草业学报 ›› 2024, Vol. 33 ›› Issue (6): 64-75.DOI: 10.11686/cyxb2023366
收稿日期:
2023-09-27
修回日期:
2023-10-30
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
谭英
作者简介:
E-mail: tanying197004@126.com基金资助:
Received:
2023-09-27
Revised:
2023-10-30
Online:
2024-06-20
Published:
2024-03-20
Contact:
Ying TAN
摘要:
本试验旨在探究盐胁迫下根施丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和褪黑素处理对紫花苜蓿生长、光合特征和抗氧化系统的影响。设置盐胁迫下(100 mmol·L-1 NaCl)对紫花苜蓿根施褪黑素(0、50、100、150、200 μmol·L-1)并接种AMF变形球囊霉以及不接种对照共10个处理。结果表明,AMF与紫花苜蓿能形成稳定共生关系,根施褪黑素能够增加AMF菌根侵染率以及泡囊数,菌根侵染率最高达65.2%。在根施褪黑素100 μmol·L-1水平下,与对照相比,接种AMF处理的紫花苜蓿总生物量、叶绿素a、叶绿素b含量分别提高5.4%、7.3%和45.3%,根冠比下降39.5%;净光合速率(Pn)、蒸腾速率(Tr)、胞间CO2浓度(Ci)和气孔导度(Gs)分别增加23.3%、28.3%、17.6%和14.1%;最大光化学效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)分别提高19.6%和22.9%;叶片中氮、磷、钾含量分别是对照的1.4、1.1和1.2倍,钠含量比对照下降11.1%;紫花苜蓿铜锌超氧化物歧化酶(Cu/Zn-SOD)基因表达量提高33.9%,POD基因表达量提高16.8%,CAT基因表达量提高6.4%,抗氧化酶系统中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性也表现为一定幅度的增加。结论认为,AMF和褪黑素均能够增加紫花苜蓿对氮、磷、钾等养分的吸收量而降低对钠的吸收量,进而提高光合作用能力以及叶绿素a、b含量和叶绿素荧光参数,上调Cu/Zn-SOD、POD、CAT基因表达量并显著增加SOD、POD、CAT等活性,其中以接种AMF配合根施100 μmol·L-1褪黑素改善紫花苜蓿生长状况、光合特征,提高抗盐性的作用最为显著。
谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64-75.
Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss[J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75.
基因名Gene name | 引物序列Gene primer | 熔点Melting point (℃) |
---|---|---|
Actin | F: GATGCTGAGGATATTCAACCCC R: CCATGACACCAGTATGACGAGG | 60.73 59.80 |
CAT | F: CCTATTTGATGATGTGGGTGTCC R: GTCTTGAGTAGCATGGCTGTGGT | 60.84 59.43 |
POD | F: GTTCTGGGGTGTGATGC R: GTATTCGGTTTGCGGTT | 59.87 59.62 |
Cu/Zn-SOD | F: GTGACCTGGGAAACATTATTGCTGA R: ATACTGGAGTCAAGCCAACCACACC | 60.31 60.40 |
表1 实时荧光定量反应的引物信息
Table 1 Primer information for real-time fluorescence quantitative reaction
基因名Gene name | 引物序列Gene primer | 熔点Melting point (℃) |
---|---|---|
Actin | F: GATGCTGAGGATATTCAACCCC R: CCATGACACCAGTATGACGAGG | 60.73 59.80 |
CAT | F: CCTATTTGATGATGTGGGTGTCC R: GTCTTGAGTAGCATGGCTGTGGT | 60.84 59.43 |
POD | F: GTTCTGGGGTGTGATGC R: GTATTCGGTTTGCGGTT | 59.87 59.62 |
Cu/Zn-SOD | F: GTGACCTGGGAAACATTATTGCTGA R: ATACTGGAGTCAAGCCAACCACACC | 60.31 60.40 |
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 侵染率 Infection rate (%) | 泡囊数 Number of vesicles (number·cm-1 root) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root crown ratio |
---|---|---|---|---|---|
CK | 0 | - | - | 0.435±0.038d | 0.637±0.066a |
50 | - | - | 0.567±0.082bc | 0.443±0.125abc | |
100 | - | - | 0.702±0.018a | 0.410±0.090abc | |
150 | - | - | 0.638±0.045abc | 0.471±0.073abc | |
200 | - | - | 0.526±0.037cd | 0.568±0.071ab | |
AMF | 0 | 59.2±1.64b | 15.0±0.6b | 0.660±0.064ab | 0.547±0.161ab |
50 | 62.5±2.42ab | 16.3±0.3ab | 0.725±0.033a | 0.359±0.046abc | |
100 | 65.2±2.55a | 17.7±0.3a | 0.740±0.020a | 0.248±0.054c | |
150 | 53.1±1.34c | 16.7±0.3ab | 0.707±0.015a | 0.305±0.059bc | |
200 | 34.1±0.46d | 15.2±0.5b | 0.697±0.023a | 0.446±0.156abc |
表2 AMF和褪黑素处理对紫花苜蓿生物量和菌根侵染的影响
