草业学报 ›› 2026, Vol. 35 ›› Issue (1): 25-39.DOI: 10.11686/cyxb2025075
收稿日期:2025-03-11
修回日期:2025-05-06
出版日期:2026-01-20
发布日期:2025-11-13
通讯作者:
姚拓
作者简介:E-mail: yaotuo@gsau.edu.cn基金资助:
Ying ZHANG(
), Shan-mu HE, Ao-lei HE, Chang-ning LI, Tuo YAO(
)
Received:2025-03-11
Revised:2025-05-06
Online:2026-01-20
Published:2025-11-13
Contact:
Tuo YAO
摘要:
为研究微生物菌剂与有机钙蛋白联合配施对紫花苜蓿生长和土壤酶活性的影响,以蕈状芽孢杆菌Y1、莫哈韦芽孢杆菌LrM2和产黄假单胞菌M1为候选菌株,制备了3种浓度的微生物菌剂(108、109和1010 cfu·mL-1),每种浓度的微生物菌剂分别配施5种有机钙蛋白添加量(2%、4%、6%、8%和10%),通过盆栽试验观测各处理对紫花苜蓿生长性状、营养品质、根系形态和土壤酶活性的影响。结果表明:1)各处理均能促进紫花苜蓿生长,第1茬干重最高的是D4处理(1010 cfu·mL-1微生物菌剂+6%有机钙蛋白),为1.47 g·30株-1,第2茬干重最高的是B5处理(108 cfu·mL-1微生物菌剂+8%有机钙蛋白),为5.5 g·30株-1;2)微生物菌剂与有机钙蛋白配施显著提高了紫花苜蓿的总根长、根直径、根表面积和根体积,在同一微生物菌剂浓度前提下,随有机钙蛋白增加,以上指标均呈先增加后降低的趋势;3)C5处理(109 cfu·mL-1微生物菌剂+8%有机钙蛋白)的紫花苜蓿相对饲用价值可达226.56,D5处理(1010 cfu·mL-1微生物菌剂+8%有机钙蛋白)的总叶绿素含量最高;4)与单独施用微生物菌剂相比,两者配施提高了土壤碱性磷酸酶、蔗糖酶、过氧化氢酶及脲酶活性;5)经优劣解距离法(TOPSIS)综合评价,D4处理不但能促进紫花苜蓿生长,还可以提高土壤酶活性,可在生产上推广应用。
张颖, 贺善睦, 何傲蕾, 李昌宁, 姚拓. 微生物菌剂与有机钙蛋白配施对紫花苜蓿生长和土壤酶活性的影响[J]. 草业学报, 2026, 35(1): 25-39.
Ying ZHANG, Shan-mu HE, Ao-lei HE, Chang-ning LI, Tuo YAO. Effects of microbial inoculants combined with organic calcium protein on alfalfa growth and soil enzyme activity[J]. Acta Prataculturae Sinica, 2026, 35(1): 25-39.
菌株编号 Strain code | 菌株学名 Scientific name | 宿主植物 Host plant | 促生特性 Growth promoting characteristic |
|---|---|---|---|
| Y1 | 蕈状芽孢杆菌Bacillus mycoides | 珠芽蓼Polygonum viviparum | 固氮,溶磷,分泌植物生长素[ Nitrogen fixation, phosphorus dissolving, secreting auxin[ |
| LrM2 | 莫哈韦芽孢杆菌Bacillus mojavensis | 洽草Koeleria glauca | |
| M1 | 产黄假单胞菌Pseudomonas synxantha | 草地早熟禾Poa pratensis |
表1 供试菌株
Table 1 Tested strains
菌株编号 Strain code | 菌株学名 Scientific name | 宿主植物 Host plant | 促生特性 Growth promoting characteristic |
|---|---|---|---|
| Y1 | 蕈状芽孢杆菌Bacillus mycoides | 珠芽蓼Polygonum viviparum | 固氮,溶磷,分泌植物生长素[ Nitrogen fixation, phosphorus dissolving, secreting auxin[ |
| LrM2 | 莫哈韦芽孢杆菌Bacillus mojavensis | 洽草Koeleria glauca | |
| M1 | 产黄假单胞菌Pseudomonas synxantha | 草地早熟禾Poa pratensis |
处理 Treatment | 处理方法 Processing method | 处理Treatment | 处理方法 Processing method |
|---|---|---|---|
| A1 | LB液体培养基LB liquid medium | C1 | 109 cfu·mL-1微生物菌剂109 cfu·mL-1 microbial inoculants |
| A2 | LB液体培养基+2%有机钙蛋白LB liquid medium+2% organic calcium protein | C2 | 109 cfu·mL-1 微生物菌剂+2%有机钙蛋白109 cfu·mL-1 microbial inoculants+2% organic calcium protein |
| A3 | LB液体培养基+4%有机钙蛋白LB liquid medium+4% organic calcium protein | C3 | 109 cfu·mL-1微生物菌剂+4%有机钙蛋白109 cfu·mL-1 microbial inoculants+4% organic calcium protein |
| A4 | LB液体培养基+6%有机钙蛋白LB liquid medium+6% organic calcium protein | C4 | 109 cfu·mL-1微生物菌剂+6%有机钙蛋白109 cfu·mL-1 microbial inoculants+6% organic calcium protein |
| A5 | LB液体培养基+8%有机钙蛋白LB liquid medium+8% organic calcium protein | C5 | 109 cfu·mL-1微生物菌剂+8%有机钙蛋白109 cfu·mL-1 microbial inoculants+8% organic calcium protein |
| A6 | LB液体培养基+10%有机钙蛋白LB liquid medium+10% organic calcium protein | C6 | 109 cfu·mL-1微生物菌剂+10%有机钙蛋白109 cfu·mL-1 microbial inoculants+10% organic calcium protein |
| B1 | 108 cfu·mL-1微生物菌剂108 cfu·mL-1 microbial inoculants | D1 | 1010 cfu·mL-1微生物菌剂1010 cfu·mL-1 microbial inoculants |
| B2 | 108 cfu·mL-1微生物菌剂+2%有机钙蛋白108 cfu·mL-1 microbial inoculants+2% organic calcium protein | D2 | 1010 cfu·mL-1微生物菌剂+2%有机钙蛋白1010 cfu·mL-1 microbial inoculants+2% organic calcium protein |
| B3 | 108 cfu·mL-1微生物菌剂+4%有机钙蛋白108 cfu·mL-1 microbial inoculants+4% organic calcium protein | D3 | 1010 cfu·mL-1微生物菌剂+4%有机钙蛋白1010 cfu·mL-1 microbial inoculants+4% organic calcium protein |
| B4 | 108 cfu·mL-1微生物菌剂+6%有机钙蛋白108 cfu·mL-1 microbial inoculants+6% organic calcium protein | D4 | 1010 cfu·mL-1微生物菌剂+6%有机钙蛋白1010 cfu·mL-1 microbial inoculants+6% organic calcium protein |
| B5 | 108 cfu·mL-1微生物菌剂+8%有机钙蛋白108 cfu·mL-1 microbial inoculants+8% organic calcium protein | D5 | 1010 cfu·mL-1微生物菌剂+8%有机钙蛋白1010 cfu·mL-1 microbial inoculants+8% organic calcium protein |
| B6 | 108 cfu·mL-1微生物菌剂+10%有机钙蛋白108 cfu·mL-1 microbial inoculants+10% organic calcium protein | D6 | 1010 cfu·mL-1微生物菌剂+10%有机钙蛋白1010 cfu·mL-1 microbial inoculants+10% organic calcium protein |
表2 试验处理
Table 2 Experimental treatments
处理 Treatment | 处理方法 Processing method | 处理Treatment | 处理方法 Processing method |
|---|---|---|---|
| A1 | LB液体培养基LB liquid medium | C1 | 109 cfu·mL-1微生物菌剂109 cfu·mL-1 microbial inoculants |
| A2 | LB液体培养基+2%有机钙蛋白LB liquid medium+2% organic calcium protein | C2 | 109 cfu·mL-1 微生物菌剂+2%有机钙蛋白109 cfu·mL-1 microbial inoculants+2% organic calcium protein |
| A3 | LB液体培养基+4%有机钙蛋白LB liquid medium+4% organic calcium protein | C3 | 109 cfu·mL-1微生物菌剂+4%有机钙蛋白109 cfu·mL-1 microbial inoculants+4% organic calcium protein |
