±12.50cde | 47.7±3.26ab | 625±60.6ab | 111±4.58a | 221±18.0ab |
| F70G2.0 | 5.95±0.07c | 32.7±1.43a | 2.17±0.11a | 22.60±2.73a | 104±18.70cde | 50.1±1.31ab | 660±48.1ab | 113±14.00a | 259±13.4a |
| F85G0.5 | 6.12±0.03abc | 29.5±0.81abc | 2.13±0.07a | 7.50±0.05d | 90±5.26def | 42.2±2.83b | 478±91.4bcd | 103±5.84a | 136±13.4cd |
| F85G1.0 | 5.99±0.05bc | 30.6±1.17ab | 2.01±0.04a | 6.55±0.33d | 143±21.30bc | 45.9±6.35ab | 503±58.6abcd | 112±6.78a | 228±18.5ab |
| F85G1.5 | 6.01±0.03bc | 31.8±1.63ab | 1.90±0.19ab | 14.10±1.40c | 151±13.50b | 46.5±0.95ab | 590±115.0abc | 116±3.00a | 209±20.7ab |
| F85G2.0 | 6.01±0.09bc | 32.4±1.33ab | 1.99±0.06a | 6.93±0.61d | 250±22.40a | 52.9±1.10a | 678±81.9a | 117±3.37a | 242±19.0ab |
处理 Treatment | 碳转化相关酶 Carbon-related enzyme activities | 氮转化相关酶 Nitrogen-related enzyme activities | 磷转化相关酶 Phosphorus-related enzyme activities | ||||
|---|---|---|---|---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | β-纤维二糖苷酶 β-cellobiosidase | β-木糖苷酶 β-xylosidase | α-葡萄糖苷酶 α-glucosidases | 乙酰氨基葡萄糖苷酶Acetylglucosaminidase | 亮氨酸氨基 肽酶Leucine aminopeptidase | 碱性磷酸酶 Alkaline phosphatase | |
| CK | 26.5±1.72bc | 1.62±0.16c | 2.51±0.27d | 0.96±0.07f | 7.6±0.25e | 514±9.57d | 509±20.3f |
| F100 | 28.1±0.86b | 1.82±0.24bc | 2.62±0.41d | 1.42±0.22ef | 10.6±0.74cd | 568±8.24cd | 606±11.4cde |
| F70G0.5 | 24.2±1.33bc | 1.75±0.11bc | 3.39±0.13d | 1.52±0.11e | 7.9±0.31e | 534±8.33d | 534±11.6ef |
| F70G1.0 | 28.7±1.64b | 2.19±0.07abc | 4.84±0.44c | 1.87±0.04de | 9.2±0.30de | 564±4.32cd | 580±9.9def |
| F70G1.5 | 36.6±2.50a | 2.24±0.14abc | 6.86±0.15b | 2.31±0.02cd | 11.6±0.90bc | 616±7.99bc | 645±39.4cd |
| F70G2.0 | 40.8±3.91a | 2.72±0.07a | 8.66±0.47a | 2.71±0.13bc | 15.7±1.05a | 680±20.40b | 835±30.4a |
| F85G0.5 | 20.9±3.23c | 1.94±0.06bc | 3.41±0.46d | 1.99±0.02d | 7.9±0.91e | 520±0.88d | 630±36.0cd |
| F85G1.0 | 29.8±0.52b | 2.33±0.17ab | 5.86±0.26bc | 2.22±0.04d | 12.5±0.49bc | 579±28.60cd | 666±4.4c |
| F85G1.5 | 30.1±0.74b | 2.72±0.52a | 5.95±0.56b | 2.91±0.18b | 12.8±0.31b | 655±17.90b | 675±13.5bc |
| F85G2.0 | 36.5±0.98a | 2.74±0.13a | 8.52±0.13a | 3.52±0.37a | 16.8±0.79a | 762±64.50a | 756±54.8ab |
Table 3 Hydrolase enzyme activities in soils under different treatments (nmol·h-1·g-1)
处理 Treatment | 碳转化相关酶 Carbon-related enzyme activities | 氮转化相关酶 Nitrogen-related enzyme activities | 磷转化相关酶 Phosphorus-related enzyme activities | ||||
|---|---|---|---|---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | β-纤维二糖苷酶 β-cellobiosidase | β-木糖苷酶 β-xylosidase | α-葡萄糖苷酶 α-glucosidases | 乙酰氨基葡萄糖苷酶Acetylglucosaminidase | 亮氨酸氨基 肽酶Leucine aminopeptidase | 碱性磷酸酶 Alkaline phosphatase | |
| CK | 26.5±1.72bc | 1.62±0.16c | 2.51±0.27d | 0.96±0.07f | 7.6±0.25e | 514±9.57d | 509±20.3f |
| F100 | 28.1±0.86b | 1.82±0.24bc | 2.62±0.41d | 1.42±0.22ef | 10.6±0.74cd | 568±8.24cd | 606±11.4cde |
