草业学报 ›› 2026, Vol. 35 ›› Issue (2): 221-236.DOI: 10.11686/cyxb2025115
• 研究论文 • 上一篇
收稿日期:2025-04-01
修回日期:2025-05-21
出版日期:2026-02-20
发布日期:2025-12-24
通讯作者:
马晖玲
作者简介:Corresponding author. E-mail: mahl@gsau. edu. cn基金资助:
Li-juan CHEN(
), Rong GAO, Jian-xi WANG, Hui-ling MA
Received:2025-04-01
Revised:2025-05-21
Online:2026-02-20
Published:2025-12-24
Contact:
Hui-ling MA
摘要:
本研究以‘甘农3号’、‘甘农7号’、‘精英’紫花苜蓿及‘甘肃’红豆草为材料,分析苗期至成熟期6个生长期茎、叶部位总酚、总黄酮、缩合单宁(CT)及次生代谢产物(芦丁、没食子酸、表儿茶素没食子酸酯、表儿茶素、儿茶素)动态积累规律,并测定苯丙烷代谢途径关键酶[苯丙氨酸解氨酶(PAL)、4-香豆酸-CoA连接酶(4CL)、肉桂酸-4-羟化酶(C4H)]和类黄酮途径[花青素还原酶(ANR)、无色花色素还原酶(LAR)]活性,以解析缩合单宁合成调控机制。结果表明:1)缩合单宁含量随生育期推进呈显著变化,‘甘肃’红豆草现蕾期、紫花苜蓿结荚期为累积高峰期,且叶部含量普遍高于茎部;2)总黄酮与芦丁含量变化趋势与缩合单宁相似;3)4CL、ANR、PAL、LAR和C4H活性在‘甘肃’红豆草现蕾期、紫花苜蓿结荚期显著升高,表明苯丙烷代谢向缩合单宁合成方向增强。品种间比较显示,‘甘农3号’紫花苜蓿缩合单宁含量在结荚期显著高于其他品种(P<0.05),表示其具有更强单宁合成潜力。本研究明确了 CT 合成关键酶与代谢产物的动态关联,为牧草 CT 代谢调控及高单宁品种选育提供理论依据。
陈丽娟, 高荣, 王建喜, 马晖玲. 紫花苜蓿与红豆草在不同生长时期缩合单宁合成差异的比较研究[J]. 草业学报, 2026, 35(2): 221-236.
Li-juan CHEN, Rong GAO, Jian-xi WANG, Hui-ling MA. A comparative study of differences in condensed tannin synthesis between Medicago sativa and Onobrychis viciifolia at different growth stages[J]. Acta Prataculturae Sinica, 2026, 35(2): 221-236.
时间 Time (min) | 流速 Flow rate (mL·min-1) | 流动相 Mobile phase (A,%) | 流动相 Mobile phase (B,%) |
|---|---|---|---|
| 0.0 | 1.0 | 5 | 95 |
| 15.0 | 1.0 | 20 | 80 |
| 23.0 | 1.0 | 25 | 75 |
| 25.0 | 1.0 | 30 | 70 |
| 26.0 | 1.0 | 40 | 60 |
| 26.5 | 1.0 | 5 | 95 |
| 31.0 | 1.0 | 5 | 95 |
表1 流动相梯度洗脱程序
Table 1 Gradient elution program of the mobile phase
时间 Time (min) | 流速 Flow rate (mL·min-1) | 流动相 Mobile phase (A,%) | 流动相 Mobile phase (B,%) |
|---|---|---|---|
| 0.0 | 1.0 | 5 | 95 |
| 15.0 | 1.0 | 20 | 80 |
| 23.0 | 1.0 | 25 | 75 |
| 25.0 | 1.0 | 30 | 70 |
| 26.0 | 1.0 | 40 | 60 |
| 26.5 | 1.0 | 5 | 95 |
| 31.0 | 1.0 | 5 | 95 |
化合物 Compound | 保留时间 Retention time (min) | 回归方程 Calibration curve equation | 决定系数 Determination coefficient (R2) |
|---|---|---|---|
| 芦丁 Rutin | 20.911 | y=6072.9x+3.537 | 1.0000 |
| 没食子酸 Gallic acid | 7.043 | y=30842.0x-157055.000 | 0.9999 |
| 表儿茶素没食子酸酯 Epicatechin gallate | 21.957 | y=16244.0x-60958.000 | 0.9994 |
| 表儿茶素 Epicatechin | 16.745 | y=7278.5x-4627.600 | 1.0000 |
| 儿茶素 Eatechin | 13.979 | y=7794.4x-25134.000 | 0.9993 |
表2 黄酮类化合物超高效液相色谱检测标准曲线