| A4 | LB液体培养基+6%有机钙蛋白LB liquid medium+6% organic calcium protein | C4 | 109 cfu·mL-1微生物菌剂+6%有机钙蛋白109 cfu·mL-1 microbial inoculants+6% organic calcium protein |
| A5 | LB液体培养基+8%有机钙蛋白LB liquid medium+8% organic calcium protein | C5 | 109 cfu·mL-1微生物菌剂+8%有机钙蛋白109 cfu·mL-1 microbial inoculants+8% organic calcium protein |
| A6 | LB液体培养基+10%有机钙蛋白LB liquid medium+10% organic calcium protein | C6 | 109 cfu·mL-1微生物菌剂+10%有机钙蛋白109 cfu·mL-1 microbial inoculants+10% organic calcium protein |
| B1 | 108 cfu·mL-1微生物菌剂108 cfu·mL-1 microbial inoculants | D1 | 1010 cfu·mL-1微生物菌剂1010 cfu·mL-1 microbial inoculants |
| B2 | 108 cfu·mL-1微生物菌剂+2%有机钙蛋白108 cfu·mL-1 microbial inoculants+2% organic calcium protein | D2 | 1010 cfu·mL-1微生物菌剂+2%有机钙蛋白1010 cfu·mL-1 microbial inoculants+2% organic calcium protein |
| B3 | 108 cfu·mL-1微生物菌剂+4%有机钙蛋白108 cfu·mL-1 microbial inoculants+4% organic calcium protein | D3 | 1010 cfu·mL-1微生物菌剂+4%有机钙蛋白1010 cfu·mL-1 microbial inoculants+4% organic calcium protein |
| B4 | 108 cfu·mL-1微生物菌剂+6%有机钙蛋白108 cfu·mL-1 microbial inoculants+6% organic calcium protein | D4 | 1010 cfu·mL-1微生物菌剂+6%有机钙蛋白1010 cfu·mL-1 microbial inoculants+6% organic calcium protein |
| B5 | 108 cfu·mL-1微生物菌剂+8%有机钙蛋白108 cfu·mL-1 microbial inoculants+8% organic calcium protein | D5 | 1010 cfu·mL-1微生物菌剂+8%有机钙蛋白1010 cfu·mL-1 microbial inoculants+8% organic calcium protein |
| B6 | 108 cfu·mL-1微生物菌剂+10%有机钙蛋白108 cfu·mL-1 microbial inoculants+10% organic calcium protein | D6 | 1010 cfu·mL-1微生物菌剂+10%有机钙蛋白1010 cfu·mL-1 microbial inoculants+10% organic calcium protein |
图1 不同施肥处理对紫花苜蓿株高的影响不同小写字母表示在P<0.05水平上同茬紫花苜蓿不同处理间差异显著,下同。Different lowercase letters indicate significant differences among different treatments of the same crop of alfalfa at the P<0.05 level, the same below.
Fig.1 Effects of different fertilization treatments on plant height of alfalfa
处理 Treatment | 总根长 Total root length (cm) | 根表面积 Root surface area (cm2) | 根平均直径 Average root diameter (mm) | 根体积 Root volume (cm3) |
|---|---|---|---|---|
| A1 | 131.18±13.02ab | 15.96±1.86a | 0.375±0.004b | 0.147±0.014c |
| A2 | 171.03±14.13ab | 15.83±1.34a | 0.436±0.017ab | 0.179±0.022bc |
| A3 | 145.22±12.25ab | 19.91±1.64a | 0.482±0.025a | 0.230±0.022ab |
| A4 | 114.99±5.77b | 16.81±0.83a | 0.465±0.004ab | 0.195±0.010bc |
| A5 | 196.92±18.47a | 21.52±1.08a | 0.525±0.041a | 0.276±0.008a |
| A6 | 154.90±11.29ab | 17.27±1.93a | 0.227±0.028c | 0.141±0.015c |
| B1 | 246.83±2.84b | 29.22±1.55ab | 0.404±0.008c | 0.299±0.006ab |
| B2 | 258.93±8.16ab | 26.43±0.90ab | 0.451±0.017bc | 0.236±0.020bc |
| B3 | 207.39±21.88b | 32.32±1.20a | 0.372±0.022c | 0.360±0.012a |
| B4 | 210.77±22.09b | 24.09±2.96b | 0.390±0.011c | 0.201±0.037c |
| B5 | 309.41±14.24a | 26.19±1.17ab | 0.601±0.059a | 0.341±0.007a |
| B6 | 194.96±6.60b | 16.40±0.14c | 0.555±0.037ab | 0.227±0.014bc |
| C1 | 204.56±7.64a | 18.20±0.90a | 0.497±0.047a | 0.456±0.052a |
| C2 | 178.80±17.74a | 21.02±2.57a | 0.416±0.028a | 0.241±0.034b |
| C3 | 192.11±18.62a | 17.70±1.92a | 0.372±0.031a | 0.180±0.024b |
| C4 | 236.96±7.54a | 24.20±3.76a | 0.411±0.027a | 0.321±0.051ab |
| C5 | 226.22±32.33a | 31.26±5.13a | 0.443±0.062a | 0.437±0.050a |
| C6 | 229.44±9.05a | 26.04±2.66a | 0.518±0.039a | 0.335±0.032ab |
| D1 | 178.76±22.26c | 21.99±1.23ab | 0.413±0.030a | 0.226±0.005b |
| D2 | 256.41±12.76ab | 33.26±1.01a | 0.415±0.025a | 0.346±0.028a |
| D3 | 191.90±16.97bc | 23.48±1.36ab | 0.392±0.011a | 0.229±0.007b |
| D4 | 263.26±16.34a | 30.96±3.69a | 0.387±0.015a | 0.339±0.036a |
| D5 | 255.12±5.42ab | 16.91±3.42b | 0.451±0.026a | 0.188±0.035b |
| D6 | 247.81±9.93ab | 24.02±3.03ab | 0.429±0.020a | 0.255±0.020ab |
表3 不同施肥处理对紫花苜蓿根系形态的影响
Table 3 Effects of different fertilization treatments on root morphology of alfalfa
处理 Treatment | 总根长 Total root length (cm) | 根表面积 Root surface area (cm2) | 根平均直径 Average root diameter (mm) | 根体积 Root volume (cm3) |
|---|---|---|---|---|
| A1 | 131.18±13.02ab | 15.96±1.86a | 0.375±0.004b | 0.147±0.014c |
| A2 | 171.03±14.13ab | 15.83±1.34a | 0.436±0.017ab | 0.179±0.022bc |
| A3 | 145.22±12.25ab | 19.91±1.64a | 0.482±0.025a | 0.230±0.022ab |
| A4 | 114.99±5.77b | 16.81±0.83a | 0.465±0.004ab | 0.195±0.010bc |
| A5 | 196.92±18.47a | 21.52±1.08a | 0.525±0.041a | 0.276±0.008a |
| A6 | 154.90±11.29ab | 17.27±1.93a | 0.227±0.028c | 0.141±0.015c |
| B1 | 246.83±2.84b | 29.22±1.55ab | 0.404±0.008c | 0.299±0.006ab |
| B2 | 258.93±8.16ab | 26.43±0.90ab | 0.451±0.017bc | 0.236±0.020bc |
| B3 | 207.39±21.88b | 32.32±1.20a | 0.372±0.022c | 0.360±0.012a |
| B4 | 210.77±22.09b | 24.09±2.96b | 0.390±0.011c | 0.201±0.037c |
| B5 | 309.41±14.24a | 26.19±1.17ab | 0.601±0.059a | 0.341±0.007a |