| F70G0.5 | 24.2±1.33bc | 1.75±0.11bc | 3.39±0.13d | 1.52±0.11e | 7.9±0.31e | 534±8.33d | 534±11.6ef |
| F70G1.0 | 28.7±1.64b | 2.19±0.07abc | 4.84±0.44c | 1.87±0.04de | 9.2±0.30de | 564±4.32cd | 580±9.9def |
| F70G1.5 | 36.6±2.50a | 2.24±0.14abc | 6.86±0.15b | 2.31±0.02cd | 11.6±0.90bc | 616±7.99bc | 645±39.4cd |
| F70G2.0 | 40.8±3.91a | 2.72±0.07a | 8.66±0.47a | 2.71±0.13bc | 15.7±1.05a | 680±20.40b | 835±30.4a |
| F85G0.5 | 20.9±3.23c | 1.94±0.06bc | 3.41±0.46d | 1.99±0.02d | 7.9±0.91e | 520±0.88d | 630±36.0cd |
| F85G1.0 | 29.8±0.52b | 2.33±0.17ab | 5.86±0.26bc | 2.22±0.04d | 12.5±0.49bc | 579±28.60cd | 666±4.4c |
| F85G1.5 | 30.1±0.74b | 2.72±0.52a | 5.95±0.56b | 2.91±0.18b | 12.8±0.31b | 655±17.90b | 675±13.5bc |
| F85G2.0 | 36.5±0.98a | 2.74±0.13a | 8.52±0.13a | 3.52±0.37a | 16.8±0.79a | 762±64.50a | 756±54.8ab |
处理 Treatment | 有机质 Soil organic matter | 有效磷 Available phosphorus | pH | 可溶性有机氮 Dissolved organic nitrogen | 硝态氮 Nitrate nitrogen | 速效钾 Available potassium | 全氮 Total nitrogen | 可溶性有机碳 Dissolved organic carbon | 铵态氮 Ammonium nitrogen |
|---|---|---|---|---|---|---|---|---|---|
| 解释率Explains rate | 34.6 | 16.1 | 3.8 | 5.1 | 4.5 | 1.1 | 0.8 | 0.5 | 0.5 |
| 贡献率Contribution rate | 51.7 | 24.0 | 5.7 | 7.7 | 6.7 | 1.6 | 1.2 | 0.7 | 0.7 |
| 显著性Significance | ** | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Table 4 Redundancy analysis parameters (%)
处理 Treatment | 有机质 Soil organic matter | 有效磷 Available phosphorus | pH | 可溶性有机氮 Dissolved organic nitrogen | 硝态氮 Nitrate nitrogen | 速效钾 Available potassium | 全氮 Total nitrogen | 可溶性有机碳 Dissolved organic carbon | 铵态氮 Ammonium nitrogen |
|---|---|---|---|---|---|---|---|---|---|
| 解释率Explains rate | 34.6 | 16.1 | 3.8 | 5.1 | 4.5 | 1.1 | 0.8 | 0.5 | 0.5 |
| 贡献率Contribution rate | 51.7 | 24.0 | 5.7 | 7.7 | 6.7 | 1.6 | 1.2 | 0.7 | 0.7 |
| 显著性Significance | ** | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
| [1] | Liu G S. Tobacco cultivation (the second edition). Beijing: China Agriculture Press, 2016. |
| 刘国顺. 烟草栽培学(第2版). 北京: 中国农业出版社, 2016. | |
| [2] | Xie X Q, Li X W, Zhu Y C, et al. Research progresses and consideration on flue-cured tobacco planting regionalization in China. Soils, 2020, 52(6): 1105-1112. |
| 谢新乔, 李湘伟, 朱云聪, 等. 我国不同尺度烤烟种植区划与思考. 土壤, 2020, 52(6): 1105-1112. | |
| [3] | Liu Q L, Chen F, Zhang Y G, et al. Nitrogen uptake of flue-cured tobacco in typical types of soil in southwest China. Acta Agronomica Sinica, 2013, 39(3): 486-493. |
| 刘青丽, 陈阜, 张云贵, 等. 我国西南烟区典型植烟土壤烤烟氮素的吸收规律. 作物学报, 2013, 39(3): 486-493. | |
| [4] | Wang Y Q. Effects of long-term cultivation and fertilization on tobacco-grown soil productivity and nutrients. Chongqing: Southwest University, 2021. |
| 王亚麒. 长期种植施肥模式对烟地生产力和养分状况的影响. 重庆: 西南大学, 2021. | |
| [5] | Ning S Q, Jiang R, Li Z M, et al. Effects of three kinds of green manure on the yield and quality of flue-cured tobacco, soil nutrients and enzyme activities. Soil and Fertilizer Sciences in China, 2024(4): 128-135. |