Table 2 Effects of AMF and melatonin treatment on the biomass and mycorrhizal infection of M. sativa
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 侵染率 Infection rate (%) | 泡囊数 Number of vesicles (number·cm-1 root) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root crown ratio |
---|---|---|---|---|---|
CK | 0 | - | - | 0.435±0.038d | 0.637±0.066a |
50 | - | - | 0.567±0.082bc | 0.443±0.125abc | |
100 | - | - | 0.702±0.018a | 0.410±0.090abc | |
150 | - | - | 0.638±0.045abc | 0.471±0.073abc | |
200 | - | - | 0.526±0.037cd | 0.568±0.071ab | |
AMF | 0 | 59.2±1.64b | 15.0±0.6b | 0.660±0.064ab | 0.547±0.161ab |
50 | 62.5±2.42ab | 16.3±0.3ab | 0.725±0.033a | 0.359±0.046abc | |
100 | 65.2±2.55a | 17.7±0.3a | 0.740±0.020a | 0.248±0.054c | |
150 | 53.1±1.34c | 16.7±0.3ab | 0.707±0.015a | 0.305±0.059bc | |
200 | 34.1±0.46d | 15.2±0.5b | 0.697±0.023a | 0.446±0.156abc |
指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT | 指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT |
---|---|---|---|---|---|---|---|
总生物量Total biomass | 5.941** | 0.565NS | 4.010* | 超氧化物歧化酶SOD | 0.579NS | 5.066** | 1.559NS |
根冠比Root/shoot | 2.357NS | 2.328NS | 0.853NS | 过氧化物酶POD | 10.346** | 5.650** | 8.662** |
叶绿素a Chlorophyll a | 6.289** | 3.223NS | 6.705** | 过氧化氢酶CAT | 2.644NS | 1.432NS | 0.256NS |
叶绿素b Chlorophyll b | 5.470** | 0.958NS | 14.474** | 铜锌超氧化物歧化酶基因表达量Cu/Zn-SOD gene expression level | 0.456NS | 7.234** | 2.449NS |
PSⅡ最大光合效率Fv/Fm | 2.603NS | 6.309** | 0.995NS | ||||
PSⅡ潜在活性Fv/Fo | 1.234NS | 4.078* | 2.759NS | 过氧化物酶基因表达量POD gene expression level | 8.366** | 5.523** | 19.761** |
净光合速率 Pn | 0.489NS | 6.091** | 2.909NS | 过氧化氢酶基因表达量CAT gene expression level | 2.344NS | 1.434NS | 0.678NS |
蒸腾速率 Tr | 5.956** | 2.050NS | 10.682** | 钾K | 2.402NS | 1.170NS | 23.001** |
气孔导度 Gs | 1.671NS | 1.398NS | 0.198NS | 氮N | 0.257NS | 0.286NS | 50.656** |
胞间CO2浓度 Ci | 5.662** | 4.324* | 2.832NS | 磷P | 0.001NS | 0.177NS | 8.166** |
钠Na | 10.125** | 0.656NS | 31.730** |
表3 紫花苜蓿各指标二元方差分析
Table 3 Binary analysis of variance for various indicators of M. sativa
指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT | 指标 Index | 从枝菌根真菌 AMF | 褪黑素 MT | 从枝菌根真菌×褪黑素 AMF×MT |
---|---|---|---|---|---|---|---|
总生物量Total biomass | 5.941** | 0.565NS | 4.010* | 超氧化物歧化酶SOD | 0.579NS | 5.066** | 1.559NS |
根冠比Root/shoot | 2.357NS | 2.328NS | 0.853NS | 过氧化物酶POD | 10.346** | 5.650** | 8.662** |
叶绿素a Chlorophyll a | 6.289** | 3.223NS | 6.705** | 过氧化氢酶CAT | 2.644NS | 1.432NS | 0.256NS |
叶绿素b Chlorophyll b | 5.470** | 0.958NS | 14.474** | 铜锌超氧化物歧化酶基因表达量Cu/Zn-SOD gene expression level | 0.456NS | 7.234** | 2.449NS |
PSⅡ最大光合效率Fv/Fm | 2.603NS | 6.309** | 0.995NS | ||||
PSⅡ潜在活性Fv/Fo | 1.234NS | 4.078* | 2.759NS | 过氧化物酶基因表达量POD gene expression level | 8.366** | 5.523** | 19.761** |
净光合速率 Pn | 0.489NS | 6.091** | 2.909NS | 过氧化氢酶基因表达量CAT gene expression level | 2.344NS | 1.434NS | 0.678NS |
蒸腾速率 Tr | 5.956** | 2.050NS | 10.682** | 钾K | 2.402NS | 1.170NS | 23.001** |