| B6 | 194.96±6.60b | 16.40±0.14c | 0.555±0.037ab | 0.227±0.014bc |
| C1 | 204.56±7.64a | 18.20±0.90a | 0.497±0.047a | 0.456±0.052a |
| C2 | 178.80±17.74a | 21.02±2.57a | 0.416±0.028a | 0.241±0.034b |
| C3 | 192.11±18.62a | 17.70±1.92a | 0.372±0.031a | 0.180±0.024b |
| C4 | 236.96±7.54a | 24.20±3.76a | 0.411±0.027a | 0.321±0.051ab |
| C5 | 226.22±32.33a | 31.26±5.13a | 0.443±0.062a | 0.437±0.050a |
| C6 | 229.44±9.05a | 26.04±2.66a | 0.518±0.039a | 0.335±0.032ab |
| D1 | 178.76±22.26c | 21.99±1.23ab | 0.413±0.030a | 0.226±0.005b |
| D2 | 256.41±12.76ab | 33.26±1.01a | 0.415±0.025a | 0.346±0.028a |
| D3 | 191.90±16.97bc | 23.48±1.36ab | 0.392±0.011a | 0.229±0.007b |
| D4 | 263.26±16.34a | 30.96±3.69a | 0.387±0.015a | 0.339±0.036a |
| D5 | 255.12±5.42ab | 16.91±3.42b | 0.451±0.026a | 0.188±0.035b |
| D6 | 247.81±9.93ab | 24.02±3.03ab | 0.429±0.020a | 0.255±0.020ab |
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content | 处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content |
|---|---|---|---|---|---|---|---|
| A1 | 1.48±0.07c | 2.07±0.07c | 3.55±0.09d | C1 | 2.95±0.00c | 2.70±0.02c | 5.65±0.02b |
| A2 | 2.41±0.01b | 2.05±0.03c | 4.46±0.03b | C2 | 2.97±0.00ab | 2.41±0.02e | 5.38±0.02d |
| A3 | 1.53±0.06c | 2.53±0.00a | 4.06±0.06c | C3 | 2.98±0.00a | 2.55±0.02d | 5.53±0.03c |
| A4 | 2.89±0.00a | 2.23±0.01b | 5.12±0.01a | C4 | 2.96±0.00bc | 3.14±0.03b | 6.10±0.02a |
| A5 | 2.89±0.01a | 2.34±0.02b | 5.23±0.03a | C5 | 2.97±0.00ab | 3.13±0.03b | 6.10±0.03a |
| A6 | 2.56±0.01b | 2.01±0.01c | 4.56±0.03b | C6 | 2.66±0.01d | 3.51±0.03a | 6.17±0.03a |
| B1 | 2.88±0.01b | 2.45±0.02b | 5.33±0.03b | D1 | 2.91±0.01a | 3.18±0.04e | 6.09±0.04d |
| B2 | 2.96±0.00a | 2.51±0.02b | 5.46±0.02a | D2 | 3.03±0.10a | 3.18±0.06e | 6.22±0.11cd |
| B3 | 2.87±0.01b | 2.23±0.02d | 5.10±0.03d | D3 | 2.87±0.01a | 3.48±0.02d | 6.34±0.03c |
| B4 | 2.86±0.00b | 2.37±0.02c | 5.23±0.03c | D4 | 2.93±0.00a | 3.73±0.02c | 6.67±0.02b |
| B5 | 2.59±0.01c | 1.72±0.01e | 4.31±0.03e | D5 | 2.90±0.01a | 4.25±0.03a | 7.15±0.03a |
| B6 | 2.95±0.00a | 2.58±0.02a | 5.54±0.02a | D6 | 2.91±0.00a | 3.88±0.03b | 6.79±0.03b |
表4 不同施肥处理对紫花苜蓿叶绿素的影响
Table 4 Effects of different fertilization treatments on chlorophyll of alfalfa (mg·g-1)
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content | 处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content |
|---|---|---|---|---|---|---|---|
| A1 | 1.48±0.07c | 2.07±0.07c | 3.55±0.09d | C1 | 2.95±0.00c | 2.70±0.02c | 5.65±0.02b |
| A2 | 2.41±0.01b | 2.05±0.03c | 4.46±0.03b | C2 | 2.97±0.00ab | 2.41±0.02e | 5.38±0.02d |
| A3 | 1.53±0.06c | 2.53±0.00a | 4.06±0.06c | C3 | 2.98±0.00a | 2.55±0.02d | 5.53±0.03c |
| A4 | 2.89±0.00a | 2.23±0.01b | 5.12±0.01a | C4 | 2.96±0.00bc | 3.14±0.03b | 6.10±0.02a |
| A5 | 2.89±0.01a | 2.34±0.02b | 5.23±0.03a | C5 | 2.97±0.00ab | 3.13±0.03b | 6.10±0.03a |
| A6 | 2.56±0.01b | 2.01±0.01c | 4.56±0.03b | C6 | 2.66±0.01d | 3.51±0.03a | 6.17±0.03a |
| B1 | 2.88±0.01b | 2.45±0.02b | 5.33±0.03b | D1 | 2.91±0.01a | 3.18±0.04e | 6.09±0.04d |
| B2 | 2.96±0.00a | 2.51±0.02b | 5.46±0.02a | D2 | 3.03±0.10a | 3.18±0.06e | 6.22±0.11cd |
| B3 | 2.87±0.01b | 2.23±0.02d | 5.10±0.03d | D3 | 2.87±0.01a | 3.48±0.02d | 6.34±0.03c |
| B4 | 2.86±0.00b | 2.37±0.02c | 5.23±0.03c | D4 | 2.93±0.00a | 3.73±0.02c | 6.67±0.02b |
| B5 | 2.59±0.01c | 1.72±0.01e | 4.31±0.03e | D5 | 2.90±0.01a | 4.25±0.03a | 7.15±0.03a |
| B6 | 2.95±0.00a | 2.58±0.02a | 5.54±0.02a | D6 | 2.91±0.00a | 3.88±0.03b | 6.79±0.03b |
处理 Treatment | 干物质 Dry matter (%) | 粗灰分 Crude ash (%) | 粗蛋白 Crude protein (%) | 粗脂肪 Crude fat (%) | 中性洗涤纤维 Neutral detergent fiber (%) | 酸性洗涤纤维 Acid detergent fiber (%) | 相对饲用价值 Relative feeding value (RFV) |
|---|---|---|---|---|---|---|---|
| A1 | 6.57±0.03d | 92.41±1.16b | 18.09±0.10d | 1.26±0.01c | 49.88±0.13a | 36.43±0.19b | 112.86±0.23b |
| A2 | 7.02±0.13c | 94.63±0.32a | 20.93±0.83b | 2.23±0.07a | 46.60±0.23bc | 39.64±1.20a | 115.83±2.34b |
| A3 | 12.25±0.12b | 94.30±0.34a | 26.14±0.20a | 2.17±0.07a | 34.67±1.59d | 27.34±0.18c | 182.15±8.55a |
| A4 | 12.88±0.15a | 94.05±0.04a | 26.84±0.27a | 2.24±0.10a | 31.68±1.27e | 27.29±1.10c | 199.43±10.44a |
| A5 | 6.35±0.14d | 94.63±0.15a | 18.89±0.31cd | 1.69±0.22b | 48.75±0.47ab | 38.15±1.10ab | 112.91±0.86b |
| A6 | 7.19±0.11c | 94.38±0.18a | 20.09±0.29c | 1.81±0.06b | 45.00±0.20c | 38.40±0.27ab | 121.96±0.91b |
| B1 | 12.46±0.20c | 94.16±0.31c | 28.93±0.30a | 2.20±0.00a | 29.28±0.12a | 25.31±0.15b | 219.79±1.25a |
| B2 | 13.67±0.04a | 94.65±0.02ab | 28.87±0.30a | 1.97±0.10a | 30.56±0.55a | 25.97±0.14ab | 209.14±3.50ab |