Table 2 Calibration curve analysis of flavonoid compounds by ultra performance liquid chromatography (UPLC)
化合物 Compound | 保留时间 Retention time (min) | 回归方程 Calibration curve equation | 决定系数 Determination coefficient (R2) |
|---|---|---|---|
| 芦丁 Rutin | 20.911 | y=6072.9x+3.537 | 1.0000 |
| 没食子酸 Gallic acid | 7.043 | y=30842.0x-157055.000 | 0.9999 |
| 表儿茶素没食子酸酯 Epicatechin gallate | 21.957 | y=16244.0x-60958.000 | 0.9994 |
| 表儿茶素 Epicatechin | 16.745 | y=7278.5x-4627.600 | 1.0000 |
| 儿茶素 Eatechin | 13.979 | y=7794.4x-25134.000 | 0.9993 |
图1 不同生长期紫花苜蓿和‘甘肃’红豆草芦丁含量SE: 苗期 Seedling; BR: 分枝期 Branching; BU: 现蕾期 Budding; FL: 开花期 Flowering; PO: 结荚期 Podding; MT: 成熟期 Maturity. GN3: ‘甘农3号’ Gannong No.3; GN7: ‘甘农7号’ Gannong No.7; ALF-E: 紫花苜蓿‘精英’ Alfalfa ‘Elite’; GSHD: ‘甘肃’红豆草 O. viciifolia ‘Gansu’. S: 茎 Stem; L: 叶 Leaf. GN7-S: ‘甘农7号’茎部位 Gannong No.7 stem; GN7-L: ‘甘农7号’叶部位 Gannong No.7 leaf; GN3-S: ‘甘农3号’茎部位 Gannong No.3 stem; GN3-L: ‘甘农3号’叶部位 Gannong No.3 leaf; ALF-E-S: 紫花苜蓿‘精英’茎部位 Alfalfa ‘Elite’ stem; ALF-E-L: 紫花苜蓿‘精英’叶部位 Alfalfa ‘Elite’ leaf; GSHD -S: ‘甘肃’红豆草茎部位 O. viciifolia ‘Gansu’ stem; GSHD-L: ‘甘肃’红豆草叶部位 O. viciifolia ‘Gansu’ leaf. 所有数据进行多重比较,不同小写字母表示不同品种不同部位同一时期差异显著 (P<0.05);下同。Statistical analysis: All data were subjected to multiple comparison tests. Different lowercase letters indicate significant differences (P<0.05) among cultivars and plant parts within the same growth stage. The same below.
Fig.1 Rutin content in M. sativa and O. viciifolia ‘Gansu’ at different growth stages
图3 不同生长期紫花苜蓿和‘甘肃’红豆草表儿茶素没食子酸酯含量
Fig.3 Temporal variation in epicatechin gallate content of alfalfa cultivars and O. viciifolia ‘Gansu’ during distinct growth stages
图9 不同生长期紫花苜蓿和‘甘肃’红豆草4CL、ANR、C4H 、LAR和 PAL 酶活性动态GN3-L-PO: ‘甘农3号’叶部位结荚期 leaf part of ‘Gannong No.3’ at pod-setting stage; GN3-L-FL: ‘甘农3号’叶部位开花期 leaf part of ‘Gannong No.3’ at flowering stage; GSHD-L-BU: ‘甘肃’红豆草叶部位现蕾期 leaf part of O. viciifolia ‘Gansu’ at budding stage; GSHD-L-BR: ‘甘肃’红豆草叶部位分枝期 leaf part of O. viciifolia ‘Gansu’ at branching stage. 所有数据进行多重比较,不同小写字母表示不同品种不同部位同一时期差异显著 (P<0.05);下同。Statistical analysis: All data were subjected to multiple comparison tests. Different lowercase letters indicate significant differences (P<0.05) among cultivars and plant parts within the same growth stage; The same below.