气孔导度 Gs | 1.671NS | 1.398NS | 0.198NS | 氮N | 0.257NS | 0.286NS | 50.656** |
胞间CO2浓度 Ci | 5.662** | 4.324* | 2.832NS | 磷P | 0.001NS | 0.177NS | 8.166** |
钠Na | 10.125** | 0.656NS | 31.730** |
图1 AMF和褪黑素处理对紫花苜蓿叶绿素含量的影响不同小写字母表示CK、AMF处理下以及不同浓度褪黑素处理间差异显著(P<0.05);CK:不接种AMF。AMF:接种变形球囊霉。下同。Different lowercase letters represent that the difference among different concentrations of melatonin treatments and CK, AMF treatment has reached a significant level (P<0.05). CK: No AMF inoculation; AMF: G. versiforme inoculation. The same below.
Fig.1 Effect of AMF and melatonin treatment on chlorophyll content of M. sativa
图5 AMF和褪黑素处理对紫花苜蓿Cu/Zn-SOD、POD以及CAT基因表达的影响
Fig.5 Effect of AMF and melatonin treatment on the expression of Cu/Zn-SOD, POD, and CAT genes in M. sativa
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 钾含量 K content | 氮含量 N content | 磷含量 P content | 钠含量 Na content |
---|---|---|---|---|---|
CK | 0 | 0.267±0.012f | 0.758±0.010f | 0.165±0.029d | 4.465±0.203a |
50 | 0.347±0.009e | 2.808±0.138bc | 0.362±0.081ab | 3.834±0.204b | |
100 | 0.576±0.015b | 2.935±0.596b | 0.411±0.049a | 2.400±0.116cd | |
150 | 0.427±0.020cd | 2.289±0.031de | 0.395±0.075ab | 3.766±0.201b | |
200 | 0.317±0.015ef | 1.780±0.149e | 0.257±0.024bcd | 4.367±0.103a | |
AMF | 0 | 0.353±0.026de | 1.169±0.231f | 0.205±0.052cd | 3.468±0.186b |
50 | 0.440±0.017c | 3.148±0.047b | 0.424±0.024a | 2.866±0.145c | |
100 | 0.683±0.038a | 3.986±0.592a | 0.456±0.053a | 2.133±0.089d | |
150 | 0.580±0.035b | 2.365±0.208cd | 0.415±0.020a | 2.832±0.145c | |
200 | 0.470±0.021c | 1.894±0.253de | 0.331±0.032abc | 3.400±0.058b |
表4 AMF和褪黑素处理对紫花苜蓿矿质元素含量的影响
Table 4 AMF and melatonin treatment effects on mineral element content of M. sativa (mmol·g-1)
处理 Treatments | 褪黑素浓度 Melatonin concentration (μmol·L-1) | 钾含量 K content | 氮含量 N content | 磷含量 P content | 钠含量 Na content |
---|---|---|---|---|---|
CK | 0 | 0.267±0.012f | 0.758±0.010f | 0.165±0.029d | 4.465±0.203a |
50 | 0.347±0.009e | 2.808±0.138bc | 0.362±0.081ab | 3.834±0.204b | |
100 | 0.576±0.015b | 2.935±0.596b | 0.411±0.049a | 2.400±0.116cd | |
150 | 0.427±0.020cd | 2.289±0.031de | 0.395±0.075ab | 3.766±0.201b | |
200 | 0.317±0.015ef | 1.780±0.149e | 0.257±0.024bcd | 4.367±0.103a | |
AMF | 0 | 0.353±0.026de | 1.169±0.231f | 0.205±0.052cd | 3.468±0.186b |
50 | 0.440±0.017c | 3.148±0.047b | 0.424±0.024a | 2.866±0.145c | |
100 | 0.683±0.038a | 3.986±0.592a | 0.456±0.053a | 2.133±0.089d | |
150 | 0.580±0.035b | 2.365±0.208cd | 0.415±0.020a | 2.832±0.145c | |
200 | 0.470±0.021c | 1.894±0.253de | 0.331±0.032abc | 3.400±0.058b |
1 | Zeng H Q, Bai Y J, Wei Y X. Phytomelatonin as a central molecule in plant disease resistance. Journal of Experimental Botany, 2022, 73(17): 5874-5885. |
2 | Ma Z K, Yang K, Wang J C, et al. Exogenous melatonin enhances the low phosphorus tolerance of barley roots of different genotypes. Cells, 2023, 12(10): 1397. |
