草业学报 ›› 2023, Vol. 32 ›› Issue (5): 159-170.DOI: 10.11686/cyxb2022217
• 研究论文 • 上一篇
杨瑞鑫1(), 李勇1,2, 蔡小芳1, 韩铖星1, 郭艳丽1()
收稿日期:
2022-05-18
修回日期:
2022-08-31
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
郭艳丽
作者简介:
E-mail: guoyl@gsau.edu.cn基金资助:
Rui-xin YANG1(), Yong LI1,2, Xiao-fang CAI1, Cheng-xing HAN1, Yan-li GUO1()
Received:
2022-05-18
Revised:
2022-08-31
Online:
2023-05-20
Published:
2023-03-20
Contact:
Yan-li GUO
摘要:
开食料的物理形态会影响反刍动物的瘤胃发育。本试验的目的是通过研究颗粒化(pelleted starter, PS)和口感化开食料(textured starter, TS)对湖羊羔羊早期断奶前后瘤胃组织转录组的影响,探究开食料的物理形态对羔羊瘤胃发育影响的分子机制。将24只初生重相近[(5.04±0.75) kg]的8日龄湖羊公羔随机分到两个处理组中,每组12只,每只为1个重复,分别饲喂颗粒化和口感化开食料。羔羊从出生到7日龄吃母乳,从8日龄开始停止哺乳,饲喂代乳粉,当日开始饲喂开食料,35日龄断代乳粉。于断奶前(21日龄)、后(42日龄),每组随机选择6只羔羊屠宰,采集瘤胃腹囊组织,利用RNA-Seq技术进行转录组测序。试验结果共获得4478个差异表达基因。与PS组相比,TS组羔羊在断奶前分别有194个上调基因和293个下调基因;断奶后分别有1763个上调基因和2228个下调基因。GO注释和KEGG通路富集分析显示,差异表达基因主要富集在肽和氨基酸生物合成过程、肽代谢、碳水化合物代谢、脂质代谢、丁酸代谢、丙酮酸代谢及细胞凋亡等关键代谢通路。根据富集结果,随机选取15个差异表达基因进行qRT-PCR验证,与转录组测序结果一致。综上所述,TS上调表达与脂肪酸代谢、细胞周期蛋白和激酶、生长有关的基因,下调表达与细胞凋亡有关的基因,可能是其促进羔羊瘤胃发育的重要原因。
杨瑞鑫, 李勇, 蔡小芳, 韩铖星, 郭艳丽. 不同物理形态的开食料对羔羊瘤胃转录组的影响[J]. 草业学报, 2023, 32(5): 159-170.
Rui-xin YANG, Yong LI, Xiao-fang CAI, Cheng-xing HAN, Yan-li GUO. Effects of starter feed in different physical forms on the rumen transcriptome of lambs[J]. Acta Prataculturae Sinica, 2023, 32(5): 159-170.
基因代码 Gene ID | 基因名称 Gene name | 引物序列 Primer sequence (5′→3′) | 扩增大小 Amplicon size (bp) |
---|---|---|---|
443059 | BAX | F: TGTCCTCCCCCAGAGATCAG;R: GGGCCCTAGAGGAGAAAGGA | 97 |
101104112 | BDH1 | F: GAGAAGGAAACGGCGGTAG;R: AAAAGGCAGAATGGTCAGG | 169 |
101107334 | CASP8 | F: TCCAGGATTCGCCTCTGGTA;R: CCGGCTTAGGAACTTGAGGG | 133 |
443318 | IGF1 | F: GCTCTCAACATCTCCCATCTCC;R: CCCATTGCTTCTGAAGTGCAAA | 94 |
443408 | LPL | F: GATTAGCGATTCCTACTTCAGC;R: AGACTTGTCATGGCATTTCAC | 181 |
808252 | COX2 | F: TCCCAACATCAAACCGACTA;R: TTACGGCTCCTGCTCACA | 249 |
101106011 | BDH2 | F: ATTGATGGAGGCTGGAGTT;R: ATTGGAAAGAGAGGTTGGG | 121 |
101119699 | HMGCL | F: TGGGGACTGTGTGGGAATA;R: CAGCAGCAAGTTGTGGAGA | 312 |
101111590 | HMGCS2 | F: TACCTGGAGCGAGTGGATGA;R: GGCGAGTCATCTGGATCTGG | 362 |
100187551 | IGFBP6 | F: GGGTCTACACTCCCAACTGC;R: TAGGATTCTCTCCCGAGGGC | 132 |