| B3 | 13.84±0.15a | 94.76±0.11a | 29.16±0.08a | 2.00±0.11a | 29.70±0.66a | 27.25±0.27ab | 212.21±5.37ab |
| B4 | 13.02±0.19bc | 94.70±0.09a | 28.58±0.18ab | 1.89±0.05a | 30.11±0.47a | 28.29±0.54a | 206.72±4.41ab |
| B5 | 13.44±0.30ab | 94.68±0.07a | 27.44±0.68c | 1.05±0.38b | 31.92±1.64a | 26.14±1.28ab | 200.52±7.64b |
| B6 | 13.01±0.16bc | 94.20±0.11bc | 27.65±0.20bc | 2.31±0.10a | 31.58±0.85a | 27.81±1.19ab | 198.48±8.05b |
| C1 | 7.05±0.02b | 95.00±0.03a | 20.48±0.14b | 2.05±0.06a | 46.18±0.30a | 39.88±0.22a | 116.54±1.10b |
| C2 | 12.88±0.22a | 94.42±0.22a | 28.47±0.01a | 2.06±0.02a | 29.36±0.04b | 27.80±0.37c | 213.06±1.21a |
| C3 | 7.67±0.12b | 94.45±0.08a | 20.43±0.49b | 1.66±0.07a | 45.19±0.76a | 37.02±0.42b | 123.72±2.78b |
| C4 | 13.40±0.44a | 94.95±0.17a | 30.57±0.60a | 1.95±0.17a | 29.38±1.09b | 27.54±0.38c | 214.20±8.61a |
| C5 | 13.88±0.16a | 94.72±0.08a | 29.02±0.92a | 1.09±0.20b | 28.25±0.70b | 25.89±0.29d | 226.56±4.85a |
| C6 | 13.35±0.15a | 94.57±0.16a | 28.32±0.46a | 1.76±0.21a | 28.88±0.85b | 28.01±0.32c | 216.40±5.50a |
| D1 | 13.07±0.29a | 94.13±0.07b | 28.06±0.36bc | 2.27±0.05a | 29.44±0.23a | 26.82±0.80bc | 214.93±3.11a |
| D2 | 13.04±0.30a | 94.54±0.27ab | 29.95±0.47a | 1.91±0.14b | 30.79±1.32a | 27.88±0.33ab | 203.81±9.88a |
| D3 | 13.14±0.30a | 94.27±0.12ab | 28.04±0.22bc | 2.08±0.06ab | 30.54±0.26a | 26.49±0.23bc | 208.01±2.28a |
| D4 | 13.24±0.10a | 94.65±0.21ab | 28.96±0.16b | 1.55±0.04c | 30.32±0.54a | 28.69±0.56a | 204.36±4.98a |
| D5 | 13.11±0.15a | 94.46±0.08ab | 27.44±0.05c | 1.79±0.04bc | 31.08±0.05a | 26.11±0.18c | 205.20±0.17a |
| D6 | 12.65±0.16a | 94.72±0.08a | 28.75±0.33b | 1.88±0.14b | 31.46±0.44a | 26.78±0.63bc | 201.34±4.20a |
表5 不同施肥处理对紫花苜蓿营养品质的影响
Table 5 Effects of different fertilization treatments on nutritional quality of alfalfa
处理 Treatment | 干物质 Dry matter (%) | 粗灰分 Crude ash (%) | 粗蛋白 Crude protein (%) | 粗脂肪 Crude fat (%) | 中性洗涤纤维 Neutral detergent fiber (%) | 酸性洗涤纤维 Acid detergent fiber (%) | 相对饲用价值 Relative feeding value (RFV) |
|---|---|---|---|---|---|---|---|
| A1 | 6.57±0.03d | 92.41±1.16b | 18.09±0.10d | 1.26±0.01c | 49.88±0.13a | 36.43±0.19b | 112.86±0.23b |
| A2 | 7.02±0.13c | 94.63±0.32a | 20.93±0.83b | 2.23±0.07a | 46.60±0.23bc | 39.64±1.20a | 115.83±2.34b |
| A3 | 12.25±0.12b | 94.30±0.34a | 26.14±0.20a | 2.17±0.07a | 34.67±1.59d | 27.34±0.18c | 182.15±8.55a |
| A4 | 12.88±0.15a | 94.05±0.04a | 26.84±0.27a | 2.24±0.10a | 31.68±1.27e | 27.29±1.10c | 199.43±10.44a |
| A5 | 6.35±0.14d | 94.63±0.15a | 18.89±0.31cd | 1.69±0.22b | 48.75±0.47ab | 38.15±1.10ab | 112.91±0.86b |
| A6 | 7.19±0.11c | 94.38±0.18a | 20.09±0.29c | 1.81±0.06b | 45.00±0.20c | 38.40±0.27ab | 121.96±0.91b |
| B1 | 12.46±0.20c | 94.16±0.31c | 28.93±0.30a | 2.20±0.00a | 29.28±0.12a | 25.31±0.15b | 219.79±1.25a |
| B2 | 13.67±0.04a | 94.65±0.02ab | 28.87±0.30a | 1.97±0.10a | 30.56±0.55a | 25.97±0.14ab | 209.14±3.50ab |
| B3 | 13.84±0.15a | 94.76±0.11a | 29.16±0.08a | 2.00±0.11a | 29.70±0.66a | 27.25±0.27ab | 212.21±5.37ab |
| B4 | 13.02±0.19bc | 94.70±0.09a | 28.58±0.18ab | 1.89±0.05a | 30.11±0.47a | 28.29±0.54a | 206.72±4.41ab |
| B5 | 13.44±0.30ab | 94.68±0.07a | 27.44±0.68c | 1.05±0.38b | 31.92±1.64a | 26.14±1.28ab | 200.52±7.64b |
| B6 | 13.01±0.16bc | 94.20±0.11bc | 27.65±0.20bc | 2.31±0.10a | 31.58±0.85a | 27.81±1.19ab | 198.48±8.05b |
| C1 | 7.05±0.02b | 95.00±0.03a | 20.48±0.14b | 2.05±0.06a | 46.18±0.30a | 39.88±0.22a | 116.54±1.10b |
| C2 | 12.88±0.22a | 94.42±0.22a | 28.47±0.01a | 2.06±0.02a | 29.36±0.04b | 27.80±0.37c | 213.06±1.21a |
| C3 | 7.67±0.12b | 94.45±0.08a | 20.43±0.49b | 1.66±0.07a | 45.19±0.76a | 37.02±0.42b | 123.72±2.78b |
| C4 | 13.40±0.44a | 94.95±0.17a | 30.57±0.60a | 1.95±0.17a | 29.38±1.09b | 27.54±0.38c | 214.20±8.61a |
| C5 | 13.88±0.16a | 94.72±0.08a | 29.02±0.92a | 1.09±0.20b | 28.25±0.70b | 25.89±0.29d | 226.56±4.85a |
| C6 | 13.35±0.15a | 94.57±0.16a | 28.32±0.46a | 1.76±0.21a | 28.88±0.85b | 28.01±0.32c | 216.40±5.50a |
| D1 | 13.07±0.29a | 94.13±0.07b | 28.06±0.36bc | 2.27±0.05a | 29.44±0.23a | 26.82±0.80bc | 214.93±3.11a |
| D2 | 13.04±0.30a | 94.54±0.27ab | 29.95±0.47a | 1.91±0.14b | 30.79±1.32a | 27.88±0.33ab | 203.81±9.88a |
| D3 | 13.14±0.30a | 94.27±0.12ab | 28.04±0.22bc | 2.08±0.06ab | 30.54±0.26a | 26.49±0.23bc | 208.01±2.28a |
| D4 | 13.24±0.10a | 94.65±0.21ab | 28.96±0.16b | 1.55±0.04c | 30.32±0.54a | 28.69±0.56a | 204.36±4.98a |
| D5 | 13.11±0.15a | 94.46±0.08ab | 27.44±0.05c | 1.79±0.04bc | 31.08±0.05a | 26.11±0.18c | 205.20±0.17a |
| D6 | 12.65±0.16a | 94.72±0.08a | 28.75±0.33b | 1.88±0.14b | 31.46±0.44a | 26.78±0.63bc | 201.34±4.20a |