3 | Xue Y W, Wang W J, Fu J J. Molecular mechanism research progress of melatonin-mediated abiotic/biotic stress response in plant. Hans Journal of Agricultural Sciences, 2019, 9(4): 323-330. |
4 | Arnao M B, Hernández-Ruiz J. Melatonin: A new plant hor-mone and/or a plant master regulator? Trends in Plant Science, 2019, 24(1): 38-48. |
5 | Kanwar M K, Yu J Q, Zhou J. Phytomelatonin: Recent advances and future prospects. Journal of Pineal Research, 2018, 65(4): e12526. |
6 | Liang T T, Zhang Y J, Li Y, et al. Physiological and molecular mechanisms of melatonin in alleviating waterlogging stress to plants. Plant Physiology Journal, 2023, 59(1): 44-54. |
梁甜甜, 张艳军, 李燕, 等. 褪黑素缓解植物涝渍胁迫的生理和分子机制. 植物生理学报, 2023, 59(1): 44-54. | |
7 | Li J W, Ma D M, Su L N, et al. Effects of exogenous melatonin on oat seedling growth and antioxidant system under salt stress. Acta Agrestia Sinica, 2023, 31(2): 396-403. |
李嘉文, 麻冬梅, 苏立娜, 等. 外源褪黑素对盐胁迫下燕麦幼苗生长及抗氧化系统的影响. 草地学报, 2023, 31(2): 396-403. | |
8 | Su L N, Ma D M, Li J W, et al. Implications of exogenous melatonin on the physiological and photosynthetic characteristics of the seedlings of two alfalfa varieties. Acta Agrestia Sinica, 2023, 31(3): 726-732. |
苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响. 草地学报, 2023, 31(3): 726-732. | |
9 | Yin J P, Wang Z Q, Qi M F, et al. Effects of melatonin application on photosynthetic function in tomato seedlings under salt stress. Chinese Journal of Ecology, 2019, 38(2): 467-475. |
尹赜鹏, 王珍琪, 齐明芳, 等. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响. 生态学杂志, 2019, 38(2): 467-475. | |
10 | Zhao L J, Ma D M, Wang W J, et al. Effect of exogenous melatonin on antioxidant capacity and photosynthetic efficiency of alfalfa seedling under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1355-1363. |
赵丽娟, 麻冬梅, 王文静, 等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响. 西北植物学报, 2021, 41(8): 1355-1363. | |
11 | Stevens K J, Wall C B, Janssen J A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L. and Eclipta prostrata L. grown under three levels of water availability. Mycorrhiza, 2011, 21(4): 279-288. |
12 | Deljou M J N, Marouf A, Hamedan H J. Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on gerbera cut flower (Gerbera jamesonii) production in soilless cultivation. Acta Horticulturae, 2014, 1034(32): 417-422. |
13 | Asrar A A, Abdel-Fattah G M, Elhindi K M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 2012, 50(2): 305-316. |
14 | Zhou X N, Yang L, Xu J, et al. Effects of inoculation with AM fungi on the growth of sunflower grown in soil with different saltinity. Journal of Agricultural Resources and Environment, 2020, 37(5): 744-752. |
周昕南, 杨亮, 许静, 等. 接种AM真菌对不同盐度土壤中向日葵生长的影响. 农业资源与环境学报, 2020, 37(5): 744-752. | |
15 | Jia T T, Chang W, Fan X X, et al. Effects of arbuscular mycorrhizal fungi on photosynthetic and chlorophyll fluorescence characteristics in Elaeagnus angustifolia seedlings under salt stress. Acta Ecologica Sinica, 2018, 38(4): 1337-1347. |