| 宁诗琪, 蒋如, 李治模, 等. 三种绿肥对烤烟产质量及土壤养分和酶活性的影响. 中国土壤与肥料, 2024(4): 128-135. | |
| [6] | Zhang J G, Shen G M, Zhang J Q, et al. Advance in continuous cropping problems of tobacco. Chinese Tobacco Science, 2011, 32(3): 95-99. |
| 张继光, 申国明, 张久权, 等. 烟草连作障碍研究进展. 中国烟草科学, 2011, 32(3): 95-99. | |
| [7] | Cao W D, Gao S J. Chinese green manure development strategy by 2025. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(12): 1-9. |
| 曹卫东, 高嵩涓. 到2025年中国绿肥发展策略. 中国农业资源与区划, 2023, 44(12): 1-9. | |
| [8] | Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115-2126. |
| 高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制. 植物营养与肥料学报, 2020, 26(12): 2115-2126. | |
| [9] | Xia R, Dong W J, Ma E D, et al. Effects of different green manure application on soil physical and chemical properties, yield and quality of flue-cured tobacco in continuous cropping field. Journal of Anhui Agricultural Sciences, 2023, 51(7): 165-170. |
| 夏融, 童文杰, 马二登, 等. 绿肥掩青对连作烟田土壤性质及烤烟产质量的影响. 安徽农业科学, 2023, 51(7): 165-170. | |
| [10] | Garland G, Edlinger A, Banerjee S K, et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2021, 2(1): 28-37. |
| [11] | Huang P N, Qin D Z, Long H Y, et al. Effects of green manure-tobacco-paddy rice crop rotation to leaf tobacco yield quality and latter-stubble late rice yield. Chinese Agricultural Science Bulletin, 2010, 26(1): 103-108. |
| 黄平娜, 秦道珠, 龙怀玉, 等. 绿肥-烟-稻轮作与烟叶产量品质及后茬晚稻产量效应. 中国农学通报, 2010, 26(1): 103-108. | |
| [12] | Feng Y, Chen H, Fu L B, et al. Utilizing green manure to increase tobacco quality and soil fertility in the erosion area of Fuxian Lake in Yunnan Province. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 2083-2094. |
| 冯瑜, 陈华, 付利波, 等. 利用绿肥提高云南抚仙湖径流区烟田土壤养分和烤烟品质. 植物营养与肥料学报, 2023, 29(11): 2083-2094. | |
| [13] | Liang H, Fu L B, Chen H, et al. Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco. Journal of Integrative Agriculture, 2023, 22(4): 1199-1215. |
| [14] | Liang H, Li S, Zhou G P, et al. Targeted regulation of the microbiome by green manuring to promote tobacco growth. Biology and Fertility of Soils, 2023, 60(1): 69-85. |
| [15] | Kong W, Chu L Z, Lu J W, et al. The influence on growth and development of flue-cured tobacco by different application times of Vicia villosa var. glabresens. Chinese Agricultural Science Bulletin, 2013, 29(1): 150-154. |
| 孔伟, 储刘专, 鲁剑巍, 等. 光叶紫花苕子不同翻压期对烤烟生长发育的影响. 中国农学通报, 2013, 29(1): 150-154. | |
| [16] | Si G H, Wu W H, Mei D H, et al. Effect of different burying amount of Vicia villosa on yield and quality of flue-cured tobacco. Chinese Tobacco Science, 2011, 32(S1): 82-86. |
| 佀国涵, 吴文昊, 梅东海, 等. 不同光叶紫花苕子翻压量对烤烟产量和品质的影响. 中国烟草科学, 2011, 32(S1): 82-86. | |
| [17] | Bao S D. Soil agriculture and chemistry analysis (the third edition). Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