443133 | IGFBP5 | F: TGAAGGCTGAGGCTGTGAAG;R: GGCCCCTGCTCAGATTCC | 133 |
100216432 | CDK1 | F: CCAATAATGAAGTGTGGCCAGAAG;R: AGAAATTCGTTTGGCAGGATCATAG | 164 |
443469 | IGFBP2 | F: GTCCTGGAACGGATCTCCAC;R: GAGGTTGTACAGGCCATGCT | 108 |
101108399 | RFC3 | F: AACAGTGGCACAATCACAGCAA;R: AGTTGTGGAGGAAGATTTAGACCC | 294 |
101115335 | ANAPC13 | F: TCTTGGATTTGATTGACG;R: CAGATTCTGTGGTGCCTC | 149 |
表1 荧光定量PCR验证基因引物序列
Table 1 Primer sequences of target genes uses for real-time PCR
基因代码 Gene ID | 基因名称 Gene name | 引物序列 Primer sequence (5′→3′) | 扩增大小 Amplicon size (bp) |
---|---|---|---|
443059 | BAX | F: TGTCCTCCCCCAGAGATCAG;R: GGGCCCTAGAGGAGAAAGGA | 97 |
101104112 | BDH1 | F: GAGAAGGAAACGGCGGTAG;R: AAAAGGCAGAATGGTCAGG | 169 |
101107334 | CASP8 | F: TCCAGGATTCGCCTCTGGTA;R: CCGGCTTAGGAACTTGAGGG | 133 |
443318 | IGF1 | F: GCTCTCAACATCTCCCATCTCC;R: CCCATTGCTTCTGAAGTGCAAA | 94 |
443408 | LPL | F: GATTAGCGATTCCTACTTCAGC;R: AGACTTGTCATGGCATTTCAC | 181 |
808252 | COX2 | F: TCCCAACATCAAACCGACTA;R: TTACGGCTCCTGCTCACA | 249 |
101106011 | BDH2 | F: ATTGATGGAGGCTGGAGTT;R: ATTGGAAAGAGAGGTTGGG | 121 |
101119699 | HMGCL | F: TGGGGACTGTGTGGGAATA;R: CAGCAGCAAGTTGTGGAGA | 312 |
101111590 | HMGCS2 | F: TACCTGGAGCGAGTGGATGA;R: GGCGAGTCATCTGGATCTGG | 362 |
100187551 | IGFBP6 | F: GGGTCTACACTCCCAACTGC;R: TAGGATTCTCTCCCGAGGGC | 132 |
443133 | IGFBP5 | F: TGAAGGCTGAGGCTGTGAAG;R: GGCCCCTGCTCAGATTCC | 133 |
100216432 | CDK1 | F: CCAATAATGAAGTGTGGCCAGAAG;R: AGAAATTCGTTTGGCAGGATCATAG | 164 |
443469 | IGFBP2 | F: GTCCTGGAACGGATCTCCAC;R: GAGGTTGTACAGGCCATGCT | 108 |
101108399 | RFC3 | F: AACAGTGGCACAATCACAGCAA;R: AGTTGTGGAGGAAGATTTAGACCC | 294 |
101115335 | ANAPC13 | F: TCTTGGATTTGATTGACG;R: CAGATTCTGTGGTGCCTC | 149 |
图2 差异表达基因韦恩图颗粒化开食料和口感化开食料在21和42 d时的样本分别命名为PS21、TS21、PS42和TS42。下同。The samples of pelleted starter and textured starter at 21 and 42 days were named PS21, TS21, PS42 and TS42, respectively. The same below.
Fig.2 Venn diagram of differently expressed genes
图3 断奶前差异基因GO富集分析纵坐标表示校正后P值的负log10值。A为上调表达;B为下调表达。下同。The ordinate represented the negative log10 value of adjusted P value. A: Up-regulated; B: Down-regulated. The same below.