贾婷婷, 常伟, 范晓旭, 等. 盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响. 生态学报, 2018, 38(4): 1337-1347. | |
16 | Wang Y N, Tao S, Hua X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress. Acta Ecologica Sinica, 2018, 38(6): 2187-2194. |
王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响. 生态学报, 2018, 38(6): 2187-2194. | |
17 | Maeda Y. Plant salt tolerance and removal of salt in saline soil by plants. Bulletin of the Society of Sea Water Science, Japan, 2012, 66(2): 92-98. |
18 | Zhou X J, Huang H X, Zhang J X, et al. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2023, 32(2): 75-83. | |
19 | Lu Q, Yang L, Wang H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. elegans. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 29-36. |
鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应. 南京林业大学学报(自然科学版), 2020, 44(4): 29-36. | |
20 | Wang Y, Li J, Li S X. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析. 草业学报, 2023, 32(3): 107-117. | |
21 | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. |
刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. | |
22 | Wang X K. The principles and techniques of physiological and biochemical experiment of plants. Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006. | |
23 | Xing X L. Effects of exogenous proline and salicylic acid on physiological characteristics and antioxidant enzyme gene expression of alfalfa under saline-alkali stress. Shenyang: Liaoning University, 2020. |
邢晓琳. 外源脯氨酸和水杨酸对盐碱胁迫下紫花苜蓿生理特性及抗氧化酶基因表达的影响. 沈阳: 辽宁大学, 2020. | |
24 | Kenneth J L, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Ct method. Methods, 2001, 25(4): 402-408. |
25 | Bao S D. Soil agro-chemistrical analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
26 | Lu S, Guo H, Wang S M, et al. Effects of AM fungi on growth and physiological characters of Medicago sativa L. under NaCl stress. Journal of Soil and Water Conservation, 2011, 25(2): 227-231. |
陆爽, 郭欢, 王绍明, 等. 盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响. 水土保持学报, 2011, 25(2): 227-231. | |
27 | Duan Q Q, Yang X H, Huang X Z. Signal exchange between plants and arbuscular mycorrhizae fungi during the early stage of symbiosis-A review. Acta Microbiologica Sinica, 2015, 55(7): 819-825. |
段倩倩, 杨晓红, 黄先智. 植物与丛枝菌根真菌在共生早期的信号交流. 微生物学报, 2015, 55(7): 819-825. | |
28 | Pu Z T, Zhang L, Zhang C, et al. Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime. Soils, 2022, 54(5): 882-889. |
蒲子天, 张林, 张弛, 等. 丛枝菌根真菌与植物共生影响植物水分状态的研究进展. 土壤, 2022, 54(5): 882-889. | |
29 | Wei D, Peng Z, Jun P, et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Research, 2018, 33: 256-265. DOI: 10.1016/j.algal.2018.05.021. |
30 | Zhang N, Zhang H J, Zhao B, et al. The RNA-seqapproach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56(1): 39-50. |
31 | Wang W W, Shen F, Wu Y C, et al. Bio synthesis of melatonin and its role in plant stress: a review. Jiangsu Agricultural Sciences, 2022, 50(1): 1-6. |