| [18] | Zhao W J, Liu R, Wang Z X, et al. Effects of rotation with a green manure crop on soil quality and microbial nutrient limitation in a tobacco field in Yunnan. Acta Prataculturae Sinica, 2024, 33(10): 147-158. |
| 赵文军, 刘蕊, 王正旭, 等. 烤烟-绿肥轮作对云南烟田土壤质量与微生物养分限制的影响. 草业学报, 2024, 33(10): 147-158. | |
| [19] | Kuzyakov Y, Gunina A, Zamanian K, et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 56-62. |
| [20] | Wang H, Zhou G P, Chang D N, et al. Nitrogen reduction effects in double rice by planting and returning Chinese milk vetch to the field in Northern Hunan Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 33-44. |
| 王慧, 周国朋, 常单娜, 等. 湘北双季稻区种植翻压紫云英的氮肥减施效应. 植物营养与肥料学报, 2022, 28(1): 33-44. | |
| [21] | Chen J R, Qin W J, Wang S X, et al. Effects of reduced chemical fertilizer combined with Chinese milk vetch (Astragalus sinicus L.) incorporation on rice yield and nitrogen use efficiency in double-rice cropping system. Journal of Soil and Water Conservation, 2019, 33(6): 280-287. |
| 陈静蕊, 秦文婧, 王少先, 等. 化肥减量配合紫云英还田对双季稻产量及氮肥利用率的影响. 水土保持学报, 2019, 33(6): 280-287. | |
| [22] | Zhang L, Xu C X, Liu J, et al. Effects of green manure on yield and nitrogen utilization of double rice under reduced 20% chemical fertilizer input in Jiangxi Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 845-856. |
| 张磊, 徐昌旭, 刘佳, 等. 减施20%化肥下绿肥翻压量对江西双季稻产量及氮素利用的影响. 植物营养与肥料学报, 2022, 28(5): 845-856. | |
| [23] | Cao W D, Zhou G P, Gao S J. Effects and mechanisms of green manure on endogenous improving soil health. Journal of Plant Nutrition and Fertilizers, 2024, 30(7): 1274-1283. |
| 曹卫东, 周国朋, 高嵩涓. 绿肥内源驱动土壤健康的作用与机制. 植物营养与肥料学报, 2024, 30(7): 1274-1283. | |
| [24] | Chu J D, Yan H F, Wang S S, et al. Effects of reduced fertilization and biochar application on nitrogen leaching from tobacco-growing soils. Chinese Tobacco Science, 2022, 43(4): 40-47. |
| 褚继登, 闫慧峰, 王树声, 等. 化肥减量配施生物炭对植烟土壤氮素淋失的影响. 中国烟草科学, 2022, 43(4): 40-47. | |
| [25] | Yang L, Bai J, Liu J, et al. Green manuring effect on changes of soil nitrogen fractions, maize growth, and nutrient uptake. Agronomy, 2018, 8(11): 261. |
| [26] | Zhou G P, Chang D N, Gao S J, et al. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biology and Fertility of Soils, 2021, 57(4): 547-561. |
| [27] | Zu W J. Effects of green manures by different tillage methods on soil properties and growth of flue-cured tobacco. Guiyang: Guizhou University, 2020. |
| 祖韦军. 不同绿肥品种及耕作方式对土壤特性和烤烟生长的影响. 贵阳: 贵州大学, 2020. | |
| [28] | Liu H, Ma Z H, Liu W F, et al. Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils. Chinese Journal of Eco-Agriculture, 2025, 33(1): 25-39. |
| 刘昊, 麻仲花, 刘威帆, 等. 不同耕作方式配施有机肥对盐碱地玉米根际土壤微生物群落的影响. 中国生态农业学报, 2025, 33(1): 25-39. | |
| [29] | Ye X F, Yang C, Li Z, et al. Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 445-454. |
| 叶协锋, 杨超, 李正, 等. 绿肥对植烟土壤酶活性及土壤肥力的影响. 植物营养与肥料学报, 2013, 19(2): 445-454. | |