Fig.9 Dynamic analysis of 4CL, ANR, C4H, LAR and PAL enzyme activities in M. sativa and O. viciifolia ‘Gansu’ at different growth stages
图10 不同生长期紫花苜蓿和‘甘肃’红豆草茎部酚类和黄酮类化合物含量分析
Fig.10 Analysis of phenolic and flavonoid compound contents in the stems of M. sativa and O. viciifolia ‘Gansu’ at different growth stages
图11 不同生长期紫花苜蓿和‘甘肃’红豆草叶部酚类和黄酮类化合物含量分析
Fig.11 Analysis of phenolic and flavonoid compound contents in the leaves of M. sativa and O. viciifolia ‘Gansu’ at different growth stages
图13 ‘甘农3号’紫花苜蓿和‘甘肃’红豆草酚类和黄酮类化合物及酶活性相关性分析A:芦丁 Rutin;B:没食子酸 Gallic acid;C:表儿茶素没食子酸酯 Epicatechin gallate;D:表儿茶素 Epicatechin;E:儿茶素 Catechin;F:总酚 Total phenols;G:总黄酮 Total flavonoids;H:缩合单宁 Condensed tannins;I:4CL;J:ANR;K:C4H;L:PAL;M:LAR;红色/蓝色示正/负相关,颜色越深相关性越强;黑色斜点/白色斜杠示相关性不显著(P≥0.05),无标识表示显著(P<0.05)。Red/blue colors indicate positive/negative correlations, with darker shades representing stronger correlations. Black diagonal dots or white slashes denote non-significant correlations (P≥0.05), while the absence of symbols indicates significant correlations (P<0.05).
Fig.13 Analysis of the correlation among phenolic and flavonoid compounds and enzyme activities in M. sativa ‘Gannong No.3’ and O. viciifolia ‘Gansu’
| [1] | Rauf A, Imran M, Abu-Izneid T, et al. Proanthocyanidins: a comprehensive review. Biomedicine & Pharmacotherapy, 2019, 116: 108999. |
| [2] | Yu Z, Ouyang L J, Zhao Y G, et al. Research progress of 4-coumaric acid coenzyme aligase (4CL). Molecular Plant Breeding, 2023, 21(15): 1-11. |
| 余珠, 欧阳乐军, 赵永国, 等. 4-香豆酸辅酶A连接酶 (4CL) 的研究进展. 分子植物育种, 2023, 21(15): 1-11. | |
| [3] | Zhou M, Wei L, Sun Z, et al. Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Applied Microbiology and Biotechnology, 2015, 99(9): 3797-3806. |
| [4] | Chen C Y. Cloning and functional analysis of two key genes in the rocyanidins synthesis in Gansu sainfoin. Lanzhou: Gansu Agricultural University, 2016. |
| 陈春艳. 甘肃红豆草原花青素合成途径的两个关键酶基因的克隆和功能分析. 兰州: 甘肃农业大学, 2016. | |
| [5] | Lu N, Jun J H, Li Y, et al. An unconventional proanthocyanidin pathway in maize. Nature Communications, 2023, 14(1): 4349. |
| [6] | Jonker A, Yu P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. International Journal of Molecular Sciences, 2017, 18(5): 1105. |
| [7] | Gou L M. Metabolic engineering of isoflavone and proanthocyanidin biosynthesis in Medicago truncatula and the screening of isoflavone transporter. Beijing: China Agricultural University, 2016. |
| 苟蓝明. 苜蓿异黄酮和缩合单宁代谢路径调控及异黄酮转运蛋白筛选. 北京: 中国农业大学, 2016. | |
| [8] | Wang Y S. Prevention of rumen bloat in goats by addition of condensed tannins to high concentrate diets. Yaan: Sichuan Agricultural University, 2024. |
| 王芋苏. 高精料日粮中添加缩合单宁预防山羊瘤胃胀气的研究. 雅安: 四川农业大学, 2024. | |
| [9] | Naumann H, Sepela R, Rezaire A, et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules (Basel, Switzerland), 2018, 23(9): 2123. |
| [10] | Rufino-Moya P J, Blanco M, Bertolín J R, et al. Methane production of fresh sainfoin, with or without PEG, and fresh alfalfa at different stages of maturity is similar but the fermentation end products vary. Animals (Basel), 2019, 9(5): 197. |