Fig.3 GO classification of different expression genes in pre-weaning (TS vs PS)
图5 断奶前差异基因KEGG富集分析横轴表示基因比例。基因比例越大,表示富集的程度越大;不同颜色对应于不同的Padj值;点的大小表示基因数目。下同。The horizontal axis represents gene ratio. The higher the gene ratio is, the greater degree of enrichment is. The color of roundness represents Padj. The area of roundness represents number of DEGs enriched in this pathway. The same below.
Fig.5 KEGG enrichment analysis of different gene in pre-weaning (TS vs PS)
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2 (fold change) | P值 P value |
---|---|---|---|---|
101120062 | PLA2G5 | V型磷脂酶A2 Phospholipase A2 group V | 2.734 | 0.012 |
100216432 | CDK1 | 细胞周期依赖性激酶1 Cyclin dependent kinase 1 | 0.900 | 0.049 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -1.156 | 0.030 |
表2 断奶前关键代谢通路差异表达基因
Table 2 Different expressed genes in key metabolic pathways pre-weaning
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2 (fold change) | P值 P value |
---|---|---|---|---|
101120062 | PLA2G5 | V型磷脂酶A2 Phospholipase A2 group V | 2.734 | 0.012 |
100216432 | CDK1 | 细胞周期依赖性激酶1 Cyclin dependent kinase 1 | 0.900 | 0.049 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -1.156 | 0.030 |
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2(fold change) | P值 P value |
---|---|---|---|---|
101104112 | BDH1 | 3-羟基丁酸脱氢酶1 3-hydroxybutyrate dehydrogenase 1 | 1.100 | 0.000 |
101119699 | HMGCL | 3-羟基-3-甲基戊二酰裂解酶3-hydroxy-3-methylglutaryl-CoA lyase | 0.973 | 0.004 |
101111590 | HMGCS2 | 3-羟基-3-甲基戊酰辅酶合成酶异构体2 3-hydroxy-3-methylglutaryl-CoA synthase 2 | 1.103 | 0.000 |
101117625 | PPARD | 过氧化物酶体增殖物激活受体δ Peroxisome proliferator activated receptor delta | 0.908 | 0.000 |
101114126 | ACSS2 | 乙酰辅酶A合成酶2基因Acyl-CoA synthetase short chain family member 2 | 0.748 | 0.001 |
105606089 | CDK18 | 细胞周期依赖性激酶18 Cyclin dependent kinase 18 | 1.056 | 0.000 |
101109788 | CDK9 | 细胞周期依赖性激酶9 Cyclin dependent kinase 9 | 0.583 | 0.011 |
101111140 | CDK2AP2 | 细胞周期蛋白依赖性激酶2关联蛋白2 Cyclin dependent kinase 2 associated protein 2 | 0.701 | 0.027 |
101117113 | CCNK | 细胞周期蛋白K Cyclin K | 0.584 | 0.024 |
100147798 | CCND3 | 细胞周期蛋白D3 Cyclin D3 | 0.562 | 0.045 |
101103350 | SART3 | T细胞识别的鳞状细胞癌抗原3 Spliceosome associated factor 3 | 0.519 | 0.044 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -0.986 | 0.015 |
101109100 | CASP8AP2 | 半胱氨酸-天冬氨酸蛋白酶8相关蛋白2 Caspase 8 associated protein 2 | -1.237 | 0.000 |
101107334 | CASP8 | 半胱氨酸-天冬氨酸蛋白酶8 Caspase 8 | -0.711 | 0.021 |
443133 | IGFBP5 | 胰岛素样生长因子结合蛋白5 Insulin like growth factor binding protein 5 | 0.737 | 0.006 |
443470 | IGFBP4 | 胰岛素样生长因子结合蛋白4 Insulin like growth factor binding protein 4 | 0.907 | 0.012 |
443318 | IGF1 | 胰岛素样生长因子1 Insulin like growth factor 1 | -1.314 | 0.000 |
表3 断奶后关键代谢通路差异表达基因
Table 3 Different expressed genes in key metabolic pathways post-weaning
基因编号 Gene ID | 基因名称 Gene name | 基因描述 Gene description | 差异倍数 log2(fold change) | P值 P value |