| [30] | Luo Y, Lu B L, Zhou G P, et al. Effects of returning the root of green manure on reducing N application in maize within their intercropping system in Hexi oasis irrigation area. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2125-2135. |
| 罗跃, 卢秉林, 周国朋, 等. 河西绿洲灌区玉米间作绿肥根茬还田的氮肥减施效应. 植物营养与肥料学报, 2021, 27(12): 2125-2135. | |
| [31] | Zhao W J, Yang J Z, Yin M, et al. Effects of combined application of green manure with reduced nitrogen fertilizer on yield and quality of flue-cured tobacco. Journal of Agricultural Science and Technology, 2023, 25(4): 189-196. |
| 赵文军, 杨继周, 尹梅, 等. 绿肥模式下减量施氮对烤烟产量与品质的影响. 中国农业科技导报, 2023, 25(4): 189-196. | |
| [32] | Zhou G, Gao S, Chang D, et al. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresource Technology, 2020, 319: 124215. |
| [33] | Nevins C J, Lacey C, Armstrong S. The synchrony of cover crop decomposition, enzyme activity, and nitrogen availability in a corn agroecosystem in the Midwest United States. Soil and Tillage Research, 2020, 197: 104518. |
| [34] | Elfstrand S, Båth B, Mårtensson A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied Soil Ecology, 2007, 36(1): 70-82. |
| [35] | Ye X, Liu H, Li Z, et al. Effects of green manure continuous application on soil microbial biomass and enzyme activity. Journal of Plant Nutrition, 2014, 37(4): 498-508. |
| [36] | Zhou G P. The synergistic effects and mechanism of co-incorporating Chinese milk vetch (Astragalus sinicus L.) and rice (Oryza sativa L.) straw. Beijing: Chinese Academy of Agricultural Sciences, 2020. |
| 周国朋. 紫云英-稻草共同还田的协同效应及机制. 北京: 中国农业科学院, 2020. |
| [1] | Chang-qing LI, Ya-ru SONG, Fan XIAO, Chun-yu MIAO, Meng-yu SUN, Meng JI, Zhi-mei SUN. Analysis of main agronomic traits of low-fertility-tolerant and high-yielding maize varieties [J]. Acta Prataculturae Sinica, 2025, 34(9): 97-110. |
| [2] | Bang-yan ZHANG, Xiao-wei XIE, Zhao-hui ZHANG, Jin-min WU, Bin WANG, Xing XU. Effect of organic-inorganic amendments on the quality of saline-alkaline soil and yield of Echinochloa frumentacea [J]. Acta Prataculturae Sinica, 2025, 34(8): 15-29. |
| [3] | Hai-long MAO, Ji-cheng TAI, Heng-shan YANG, Yu-qin ZHANG, Rui-fu ZHANG, Zhen-zhen WANG. Effect of strip configuration on canopy characteristics, yield, and the quality of silage produced from co-cultivated corn and soybean [J]. Acta Prataculturae Sinica, 2025, 34(8): 30-42. |
| [4] | Yi-yin ZHANG, Bin WANG, Teng-fei WANG, Jian LAN, Hai-ying HU. Effects of intercropping triticale with alfalfa on system yield, resource utilization, and alfalfa seed yield [J]. Acta Prataculturae Sinica, 2025, 34(8): 43-53. |
| [5] | Wen-juan FAN, Jian-chao SONG, Xiao-juan ZHANG, Yu-hang SHENG, Jin-tao SHI, Long-ji ZHANG, Xiao-jun YU. The effects of combined nitrogen and phosphorus fertilization on seed yield and quality of Medicago ruthenica in the Wuwei irrigation district, Gansu Province [J]. Acta Prataculturae Sinica, 2025, 34(8): 54-65. |