| [11] | Jonker A, Yu P. The role of proanthocyanidins complex in structure and nutrition interaction in alfalfa forage. International Journal of Molecular Sciences, 2016, 17(5): 793. |
| [12] | Dong W K. The transformation of BAN genes by Agrobacterium-mediated method and its expression analysis in alfalfa. Lanzhou: Gansu Agricultural University, 2017. |
| 董文科. 农杆菌介导的BAN基因在紫花苜蓿中的转化和表达的研究. 兰州: 甘肃农业大学, 2017. | |
| [13] | Wang Y X. Studies on molecular manipulation of condensed tannin synthesis and genetic transformation of alfalfa (Medicago sativa L.) . Lanzhou: Gansu Agricultural University, 2010. |
| 王延秀. 浓缩单宁合成的分子调控及紫花苜蓿遗传转化研究. 兰州: 甘肃农业大学, 2010. | |
| [14] | Li Y H, Jin L, Han G D, et al. Research progress on the role of plant tannins in ruminant nutrition and healthy farming. Acta Agrestia Sinica, 2013, 21(6): 1043-1051. |
| 李元恒, 金龙, 韩国栋, 等. 植物单宁在反刍动物营养和健康养殖作用中的研究进展. 草地学报, 2013, 21(6): 1043-1051. | |
| [15] | Wu G Q, Li H, Lei C R, et al. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciifolia) under high salt stress. Acta Prataculturae Sinica, 2019, 28(6): 45-55. |
| 伍国强, 李辉, 雷彩荣, 等. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响. 草业学报, 2019, 28(6): 45-55. | |
| [16] | Li S Q. Study on drought and saline-alkali resistance of 16 alfalfa varieties and comprehensive evaluation. Changchun: Jilin Agricultural University, 2019. |
| 李诗琴. 16个苜蓿品种抗旱、耐盐碱性研究及综合评价. 长春: 吉林农业大学, 2019. | |
| [17] | Theodoridou K, Aufrère J, Andueza D, et al. Effects of condensed tannins in fresh sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Animal Feed Science and Technology, 2010, 160(1): 23-38. |
| [18] | Huang H J, Zhang Y Q, Du W X, et al. Research progress on germplasm resources of sainfoin (Onobrychis viciaefolia). Acta Agrestia Sinica, 2024, 32(8): 2346-2356. |
| 黄海军, 张雨琪, 杜文宣, 等. 红豆草种质资源研究进展. 草地学报, 2024, 32(8): 2346-2356. | |
| [19] | Liu X L, Li Y H. Research situation on tannins from sainfoin. Animal Husbandry and Feed Science, 2016, 37(12): 52-57. |
| 刘秀丽, 李元恒. 红豆草单宁的研究概况. 畜牧与饲料科学, 2016, 37(12):52-57. | |
| [20] | Theodoridou K, Aufrère J, Andueza D, et al. Effect of plant development during first and second growth cycle on chemical composition, condensed tannins and nutritive value of three sainfoin (Onobrychis viciifolia) varieties and lucerne. Grass and Forage Science, 2011, 66(3): 402-414. |
| [21] | Zong Y Q, Quan W, Li J P, et al. Comparative analysis of pigment and condensed tannin content between red-stem and green-stem alfalfa. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(6): 1067-1072. |
| 宗亚倩, 全伟, 李建平, 等. 红茎与绿茎紫花苜蓿色素及缩合单宁含量的比较分析. 云南农业大学学报(自然科学), 2023, 38(6): 1067-1072. | |
| [22] | Zhang X N. Anti-diabetic activity of phenolic-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits extracts and its mechanism. Hangzhou: Zhejiang University, 2016. |
| 张夏南. 杨梅果实酚类物质提取物降糖活性及其相关机理研究. 杭州: 浙江大学, 2016. | |
| [23] | Dhanani T, Singh R, Kumar S. Extraction optimization of gallic acid, (+)-catechin, procyanidin-B2, (-)-epicatechin, (-)-epigallocatechin gallate, and (-)-epicatechin gallate: their simultaneous identification and quantification in Saraca asoca. Journal of Food and Drug Analysis, 2017, 25(3): 691-698. |