项目 Item | 信息 熵值 Information entropy (e) | 信息效 用值 Information utility value (d) | 权重系数 Weight coefficient (w,%) | 项目 Item | 信息 熵值 Information entropy (e) | 信息效 用值 Information utility value (d) | 权重系数 Weight coefficient (w,%) |
|---|---|---|---|---|---|---|---|
| 第1茬株高The plant height of the first crop | 0.929 | 0.071 | 6.978 | 总根长Total root length | 0.954 | 0.046 | 4.460 |
| 第2茬株高The plant height of the second crop | 0.962 | 0.038 | 3.767 | 根表面积Root surface area | 0.894 | 0.106 | 10.399 |
| 第1茬茎粗Stem diameter of the first crop | 0.967 | 0.033 | 3.228 | 根平均直径Average root diameter | 0.975 | 0.025 | 2.435 |
| 第2茬茎粗Stem diameter of the second crop | 0.943 | 0.057 | 5.596 | 根体积Root volume | 0.924 | 0.076 | 7.433 |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.027 | 2.664 | 干物质Dry matter | 0.984 | 0.016 | 1.527 |
| 叶绿素b含量Chlorophyll b content | 0.936 | 0.064 | 6.274 | 粗灰分Crude ash | 0.938 | 0.062 | 6.075 |
| 总叶绿素含量Total chlorophyll content | 0.961 | 0.039 | 3.790 | 粗蛋白质Crude protein | 0.951 | 0.049 | 4.829 |
| 第1茬鲜重Fresh weight of the first crop | 0.957 | 0.043 | 4.194 | 粗脂肪Crude fat | 0.961 | 0.039 | 3.804 |
| 第1茬干重Dry weight of the first crop | 0.948 | 0.052 | 5.053 | 中性洗涤纤维Neutral detergent fiber | 0.949 | 0.051 | 5.022 |
| 第2茬鲜重Fresh weight of the second crop | 0.971 | 0.029 | 2.810 | 酸性洗涤纤维Acid detergent fiber | 0.943 | 0.057 | 5.560 |
| 第2茬干重Dry weight of the second crop | 0.958 | 0.042 | 4.103 |
表6 熵值法计算权重结果汇总
Table 6 Summary of weight results calculated by entropy method
项目 Item | 信息 熵值 Information entropy (e) | 信息效 用值 Information utility value (d) | 权重系数 Weight coefficient (w,%) | 项目 Item | 信息 熵值 Information entropy (e) | 信息效 用值 Information utility value (d) | 权重系数 Weight coefficient (w,%) |
|---|---|---|---|---|---|---|---|
| 第1茬株高The plant height of the first crop | 0.929 | 0.071 | 6.978 | 总根长Total root length | 0.954 | 0.046 | 4.460 |
| 第2茬株高The plant height of the second crop | 0.962 | 0.038 | 3.767 | 根表面积Root surface area | 0.894 | 0.106 | 10.399 |
| 第1茬茎粗Stem diameter of the first crop | 0.967 | 0.033 | 3.228 | 根平均直径Average root diameter | 0.975 | 0.025 | 2.435 |
| 第2茬茎粗Stem diameter of the second crop | 0.943 | 0.057 | 5.596 | 根体积Root volume | 0.924 | 0.076 | 7.433 |
| 叶绿素a含量Chlorophyll a content | 0.973 | 0.027 | 2.664 | 干物质Dry matter | 0.984 | 0.016 | 1.527 |
| 叶绿素b含量Chlorophyll b content | 0.936 | 0.064 | 6.274 | 粗灰分Crude ash | 0.938 | 0.062 | 6.075 |
| 总叶绿素含量Total chlorophyll content | 0.961 | 0.039 | 3.790 | 粗蛋白质Crude protein | 0.951 | 0.049 | 4.829 |
| 第1茬鲜重Fresh weight of the first crop | 0.957 | 0.043 | 4.194 | 粗脂肪Crude fat | 0.961 | 0.039 | 3.804 |
| 第1茬干重Dry weight of the first crop | 0.948 | 0.052 | 5.053 | 中性洗涤纤维Neutral detergent fiber | 0.949 | 0.051 | 5.022 |
| 第2茬鲜重Fresh weight of the second crop | 0.971 | 0.029 | 2.810 | 酸性洗涤纤维Acid detergent fiber | 0.943 | 0.057 | 5.560 |
| 第2茬干重Dry weight of the second crop | 0.958 | 0.042 | 4.103 |
项目 Item | 正理想解距离 Positive ideal solution distance (D+) | 负理想解距离 Negative ideal solution distance (D-) | 相对接近度 Relative proximity (C) | 排序结果 Sorting result | 项目 Item | 正理想解距离 Positive ideal solution distance (D+) | 负理想解距离 Negative ideal solution distance (D-) | 相对接近度 Relative proximity (C) | 排序结果 Sorting result |
|---|---|---|---|---|---|---|---|---|---|
| A1 | 0.945 | 0.108 | 0.102 | 24 | C1 | 0.655 | 0.506 | 0.436 | 19 |
| A2 | 0.736 | 0.408 | 0.356 | 22 | C2 | 0.482 | 0.618 | 0.562 | 13 |
| A3 | 0.549 | 0.571 | 0.510 | 17 | C3 | 0.662 | 0.453 | 0.406 | 21 |
| A4 | 0.596 | 0.581 | 0.493 | 18 | C4 | 0.304 | 0.777 | 0.719 | 2 |
| A5 | 0.744 | 0.359 | 0.325 | 23 | C5 | 0.387 | 0.777 | 0.667 | 4 |
| A6 | 0.697 | 0.496 | 0.416 | 20 | C6 | 0.453 | 0.674 | 0.598 | 10 |
| B1 | 0.494 | 0.640 | 0.565 | 12 | D1 | 0.503 | 0.617 | 0.551 | 15 |
| B2 | 0.471 | 0.658 | 0.583 | 11 | D2 | 0.318 | 0.760 | 0.705 | 3 |
| B3 | 0.419 | 0.713 | 0.630 | 6 | D3 | 0.406 | 0.713 | 0.637 | 5 |
| B4 | 0.447 | 0.666 | 0.599 | 8 | D4 | 0.289 | 0.779 | 0.729 | 1 |
| B5 | 0.463 | 0.755 | 0.620 | 7 | D5 | 0.480 | 0.715 | 0.598 | 9 |
| B6 | 0.564 | 0.614 | 0.521 | 16 | D6 | 0.519 | 0.645 | 0.554 | 14 |
表7 TOPSIS评价计算结果
Table 7 TOPSIS evaluation results
项目 Item | 正理想解距离 Positive ideal solution distance (D+) | 负理想解距离 Negative ideal solution distance (D-) | 相对接近度 Relative proximity (C) | 排序结果 Sorting result | 项目 Item | 正理想解距离 Positive ideal solution distance (D+) | 负理想解距离 Negative ideal solution distance (D-) | 相对接近度 Relative proximity (C) | 排序结果 Sorting result |
|---|---|---|---|---|---|---|---|---|---|
| A1 | 0.945 | 0.108 | 0.102 | 24 | C1 | 0.655 | 0.506 | 0.436 | 19 |
| A2 | 0.736 | 0.408 | 0.356 | 22 | C2 | 0.482 | 0.618 | 0.562 | 13 |