| [6] | Shan-shan TANG, Min HU. Differences in enzyme activity and bacterial community structure in rhizosphere soil of four grass species [J]. Acta Prataculturae Sinica, 2025, 34(8): 99-108. |
| [7] | Xue-qian JIANG, Qing-chuan YANG, Jun-mei KANG. Research progress on yield loss under drought stress and drought resistance genetics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2025, 34(7): 219-234. |
| [8] | Pei-pei JIANG, Jin-hua GUO, Hui-shu XIAO, Yan-min PENG, Jun ZHANG, Wen-zhong TIAN, Jun-jie Lyu, Jin-zhi WU, He-zheng WANG, Guo-zhan FU, Ming HUANG, You-jun LI. Effect of rotational tillage patterns on the crop yield and quality in a maize-wheat (Zea mays-Triticum aestivum) double cropping system in dryland agriculture [J]. Acta Prataculturae Sinica, 2025, 34(6): 181-192. |
| [9] | Qi-lin LIU, Xiao-jun WANG, Jin-lan WANG, Wen-hui LIU, Qiao-ling MA, Jian-hui LI, Sheng-yuan ZHANG, Wen-xia CAO, Wen LI. Effect of nitrogen and phosphorus combined application on forage yield of Elymus sibiricus in an alpine region [J]. Acta Prataculturae Sinica, 2025, 34(6): 193-202. |
| [10] | Wen-li QIN, Jing ZHANG, Guang-min XIAO, Su-qian CUI, Jian-xun YE, Jian-fei ZHI, Li-feng ZHANG, Nan XIE, Wei FENG, Zhen-yu LIU, Xuan PAN, Yun-xia DAI, Zhong-kuan LIU. Effects of partial replacement of chemical nitrogen fertilizers with green manure on soil physical properties and maize (Zea mays) yield [J]. Acta Prataculturae Sinica, 2025, 34(6): 27-45. |
| [11] | Yao-bo LIU, Lu PEI, Chen-zhuo LIU, Xiao-xia LI, Bo-kun ZOU. A meta-analysis of fertilizer response of seed yield and seed yield components in Elymus sibiricus [J]. Acta Prataculturae Sinica, 2025, 34(6): 85-98. |
| [12] | Ya-qi FENG, Jia-hui CHEN, Jing-ni ZHANG, Chao SUI, Ji-wei CHEN, Zhi-peng LIU, Qiang ZHOU, Wen-xian LIU. Development of high-protein and high-yield associated InDel molecular markers based on re-sequencing in alfalfa [J]. Acta Prataculturae Sinica, 2025, 34(4): 137-149. |
| [13] | Teng-fei WANG, Xia MA, Jin-long LIU, Bin WANG, Yi-yin ZHANG, Jia-wang LI, Jiang-ping MA, Xiao-bing WANG, Jian LAN. Analysis of the yield, quality and economic benefits from multiple cropping of fodder oats in the Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2025, 34(4): 27-37. |
| [14] | Peng JIANG, Lei LI, Hao-jun XIE, De-jia XU, Rui WANG, Qiang HU, Quan SUN. Effect of purified biogas slurry drip irrigation on sandy loam soil quality, silage maize productivity and analysis of safe application rate [J]. Acta Prataculturae Sinica, 2025, 34(4): 64-81. |
| [15] | Rui LIU, Dan-na CHANG, Guo-peng ZHOU, Song-juan GAO, Qiang CHAI, Wei-dong CAO. Techniques of N2O emission reduction in farmland and their synergistic application with green manure [J]. Acta Prataculturae Sinica, 2025, 34(2): 196-210. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||