王薇薇, 沈峰, 吴永成, 等. 褪黑素生物合成及其在植物逆境胁迫中的作用综述. 江苏农业科学, 2022, 50(1): 1-6. | |
32 | Sun C, Liu L, Wang L, et al. Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 2021, 63(1): 126-145. |
33 | Song X F, Gan C D, Zhao H Y, et al. Concentration-dependent effect of foliar spraying of melatonin on salt tolerance of rice. Acta Pedologica Sinica, 2018, 55(2): 455-466. |
宋雪飞, 甘淳丹, 赵海燕, 等. 叶面喷施褪黑素调控水稻幼苗耐盐性的浓度效应研究. 土壤学报, 2018, 55(2): 455-466. | |
34 | Maillet F, Poinsot V, André O, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58-63. |
35 | Garg N, Pandey R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza, 2015, 25(3): 165-180. |
36 | Hajiboland R, Dashtebani F, Aliasgharzad N. Physiological responses of halophytic C4, grass Aeluropus littoralis, to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica, 2015, 53(4): 572-584. |
37 | Guo A H. Influences of exogenous melatonin on seedling growth of Sonchus oleraceus L. under salt stress. Jiangsu Agricultural Sciences, 2022, 50(13): 153-157. |
郭爱华. 外源褪黑素对盐胁迫下苦菜幼苗生长的影响. 江苏农业科学, 2022, 50(13): 153-157. | |
38 | Yao Y T, Zhang G X, Ding S P, et al. Effects of salt stress on strawberry seedling growth and antioxidant system. Northern Horticulture, 2021(17): 22-29. |
姚玉涛, 张国新, 丁守鹏, 等. 盐胁迫对草莓苗期生长及氧化还原系统的影响. 北方园艺, 2021(17): 22-29. | |
39 | Yan M, Yao Y D, Mou K P, et al. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
闫梅, 姚彦东, 牟开萍, 等. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性. 浙江农业学报, 2022, 34(9): 1901-1910. | |
40 | Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. |
肖国增, 滕珂, 李林洁, 等. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. |
[1] | 高金柱, 赵东豪, 高乐, 苏喜浩, 何学青. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186. |
[2] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[3] | 段海霞, 师茜, 康生萍, 苟海青, 罗崇亮, 熊友才. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182. |
[4] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
[5] | 刘昊, 李显炀, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 紫花苜蓿SAUR基因家族的鉴定及其在非生物胁迫中的表达模式研究[J]. 草业学报, 2024, 33(4): 135-153. |
[6] | 李显炀, 刘昊, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 全基因组水平紫花苜蓿WRKY转录因子家族鉴定与表达模式分析[J]. 草业学报, 2024, 33(4): 154-170. |
[7] | 高承芳, 桑雷, 孙世坤, 陈冬金, 王锦祥, 谢喜平. 饲粮中葛藤不同添加量对肉兔养分表观消化率、胃肠道发育及消化酶活性的影响[J]. 草业学报, 2024, 33(4): 199-209. |
[8] | 黄琳曦, 陈倩, 张先言, 闫顺, 杨云, 辛培尧, 汪琼. 两种乔木凋落叶浸提液处理对地毯草土壤酶活性及其化学计量比的影响[J]. 草业学报, 2024, 33(4): 35-46. |
[9] | 马路平, 石兆勇, 韦文敬, 杨爽. 基于Meta分析菌根菌对植物叶片生理的影响[J]. 草业学报, 2024, 33(4): 99-109. |
[10] | 李妍, 马富龙, 韩路, 王海珍. 美国‘WL’系列不同秋眠级苜蓿品种在南疆的生产性能与适应性评价[J]. 草业学报, 2024, 33(3): 139-149. |
[11] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
[12] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
[13] | 唐璎, 刘晓静, 赵雅姣, 董霖. 甘肃不同区域青贮紫花苜蓿乳酸菌群落特征及其驱动因子研究[J]. 草业学报, 2024, 33(2): 112-124. |
[14] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[15] | 周建玲, 梁巧兰, 魏列新, 周其宇, 田龙, 陈应娥, 王存颖, 张国印. 不同症状类型苜蓿病毒病AMV病原检测及其寄主范围测定[J]. 草业学报, 2024, 33(1): 126-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||