---|---|---|---|---|
101104112 | BDH1 | 3-羟基丁酸脱氢酶1 3-hydroxybutyrate dehydrogenase 1 | 1.100 | 0.000 |
101119699 | HMGCL | 3-羟基-3-甲基戊二酰裂解酶3-hydroxy-3-methylglutaryl-CoA lyase | 0.973 | 0.004 |
101111590 | HMGCS2 | 3-羟基-3-甲基戊酰辅酶合成酶异构体2 3-hydroxy-3-methylglutaryl-CoA synthase 2 | 1.103 | 0.000 |
101117625 | PPARD | 过氧化物酶体增殖物激活受体δ Peroxisome proliferator activated receptor delta | 0.908 | 0.000 |
101114126 | ACSS2 | 乙酰辅酶A合成酶2基因Acyl-CoA synthetase short chain family member 2 | 0.748 | 0.001 |
105606089 | CDK18 | 细胞周期依赖性激酶18 Cyclin dependent kinase 18 | 1.056 | 0.000 |
101109788 | CDK9 | 细胞周期依赖性激酶9 Cyclin dependent kinase 9 | 0.583 | 0.011 |
101111140 | CDK2AP2 | 细胞周期蛋白依赖性激酶2关联蛋白2 Cyclin dependent kinase 2 associated protein 2 | 0.701 | 0.027 |
101117113 | CCNK | 细胞周期蛋白K Cyclin K | 0.584 | 0.024 |
100147798 | CCND3 | 细胞周期蛋白D3 Cyclin D3 | 0.562 | 0.045 |
101103350 | SART3 | T细胞识别的鳞状细胞癌抗原3 Spliceosome associated factor 3 | 0.519 | 0.044 |
101120931 | CARD14 | 细胞凋亡募集结构域蛋白14 Caspase recruitment domain family member 14 | -0.986 | 0.015 |
101109100 | CASP8AP2 | 半胱氨酸-天冬氨酸蛋白酶8相关蛋白2 Caspase 8 associated protein 2 | -1.237 | 0.000 |
101107334 | CASP8 | 半胱氨酸-天冬氨酸蛋白酶8 Caspase 8 | -0.711 | 0.021 |
443133 | IGFBP5 | 胰岛素样生长因子结合蛋白5 Insulin like growth factor binding protein 5 | 0.737 | 0.006 |
443470 | IGFBP4 | 胰岛素样生长因子结合蛋白4 Insulin like growth factor binding protein 4 | 0.907 | 0.012 |
443318 | IGF1 | 胰岛素样生长因子1 Insulin like growth factor 1 | -1.314 | 0.000 |
1 | Li Y. Effects of starter feeds of two different physical forms on growth and rument development of lambs and its mechanisms. Lanzhou: Gansu Agricultural University, 2020. |
李勇. 两种不同物理形态开食料对羔羊生长和瘤胃发育的影响及其机制研究. 兰州: 甘肃农业大学, 2020. | |
2 | Ma J N, Tu Y. Research progress on feeding patterns of different solid and liquid feed level on growth and gastrointestinal tract development in Holstein calves. Journal of Domestic Animal Ecology, 2017, 38(5): 7-12. |
马俊南, 屠焰. 固液饲料饲喂水平对犊牛生长及胃肠道发育影响的研究进展. 家畜生态学报, 2017, 38(5): 7-12. | |
3 | Moeini H, Mahdavi A H, Riasi A, et al. Effects of physical form of starter and forage provision to young calves on blood metabolites, liver composition and intestinal morphology. Journal of Animal Physiology and Animal Nutrition, 2017, 101(4): 755-766. |
4 | Terre M, Pedrals E, Dalmau A, et al. What do pre weaned and weaned calves need in the diet: A high fiber content or a forage source? Journal of Dairy Science, 2013, 96(8): 5217-5225. |
5 | Porter J C, Warner R G, Kertz A F. Effect of fiber level and physical form of starter on growth and development of dairy calves fed no forage. The Professional Animal Scientist, 2007, 23(4): 395-400. |
6 | Beharka A A, Nagaraja T G, Morrill J L, et al. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. Journal of Dairy Science, 1998, 81(7): 1946-1955. |