| [24] | Su T X, Zhou Y, Sun X H, et al. Determination of polyphenols in kiwifruit by HPLC. Food Science and Technology, 2019, 44(9): 327-331. |
| 苏天霞, 周艳, 孙晓红, 等. HPLC测定猕猴桃不同部位中的7种多酚类化合物. 食品科技, 2019, 44(9): 327-331. | |
| [25] | Harbart V, Frede K, Fitzner M, et al. Regulation of carotenoid and flavonoid biosynthetic pathways in Lactuca sativa var. capitate L. in protected cultivation. Frontiers in Plant Science, 2023, 14: 1124750. |
| [26] | Sun Q Y. Studies on the analytic method for non-anthocyanin phenolic compounds in raspberry fruits. Harbin: Northeast Agricultural University, 2019. |
| 孙侨冶. 树莓果实中非花色苷酚类物质分析方法的研究. 哈尔滨: 东北农业大学, 2019. | |
| [27] | Feng X L, Cao S Y, Xu X Y, et al. Antioxidant capacities and total phenolic contents of 11 grape varieties. Science and Technology of Food Industry, 2019, 40(6): 68-75. |
| 冯晓翎, 曹诗瑜, 徐晓瑜, 等. 11个鲜食葡萄品种总酚含量和抗氧化活性的评价. 食品工业科技, 2019, 40(6): 68-75. | |
| [28] | Zou P, Zhang Y Y, Zou L L. Extraction and composition analysis of flavonoids in peony seed shells. Food & Machinery, 2023, 39(4): 44-50. |
| 邹平, 张迎阳, 邹林玲. 牡丹籽壳中黄酮类化合物提取及组分分析. 食品与机械, 2023, 39(4): 44-50. | |
| [29] | Bai X L, Shen S Y, Chen H Y, et al. Microwave-assisted extraction technology of flavonoid from mango peel. Farm Products Processing, 2015 (6): 29-32. |
| 白雪莲, 沈淑雅, 陈怀玉, 等. 微波辅助提取芒果皮黄酮工艺研究. 农产品加工, 2015 (6): 29-32. | |
| [30] | Wang Y. The main components and antioxidant capacity of samara during Acer truncatum bunge fruit maturation. Yangling: Northwest A & F University, 2019. |
| 王瑶. 元宝枫果实成熟过程中主要成分测定及抗氧化能力研究. 杨凌: 西北农林科技大学, 2019. | |
| [31] | Knobloch K H, Hahlbrock K. 4-Coumarate: CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Partial purification, substrate specificity, and further properties. Archives of Biochemistry and Biophysics, 1977, 184(1): 237-248. |
| [32] | Peng Q Z, Zhu Y, Liu Z, et al. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants. Planta, 2012, 236(3): 901-918. |
| [33] | Jiang X. Effects of water supply on the key enzyme of flavonoids metabolism of Scutellaria baicalensis Georgi. Changchun: Jilin Agricultural University, 2013. |
| 姜雪. 水因子对黄芩黄酮类代谢影响研究. 长春: 吉林农业大学, 2013. | |
| [34] | Liu R, Wang Z Y, Huang Y Y, et al. Effects of rare earth elements La³⁺ and Eu³⁺ on the polyphenols contents and PAL, C4H activities of Pinus koraiensis seedlings. Scientia Silvae Sinicae, 2014, 50(8): 168-173. |
| 刘冉, 王振宇, 黄雨洋, 等. 稀土元素对红松幼苗松多酚含量及PAL, C4H活性的影响. 林业科学, 2014, 50(8): 168-173. | |
| [35] | Liu C J, Zhang H Y, Sun L X, et al. Effects of isobavachalcone on the resistance to TMV and activity of defense enzymes of tobacco. Agrochemicals, 2022, 61(10): 767-770. |
| 刘澄瑾, 张洪雨, 孙礼雪, 等. 苯丙烯菌酮诱导烟草抗烟草花叶病毒(TMV)及对几种防御酶活性的影响. 农药, 2022, 61(10): 767-770. | |
| [36] | Xing Y F. The accumulation of flavanols, expression of leucoanthocyanidin reductase induced by UV-C irradiation in grape berry. Taiyuan: Shanxi Agricultural University, 2013. |
| 邢延富. UV-C对葡萄果实黄烷醇类多酚积累及隐色花色素还原酶表达的研究. 太原: 山西农业大学, 2013. | |
| [37] | Chen C, Zhang H, Dong C, et al. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Advances, 2019, 9(44): 25429-25438. |