| A3 | 0.549 | 0.571 | 0.510 | 17 | C3 | 0.662 | 0.453 | 0.406 | 21 |
| A4 | 0.596 | 0.581 | 0.493 | 18 | C4 | 0.304 | 0.777 | 0.719 | 2 |
| A5 | 0.744 | 0.359 | 0.325 | 23 | C5 | 0.387 | 0.777 | 0.667 | 4 |
| A6 | 0.697 | 0.496 | 0.416 | 20 | C6 | 0.453 | 0.674 | 0.598 | 10 |
| B1 | 0.494 | 0.640 | 0.565 | 12 | D1 | 0.503 | 0.617 | 0.551 | 15 |
| B2 | 0.471 | 0.658 | 0.583 | 11 | D2 | 0.318 | 0.760 | 0.705 | 3 |
| B3 | 0.419 | 0.713 | 0.630 | 6 | D3 | 0.406 | 0.713 | 0.637 | 5 |
| B4 | 0.447 | 0.666 | 0.599 | 8 | D4 | 0.289 | 0.779 | 0.729 | 1 |
| B5 | 0.463 | 0.755 | 0.620 | 7 | D5 | 0.480 | 0.715 | 0.598 | 9 |
| B6 | 0.564 | 0.614 | 0.521 | 16 | D6 | 0.519 | 0.645 | 0.554 | 14 |
| [1] | Wang J, Li M C. Research progress in the application of microbial fertilizers in chemical fertilizer reduction and efficiency increase in orcharding. Microbiology China, 2024, 51(11): 4394-4415. |
| 王佳, 李明聪. 微生物菌肥在植物减肥增效中的应用研究进展: 以果树为例. 微生物学通报, 2024, 51(11): 4394-4415. | |
| [2] | Dai J X, Tian P Y, Shen C, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects. Ecology and Environmental Sciences, 2021, 30(5): 968-975. |
| 代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究. 生态环境学报, 2021, 30(5): 968-975. | |
| [3] | Wei D Q, Zhu D, Zhang Y F, et al. Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of fusarium root rot and promotion of soybean growth. Biological Control, 2023, 186: 105349. |
| [4] | Zhang B, Shi F, Zheng X, et al. Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments. Rice, 2023, 16(1): 18. |
| [5] | Tao C Y, Rong L, Wu X, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8: 1-14. |
| [6] | Zhao G X, Zhu X L, Zheng G, et al. Development of biofertilizers for sustainable agriculture over four decades (1980-2022). Geography and Sustainability, 2024, 5(1): 19-28. |
| [7] | Halamuji, Xia S N, Cui L J, et al. Effects of six nitrogenous compounds on seed germination of Medicago sativa L. under Na2CO3 stress. Chinese Agricultural Science Bulletin, 2014, 30(14): 1-5. |
| 哈拉木吉, 夏盛楠, 崔连军, 等. 6种含氮化合物对Na2CO3胁迫下紫花苜蓿种子萌发特性的影响. 中国农学通报, 2014, 30(14): 1-5. | |
| [8] | Li Q P, Bai J H, Yao T, et al. Effects of the combined application of microbial inoculant and nitrogen fertilizer reduction on the growth, and soil physicochemical properties of alfalfa in Hexi area. Acta Agrestia Sinica, 2024, 32(1): 314-321. |
| 李青璞, 白建海, 姚拓, 等. 微生物菌剂与氮肥配施对紫花苜蓿生长及土壤性质的影响. 草地学报, 2024, 32(1): 314-321. | |
| [9] | Qi P, Liu X J, Liu Y N, et al. Effects of nitrogen fertilizer on nitrogen accumulation in alfalfa and the content of nitrogen in soil. Acta Agrestia Sinica, 2015, 23(5): 1026-1032. |
| 齐鹏, 刘晓静, 刘艳楠, 等. 施氮对不同紫花苜蓿品种氮积累及土壤氮动态变化的影响. 草地学报, 2015, 23(5): 1026-1032. | |
| [10] | Chen C J, Bao M F, Wang W H, et al. Current situation and prospects for drought-resistance breeding in Medicago sativa. Acta Prataculturae Sinica, 2025, 34(3): 204-223. |
| 陈彩锦, 包明芳, 王文虎, 等. 紫花苜蓿抗旱育种研究现状及展望. 草业学报, 2025, 34(3): 204-223. | |
| [11] | He S M, Yao T, Lei Y, et al. Effects of microbial inoculants and chemical fertilizers on the production performance and quality of Phleum pratense. Pratacultural Science, 2024, 41(11): 2706-2714. |
| 贺善睦, 姚拓, 雷杨, 等. 微生物菌剂与化肥减量配施对猫尾草生长的影响. 草业科学, 2024, 41(11): 2706-2714. | |
| [12] | Fu W G. Effects of four kinds of middle-microelement addition on the functional and growth-promoting efficiency of microbial inoculants. Lanzhou: Gansu Agricultural University, 2024. |
| 付卫刚. 4种中微量元素添加对复合菌剂功能及促生效果的影响. 兰州: 甘肃农业大学, 2024. | |
| [13] | Zhang Y C. Mitigation effect and mechanism of plant growth promoting Bacteria mojavensis on salt stress in oats. Lanzhou: Gansu Agricultural University, 2023. |
| 张银翠. 莫哈韦芽孢杆菌(Bacillus mojavensis)对燕麦盐胁迫的缓解效应及机理研究. 兰州: 甘肃农业大学, 2023. | |
| [14] | Yang X L, Li J H, Yao T, et al. Optimization of fermentation conditions of three growth promoting strains and evaluation of effects on Highland barley. Acta Agrestia Sinica, 2022, 30(1): 212-219. |
| 杨晓蕾, 李建宏, 姚拓, 等. 复合促生菌剂发酵条件优化及其对青稞促生效果评价. 草地学报, 2022, 30(1): 212-219. | |
| [15] | Yang X L, Li J H, Yao T, et al. Functional characteristics and culture conditions of five plant growth-promoting rhizobacteria strains. Pratacultural Science, 2022, 39(1): 30-38. |
| 杨晓蕾, 李建宏, 姚拓, 等. 5株植物根际促生菌功能特性及培养条件. 草业科学, 2022, 39(1): 30-38. | |
| [16] | Li Q P. Effect of microbial inoculum with fertilizers on yield, quality and soil properties of alfalfa in the Hexi Corridor. Lanzhou: Gansu Agricultural University, 2024. |
| 李青璞. 菌剂配施化肥对河西走廊紫花苜蓿产量、品质及土壤特性影响. 兰州: 甘肃农业大学, 2024. | |
| [17] | Zhang Y C, Yao T, Zhao G Q, et al. Screening and identification of salt-tolerant growth promoting rhizobacteria and its effects on oat growth under salt stress. Acta Agrestia Sinica, 2021, 29(12): 2645-2652. |