7 | Simayi A M N M. Effects of texturized and pelleted starter on growth characteristics and gastrointestinal development in Holstein male calves. Urumqi: Xinjiang Agricultural University, 2014. |
阿米娜木·司马义. 口感化和颗粒化开食料对荷斯坦公犊牛生长性能及胃肠道发育的影响. 乌鲁木齐: 新疆农业大学, 2014. | |
8 | Lesmeisster K E, Heinrichs A J. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. Journal of Dairy Science, 2004, 87(10): 3434-3450. |
9 | Zhang Y Q, Meng Q X, Ren L P, et al. A comparison of the relationship between different processing methods of corn and full fat soybean in starter diets and enzyme development in the rumen of calves. Chinese Journal of Animal Nutrition, 2011, 23(5): 740-747. |
张元庆, 孟庆翔, 任丽萍, 等. 开食料玉米和全脂大豆的加工方式与犊牛瘤胃酶系发育关系的比较研究. 动物营养学报, 2011, 23(5): 740-747. | |
10 | Li Y, Guo Y L, Zhang C X, et al. Effects of physical forms of starter feed on growth, nutrient digestibility, gastrointestinal enzyme activity, and morphology of pre- and post-weaning lambs. Animal, 2021, 15: 1-6. |
11 | Wang C B, Lu W H, Lin Y, et al. Development and application of transcriptome sequencing. Eucalypt Science & Technology, 2018, 35(4): 20-26. |
王楚彪, 卢万鸿, 林彦, 等. 转录组测序的发展和应用. 桉树科技, 2018, 35(4): 20-26. | |
12 | Yang B, Chen H W, Cao J W, et al. Transcriptome analysis reveals that alfalfa promotes rumen development through enhanced metabolic processes and calcium transduction in Hu lambs. Frontiers in Genetics, 2019, 3: 1-14. |
13 | Sun D M, Yin Y Y, Guo C Z, et al. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. Journal of Animal Science and Biotechnology, 2021, 12: 1-15. |
14 | National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resource. National nutrient requirements of small ruminants: Sheep, goat, cervids, and new world camelids. Washington D C: National Academy of Sciences, 2007. |
15 | Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements. Techniques for Life Scientists and Chemists, 2015, 12(4): 357-360. |
16 | Mortazavi A, Williams B A, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628. |
17 | Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106. |
18 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔ CT method. Methods, 2002, 25(4): 402-408. |
19 | Blencowe B J, Ahmad S, Lee L J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes & Development, 2009, 23(12): 1379-1386. |
20 | Cai X F, Zhang C X, Li Y, et al. Effect of texturized and pelleted starter on growth and gastrointestinal development of early weaning lambs. Pratacultural Science, 2021, 38(8): 1596-1604. |
蔡小芳, 张成新, 李勇, 等. 口感化及颗粒化开食料对早期断奶羔羊生长和胃肠道发育的影响. 草业科学, 2021, 38(8): 1596-1604. | |
21 | Pazoki A, Ghorbani G R, Kargar S, et al. Growth performance, nutrient digestibility, ruminal fermentation, and rumen development of calves during transition from liquid to solid feed: Effects of physical form of starter feed and forage provision. Animal Feed Science and Technology, 2017, 234: 173-185. |