| [38] | Ainsworth E A, Gillespie K M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2007, 2(4): 875-877. |
| [39] | Mikami-Konishide I, Murakami S, Nakanishi K, et al. Antioxidant capacity and polyphenol content of extracts from crops cultivated in Japan, and the effect of cultivation environment. Food Science and Technology Research, 2013, 19(1): 69-79. |
| [40] | Pourzand A, Tajaddini A, Pirouzpanah S, et al. Associations between dietary allium vegetables and risk of breast cancer: a hospital-based matched case-control study. Journal of Breast Cancer, 2016, 19(3): 292-300. |
| [41] | Bilger W, Rolland M, Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2007, 6(2): 190-195. |
| [42] | Hawrylak-Nowak B, Dresler S, Stasińska-Jakubas M, et al. NaCl-induced elicitation alters physiology and increases accumulation of phenolic compounds in Melissa officinalis L. International Journal of Molecular Sciences, 2021, 22(13): 6844. |
| [43] | Ramaroson M L, Koutouan C, Helesbeux J J, et al. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules (Basel, Switzerland), 2022, 27(23): 8371. |
| [44] | Xu W Y, Gao W W, He C N. The influence of environmental factors on the biosynthesis of flavonoids in plants. World Science and Technology, 2006 (6): 68-72. |
| 徐文燕, 高微微, 何春年. 环境因子对植物黄酮类化合物生物合成的影响. 世界科学技术, 2006(6): 68-72. | |
| [45] | Eudes A, Pereira J H, Yogiswara S, et al. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase to reduce lignin. Plant & Cell Physiology, 2016, 57(3): 568-579. |
| [46] | Bontpart T, Marlin T, Vialet S, et al. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. Journal of Experimental Botany, 2016, 67(11): 3537-3550. |
| [47] | Zhang F C. Comparative study on regulation mechanism of rootstock on growth and berry flavonoid metabolism of wine grape. Yangling: Northwest A & F University, 2022. |
| 张付春. 砧木对酿酒葡萄生长及果实类黄酮物质代谢调控机制的比较研究. 杨凌: 西北农林科技大学, 2022. | |
| [48] | Torres N, Martínez-Lüscher J, Porte E, et al. Optimal ranges and thresholds of grape berry solar radiation for flavonoid biosynthesis in warm olimates. Frontiers in Plant Science, 2020, 11: 931. |
| [49] | Qin Y, Liu X, Li C, et al. Effect of light intensity on celery growth and flavonoid synthesis. Frontiers in Plant Science, 2024, 14: 1326218. |
| [50] | Blancquaert E H, Oberholster A, Ricardo-Da-Silva J M, et al. Grape flavonoid evolution and composition under altered light and temperature conditions in cabernet sauvignon (Vitis vinifera L.). Frontiers in Plant Science, 2019, 10: 1062. |
| [51] | Ma D, Guo Y, Ali I, et al. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. Plant Physiology and Biochemistry, 2024, 215: 108960. |
| [52] | Hou S, Du W, Hao Y, et al. Elucidation of the regulatory network of flavonoid biosynthesis by profiling the metabolome and transcriptome in tartary buckwheat. Journal of Agricultural and Food Chemistry, 2021, 69(25): 7218-7229. |
| [53] | Jun J H, Lu N, Docampo-Palacios M, et al. Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway. Science Advances, 2021, 7(20): 4682. |
| [54] | Fraser C M, Chapple C. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book, 2011, 9: e0152. |