| 张银翠, 姚拓, 赵桂琴, 等. 耐盐促生菌筛选鉴定及对盐胁迫燕麦生长的影响. 草地学报, 2021, 29(12): 2645-2652. | |
| [18] | Han D R, Yao T, Li H Y, et al. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
| 撖冬荣, 姚拓, 李海云, 等. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响. 草业学报, 2022, 31(3): 136-143. | |
| [19] | Cai W Q, Li S X, Wang X T, et al. Effects of interaction between exogenous melatonin and ethylene on the growth and physiological characteristics of Medicago sativa seedlings under salt stress. Acta Prataculturae Sinica, 2025, 34(1): 80-93. |
| 蔡文祺, 李淑霞, 王晓彤, 等. 外源褪黑素与乙烯交互对盐胁迫下紫花苜蓿幼苗生长和生理特性的影响. 草业学报, 2025, 34(1): 80-93. | |
| [20] | Wang X K. The principles and techniques of physiological and biochemical experiment of plants. Beijing: Higher Education Press, 2006. |
| 王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006. | |
| [21] | Cong L L, Gao K, Liu Z H, et al. Effects of phosphorus addition on biomass, root characteristics and stoichiometric characteristics of alfalfa. Chinese Journal of Grassland, 2024, 46(11): 66-73. |
| 丛龙丽, 高凯, 刘之浩, 等. 磷添加对紫花苜蓿生物量、根系特性及化学计量特征的影响. 中国草地学报, 2024, 46(11): 66-73. | |
| [22] | Zhang L, Song Q, Ma S M, et al. Applying grey correlation degree analysis to evaluate nutritional value of 12 Medicago sativa varieties. China Feed, 2023(9): 136-140, 161. |
| 张兰, 宋谦, 马淑梅, 等. 利用灰色关联度法评价12个苜蓿品种的营养价值. 中国饲料, 2023(9): 136-140, 161. | |
| [23] | Guan S Y. Soil enzymes and their research methods. Beijing: Agricultural Press, 1986. |
| 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
| [24] | Han D R, Yao T, Li H Y, et al. Effect of reducing chemical fertilizer and substitution with microbial fertilizer on the growth of Elymus nutans. Acta Prataculturae Sinica, 2022, 31(4): 53-61. |
| 撖冬荣, 姚拓, 李海云, 等. 化肥减量配施微生物肥料对垂穗披碱草生长的影响. 草业学报, 2022, 31(4): 53-61. | |
| [25] | Zhao Y A. Effect of organic fertilizers and rhizobacterial agents on the growth and inter-root microbial diversity of alfalfa. Xining: Qinghai University, 2023. |
| 赵阳安. 有机肥和根瘤菌剂对苜蓿生长及根际微生物多样性的影响. 西宁: 青海大学, 2023. | |
| [26] | Dilfuza E, Gabriela B, Kristina L, et al. Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root-colonizing Pseudomonas. Plant and Soil, 2013, 369(1/2): 453-465. |
| [27] | Li Y Z, Li X R, Zhang J, et al. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Frontiers in Plant Science, 2021, 12: 753011. |
| [28] | Qu W L, Tian Y L, Jing F Y, et al. Effects of microbial agents on growth, physiology and chlorophyll fluorescence parameters of wheat under drought stress. Acta Agriculturae Jiangxi, 2022, 34(10): 30-37. |
| 屈魏蕾, 田玉磊, 井方宇, 等. 微生物菌剂对干旱胁迫下小麦生长生理和叶绿素荧光参数的影响研究. 江西农业学报, 2022, 34(10): 30-37. | |
| [29] | Zhang Z J. Effects of different microbial agents on heat resistence and drought resistance of Lolium perenne. Jingzhou: Yangtze University, 2023. |
| 张子嘉. 不同微生物菌剂对多年生黑麦草耐热性与抗旱性的影响. 荆州: 长江大学, 2023. | |
| [30] | Wang H J, Bao Y Y, Niu T X, et al. Effect of combined application of microbial inoculum and fertilizer on fertility of open-pit mine dump reclaimed soil. Acta Agriculturae Boreali-Sinica, 2014, 29(4): 186-191. |
| 王海娟, 包玉英, 牛天心, 等. 菌剂与肥料配施对露天矿排土场苜蓿生长及土壤养分含量的影响. 华北农学报, 2014, 29(4): 186-191. | |
| [31] | Cui C, Li F, Zeng Q, et al. Influence of fertilization methods and types on wheat rhizosphere microbiome community and functions. Journal of Agricultural and Food Chemistry, 2024, 72(14): 7794-7806. |
| [32] | Xia J, Nan L L, Wang K, et al. Effects of low phosphorus stress on root growth and rhizosphere bacteria of different root types alfalfa. Chinese Journal of Grassland, 2024, 46(6): 86-94. |
| 夏静, 南丽丽, 汪堃, 等. 低磷胁迫对不同根型苜蓿根系生长及根际细菌的影响. 中国草地学报, 2024, 46(6): 86-94. | |
| [33] | Li Q, Yao T, Abuman, et al. Development of plant growth promoting rhizobacteria microcapsules and evaluation of its growth promotion effects on alfalfa and oats. Acta Agrestia Sinica, 2019, 27(5): 1392-1399. |
| 李琦, 姚拓, 阿不满, 等. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价. 草地学报, 2019, 27(5): 1392-1399. | |
| [34] | Liu L, Feng N J, Zheng D F, et al. Effects of different microbial agents on the morphogenesis and physiological characteristics of rice seedlings. Journal of Southern Agriculture, 2022, 53(1): 88-95. |
| 刘玲, 冯乃杰, 郑殿峰, 等. 不同微生物菌剂对水稻幼苗形态建成和生理特性的影响. 南方农业学报, 2022, 53(1): 88-95. | |
| [35] | Sun G Z, Yao T, Hou D, et al. Biocontrol potential of antagonistic bacteria strains against Fusarium oxysporum and their growth-promoting effects on zucchini. Microbiology China, 2017, 44(5): 1121-1130. |
| 孙广正, 姚拓, 侯栋, 等. 西葫芦根腐病菌拮抗细菌的防病促生作用. 微生物学通报, 2017, 44(5): 1121-1130. | |