22 | Fu Y, Guo J P, Li S L. Effect of texturized starter on growth performance, gastrointestinal tract indexes and rumen fermentation parameters of Montbeliard×Holstein crossed calves. Chinese Journal of Animal Nutrition, 2020, 32(2): 715-725. |
付瑶, 郭江鹏, 李胜利. 口感化开食料对蒙贝利亚×荷斯坦杂交犊牛生长性能、胃肠道指标及瘤胃发酵参数的影响. 动物营养学报, 2020, 32(2): 715-725. | |
23 | Mirzaei M, Khorvash M, Ghorbani G R, et al. Interactions between the physical form of starter (mashed versus textured) and corn silage provision on performance, rumen fermentation, and structural growth of Holstein calves. Journal of Animal Science, 2016, 94(2): 678-686. |
24 | Wang M Y. Effects of subacute rumen acidosis on intestinal epithelial barrier function and its transcriptome study in dairy goats. Hohhot: Inner Mongolia Agricultural University, 2019. |
王梦雅. 亚急性瘤胃酸中毒对奶山羊肠道上皮屏障功能的影响及其转录组学研究. 呼和浩特: 内蒙古农业大学, 2019. | |
25 | Wang W M, Li C, Li F D, et al. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs. Scientific Reports, 2016, 6: 32479. |
26 | Li Y, Cai X F, Zhang C X, et al. Effects of starters with different processing methods of corn on rumen fermentation and microflora of pre-weaning and post-weaning lambs. Chinese Journal of Animal Nutrition, 2022, 34(6): 3788-3798. |
李勇, 蔡小芳, 张成新, 等. 玉米不同加工方式的开食料对羔羊早期断奶前和断奶后瘤胃发酵和微生物区系的影响. 动物营养学报, 2022, 34(6): 3788-3798. | |
27 | Ci Y Y, Zhang W D, Lin Y, et al. Advances in biological functions and inhibitors of secretory phospholipase PLA2G3. Progress in Biochemistry and Biophysics, 2021, 48(9): 1006-1015. |
慈钰莹, 张伟东, 蔺勇, 等. 分泌型磷脂酶PLA2G5的生物学功能及其抑制剂研究进展. 生物化学与生物物理进展, 2021, 48(9): 1006-1015. | |
28 | Jamila S, Lu Z Y, Gui H B, et al. Synchronous and time-dependent expression of cyclins, cyclin-dependent kinases, and apoptotic genes in the rumen epithelia of butyrate-infused goats. Frontiers in Physiology, 2018, 9: 496. |
29 | Gui H B, Shen Z M. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. Journal of Dairy Science, 2016, 99(8): 6627-6638. |
30 | Ma H Z, Seebacheer N A, Hornicek F J, et al. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine, 2018, 39: 182-193. |
31 | Pan Y C, Jiang Z P, Sun D Y, et al. Cyclin-dependent kinase 18 promotes oligodendrocyte precursor cell differentiation through activating the extracellular signal-regulated kinase signaling pathway. Neuroscience Bulletin, 2019, 35(5): 802-814. |
32 | Deshpande A M, Khalid O, Kim J J, et al. Cdk2ap2 is a novel regulator for self-renewal of murine embryonic stem cells. Stem Cells and Development, 2012, 21(16): 3010-3018. |
33 | Tsuda N, Murayama K, Ishida H, et al. Expression of a newly defined tumor-rejection antigen SART3 in musculoskeletal tumors and induction of HLA class Ⅰ-restricted cytotoxic T lymphocytes by SART3-derived peptides. Journal of Orthopaedic Research, 2001, 19(3): 346-351. |