| [55] | Schilmiller A L, Stout J, Weng J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 2009, 60(5): 771-782. |
| [56] | Ehlting J, Büttner D, Wang Q, et al. Three 4-coumarate:coenzyme A ligases in arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal: For Cell and Molecular Biology, 1999, 19(1): 9-20. |
| [57] | Tai Z J, Wang X H, Song X J, et al. Research progress of the biosynthesis, abiotic stress regulation and physiological functions in plant polyphenols. Science and Technology of Food Industry, 2025: 1-15[2025-06-11] https://doi.org/10.13386/j.issn/002-0306.2024110180. |
| 邰振甲, 王欣卉, 宋雪健, 等. 植物多酚的生物合成、非生物胁迫调控与生理功能研究进展. 食品工业科技,2025: 1-15[2025-06-11] https://doi.org/10.13386/j.issn/002-0306.2024110180. | |
| [58] | Wu L, Xiong S, Shi X, et al. AP3 promotes the synthesis of condensed tannin in fruit by positively regulating ANR expression. International Journal of Biological Macromolecules, 2024, 261: 129558. |
| [59] | Chen Q, Liang X, Wu C, et al. Overexpression of leucoanthocyanidin reductase or anthocyanidin reductase elevates tannins content and confers cassava resistance to two-spotted spider mite. Frontiers in Plant Science, 2022, 13: 994866. |
| [60] | Zhao L, Jiang X L, Qian Y M, et al. Metabolic characterization of the anthocyanidin reductase pathway involved in the biosynthesis of flavan-3-ols in elite shuchazao tea (Camellia sinensis) cultivar in the field. Molecules (Basel, Switzerland), 2017, 22(12): 2241. |
| [61] | Wang Y, Mcallister T A, Acharya S. Condensed tannins in sainfoin: composition, concentration, and effects on nutritive andfeeding value of sainfoin forage. Crop Science, 2015, 55(1): 13-22. |
| [62] | Jia K, Zhang X, Meng Y, et al. Metabolomics and transcriptomics provide insights into the flavonoid biosynthesis pathway in the roots of developing Aster tataricus. Journal of Plant Research, 2023, 136(1): 139-156. |
| [1] | 李瑒琨, 本转林, 张筠钰, 杨惠敏. 不同气候和土壤条件下施肥类型影响紫花苜蓿种子产量的整合分析[J]. 草业学报, 2026, 35(2): 54-67. |
| [2] | 张继元, 安海全, 潘靖一, 刘畅, 龙思思, 赵丽丽. 7个紫花苜蓿品种种子萌发及幼苗生长的抗旱性评价[J]. 草业学报, 2026, 35(2): 68-82. |
| [3] | 张颖, 贺善睦, 何傲蕾, 李昌宁, 姚拓. 微生物菌剂与有机钙蛋白配施对紫花苜蓿生长和土壤酶活性的影响[J]. 草业学报, 2026, 35(1): 25-39. |
| [4] | 俞鸿千, 马雪鹏, 曾翰国, 单晓艳, 李曼莉, 王占军. 地下滴灌时期和水量对紫花苜蓿种子生产的影响[J]. 草业学报, 2026, 35(1): 53-64. |
| [5] | 邹苇鹏, 刘怡, 翟佳兴, 周思懿, 宫祉祎, 岑慧芳, 朱慧森, 许涛. 紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 121-133. |
| [6] | 鲜燃, 邓雨, 付秋月, 蒋晶霞, 陶佳丽, 许涛, 朱慧森, 岑慧芳. 紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析[J]. 草业学报, 2025, 34(9): 162-172. |
| [7] | 刘沂欣, 隋晓青, 王鑫尧, 郎梦卿, 孙凌子寅, 吉尔尔格. 外源褪黑素对盐胁迫下紫花苜蓿的缓解作用[J]. 草业学报, 2025, 34(9): 206-214. |
| [8] | 李文秀, 姚拓, 李昌宁, 贾倩民, 何傲蕾, 周杨. “凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究[J]. 草业学报, 2025, 34(8): 88-98. |
| [9] | 蒋学乾, 杨青川, 康俊梅. 紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展[J]. 草业学报, 2025, 34(7): 219-234. |
| [10] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [11] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [12] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [13] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [14] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [15] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||