| [36] | Bu M N, Yang X W, Teng Z K, et al. Effects of layered fertilization under different irrigation conditions on vertical distribution of soil nutrients and root growth and function of wheat. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142. |
| 卜明娜, 杨习文, 滕政凯, 等. 不同灌水条件下分层施肥对土壤养分垂直分布与小麦根系生长和功能的影响. 中国农业科学, 2024, 57(11): 2125-2142. | |
| [37] | Dollete D, Lumactud R A, Carlyle C N, et al. Effect of drought stress on symbiotic nitrogen fixation, soil nitrogen availability and soil microbial diversity in forage legumes. Plant and Soil, 2023, 495(1/2): 445-467. |
| [38] | Zhong S Z, Liu X J, Ouyang J H, et al. Effects of biochar and phosphorus fertilizer combination on the physiological growth characteristics of alfalfa in saline-alkali soil of the Yellow River Delta. Chinese Journal of Grassland, 2024, 46(7): 35-45. |
| 钟尚志, 刘学金, 欧阳江晗, 等. 黄河三角洲盐碱土下生物炭配施磷肥对紫花苜蓿生长及生理特性的影响. 中国草地学报, 2024, 46(7): 35-45. | |
| [39] | Madhuri K M, Ameena M, Michel J J, et al. Endophytic fungus Piriformospora indica mitigates moisture stress in rice by modifying root growth. Rhizosphere, 2023, 28: 100799. |
| [40] | Chen C, Bauske E M, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 1995, 5(1): 83-91. |
| [41] | Lu K H, Jin J R, Xiao M. Prospect of microbial fertilizer in saline soil. Microbiology China, 2019, 46(7): 1695-1705. |
| 鲁凯珩, 金杰人, 肖明. 微生物肥料在盐碱土壤中的应用展望. 微生物学通报, 2019, 46(7): 1695-1705. | |
| [42] | Wang X Y, Yu X, Shen Y Y, et al. Fertilization increased alfalfa yield and nutritive value in northern China: A Meta-analysis. Pratacultural Science, 2023, 40(1): 208-217. |
| 王晓雨, 于鑫, 沈禹颖, 等. 整合分析施肥类型对中国北方紫花苜蓿产量和营养品质的影响. 草业科学, 2023, 40(1): 208-217. | |
| [43] | Wang J, Yang B Y, Zhang S J, et al. Using mixed silages of sweet sorghum and alfalfa in total mixed rations to improve growth performance, nutrient digestibility, carcass traits and meat quality of sheep. Animal, 2021, 15(7): 100246. |
| [44] | Yao T. Characteristics and biofertilizer of plant growth promoting rhizobacteria isolated from oat and wheat in northwest China. Lanzhou: Gansu Agricultural University, 2002. |
| 姚拓. 饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制. 兰州: 甘肃农业大学, 2002. | |
| [45] | Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
| 韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013, 22(5): 104-112. | |
| [46] | Kumari R, Pandey E, Bushra S, et al. Plant growth promoting rhizobacteria (PGPR) induced protection: a plant immunity perspective. Physiologia Plantarum, 2024, 176(5): e14495. |
| [47] | Zhang Y, Lu S. Study on phosphorus uptake utilization and morphological transformation in greenhouse soil under the combination of phosphorus reduction and microbial agent application. Journal of Soil Science and Plant Nutrition, 2025, 25(1): 784-797. |
| [48] | Wang G, Zhang L S, Zhang S H, et al. The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities. Microbiological Research, 2023, 266: 127225. |
| [49] | Fan N, Peng Z D, Bai W B, et al. Influences of microbial agents on soil enzyme activity and sorghum growth. Journal of Agricultural Science and Technology, 2021, 23(2): 185-192. |
| 范娜, 彭之东, 白文斌, 等. 微生物菌剂对土壤酶活性及高粱生长的影响. 中国农业科技导报, 2021, 23(2): 185-192. | |
| [50] | Li L, Han Z, Zhang Y, et al. Effects of reducing nitrogen fertilizer combined with microbial agents on rice root growth and soil enzyme activities. Chinese Journal of Soil Science, 2019, 50(4): 932-939. |
| 李丽, 韩周, 张昀, 等. 减氮配施微生物菌剂对水稻根系发育及土壤酶活性的影响. 土壤通报, 2019, 50(4): 932-939. | |
| [51] | He S M, Zhang Y, Yang X L, et al. Effects of microbial inoculants combined with chemical fertilizer on growth and soil nutrient dynamics of timothy (Phleum pratense L.). Agronomy, 2024, 14(5): 1016. |
| [1] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [2] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [3] | 刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214. |
| [4] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [5] | 汤珊珊, 胡敏. 禾本科植物根际土壤酶活性和细菌群落结构差异[J]. 草业学报, 2025, 34(8): 99-108. |
| [6] | 项凌飞, 张峰举, 麻冬梅, 刘金龙, 兰剑, 邓建强, 胡海英, 王斌, 蔡春江, 马巧利. 氮磷钾配施对盐碱地湖南稷子生产性能和营养品质的影响[J]. 草业学报, 2025, 34(7): 185-195. |
| [7] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [8] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [9] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [10] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [11] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [12] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [13] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [14] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [15] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||