34 | Lim J Y, Kim S W, Kim B, et al. Knockdown of CARD14 inhibits cell proliferation and migration in breast cancer cells. Anticancer Research, 2020, 40(4): 1953-1962. |
35 | Nakano K, Iwanaga M, Utsunomiya A, et al. Functional analysis of aberrantly spliced caspase 8 variants in adult T-cell leukemia cells. Molecular Cancer Research, 2019, 17(12): 2522-2536. |
36 | Juarze V R, Reyes L A, Salas L C, et al. Significance of CASP8AP2 and H2AFZ expression in survival and risk of relapse in children with acute lymphoblastic leukemia. Leukemia & Lymphoma, 2014, 55(10): 2305-2311. |
37 | Wang B, Wang D M, Wu X H, et al. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets. BMC Genomics, 2017, 18(1): 353. |
38 | Wang Y, Han X F, Tan Z L, et al. Rumen-protected glucose stimulates the insulin-like growth factor system and mTOR/AKT pathway in the endometrium of early postpartum dairy cows. Animals, 2020, 10(2): 357. |
39 | Steele M A, Aizahal O, Walpole M E, et al. Short communication: Grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle. Journal of Dairy Science, 2012, 95(10): 6072-6076. |
40 | Liu T, Li F D, Wang W M, et al. Effects of starter feeding on rumen papilla genes expression involved in cellular growth and morphology in Hu lamb at different ages. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2441-2449. |
刘婷, 李发弟, 王维民, 等. 不同日龄补饲开食料对湖羊羔羊瘤胃形态及表皮生长相关基因表达的影响. 畜牧兽医学报, 2016, 47(12): 2441-2449. |
[1] | 尚盼盼, 曾兵, 屈明好, 李明阳, 杨兴云, 郑玉倩, 沈秉娜, 毕磊, 杨成, 曾兵. 红三叶响应淹水胁迫的相关通路及差异表达基因分析[J]. 草业学报, 2023, 32(4): 112-128. |
[2] | 刘爱瑜, 王超, 吴占军, 赵寿培, 赵俐辰, 李晓宇, 张伟涛, 王乐天, 高玉红. 热应激对断奶绵羔羊生长性能、抗氧化性能和瘤胃菌群的影响[J]. 草业学报, 2023, 32(4): 173-182. |
[3] | 张涛, 牟英玉, 亓王盼, 张继友, 毛胜勇. 亚急性瘤胃酸中毒耐受性不同的奶牛瘤胃上皮形态及功能差异研究[J]. 草业学报, 2023, 32(2): 131-139. |
[4] | 杨乾龙, 魏倩倩, 赵德辉, 郭肖兰, 张铁涛, 王晓旭, 鲍坤, 王凯英. 饲粮添加过瘤胃半胱氨酸对育成期梅花鹿生长性能、营养物质表观消化率和血清生化指标的影响[J]. 草业学报, 2023, 32(2): 148-159. |
[5] | 孙禄娟, 何建军, 汪军成, 姚立蓉, 司二静, 杨轲, 李葆春, 马小乐, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析[J]. 草业学报, 2022, 31(8): 199-210. |
[6] | 戴东文, 庞凯悦, 王迅, 杨英魁, 柴沙驼, 王书祥. 精料补饲水平对暖季放牧牦牛瘤胃发酵和菌群结构的影响[J]. 草业学报, 2022, 31(5): 169-177. |
[7] | 周迪, 杨帅, 张欣欣, 袁婧, 高艳霞, 李建国, 汪波, 周广生, 傅廷栋, 叶俊, 杨利国, 滑国华. 添加剂种类和组合对晾晒后全株油菜青贮效果的影响[J]. 草业学报, 2022, 31(4): 124-135. |
[8] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[9] | 周承福, 汪水平, 张佰忠, 张秀敏, 王荣, 马志远, 王敏. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响[J]. 草业学报, 2022, 31(2): 171-181. |
[10] | 王循刚, 张晓玲, 徐田伟, 耿远月, 胡林勇, 赵娜, 刘宏金, 康生萍, 徐世晓. 饲粮蛋白质水平对藏系绵羊瘤胃真菌菌群结构及功能的影响[J]. 草业学报, 2022, 31(2): 182-191. |
[11] | 金亚东, 赵海霞, 桂瑞麒, 马青, 周玉香. 日粮精料水平和蛋氨酸铬添加对滩羊瘤胃发酵特性、细菌和脂肪酸组成的影响[J]. 草业学报, 2022, 31(2): 192-202. |
[12] | 范玉洁, 司华哲, 王晓旭, 杨乾龙, 张新宇, 钟伟, 王凯英. 精氨酸水平对梅花鹿仔鹿瘤胃发酵参数和菌群结构的影响[J]. 草业学报, 2022, 31(10): 154-166. |
[13] | 王挺, 宋磊, 王旭哲, 马春晖, 杜保军, 张凡凡. 复合乳酸菌对番茄皮渣与苜蓿混合青贮发酵品质及瘤胃降解率的影响[J]. 草业学报, 2022, 31(10): 167-177. |
[14] | 杨志民, 邢瑞, 丁鋆嘉, 庄黎丽. 基于转录组测序的高羊茅分蘖与株高相关差异表达基因分析[J]. 草业学报, 2022, 31(1): 145-163. |
[15] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||