草业学报 ›› 2021, Vol. 30 ›› Issue (9): 97-104.DOI: 10.11686/cyxb2020338
赵利清1,2(), 彭向永3, 刘俊祥1, 毛金梅4, 孙振元1()
收稿日期:
2020-07-15
修回日期:
2020-11-10
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
孙振元
作者简介:
Corresponding author. E-mail: sunzy@263.net基金资助:
Li-qing ZHAO1,2(), Xiang-yong PENG3, Jun-xiang LIU1, Jin-mei MAO4, Zhen-yuan SUN1()
Received:
2020-07-15
Revised:
2020-11-10
Online:
2021-08-30
Published:
2021-08-30
Contact:
Zhen-yuan SUN
摘要:
为了明确谷胱甘肽(GSH)对多年生黑麦草铅(Pb)毒害的缓解作用及其生理机制,以12周龄多年生黑麦草‘卡特’幼苗为试验材料,设置4个试验处理:1)根部置1/2 Hoagland营养液,叶面喷蒸馏水50 mL(CK);2)根部置含0.75 mmol·L-1 Pb(NO3)2的1/2 Hoagland营养液,叶面喷蒸馏水50 mL(Pb);3)根部置含0.75 mmol·L-1 Pb(NO3)2的1/2 Hoagland营养液,叶面先喷25 mL蒸馏水,待吸收后再喷施25 mL 10 mmol·L-1 GSH(Pb+GSH);4)根部置含0.75 mmol·L-1 Pb(NO3)2的1/2 Hoagland营养液,叶面先喷25 mL蒸馏水,待吸收后再喷施25 mL 1 mmol·L-1丁硫氨酸-亚砜亚胺(BSO)(Pb+BSO),研究GSH对多年生黑麦草生长及光合作用的影响。结果表明:叶面喷施GSH显著增加了幼苗茎叶长、根长、分蘖数、生物量、叶绿素含量和光合参数,也增加了叶绿素荧光动力学参数。叶面喷施BSO后,根长、分蘖数、生物量、类胡萝卜素含量和光合参数均降低。综上所述,Pb胁迫影响了光合作用,最终抑制了植物的生长。叶面喷施10 mmol·L-1 GSH能够缓解Pb对多年生黑麦草生长和光合作用的胁迫,提高植物的抗性。相反,叶面喷施1 mmol·L-1 BSO能够加剧Pb对植物的胁迫。
赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104.
Li-qing ZHAO, Xiang-yong PENG, Jun-xiang LIU, Jin-mei MAO, Zhen-yuan SUN. Effects of reduced glutathione on the growth and photosynthesis of perennial ryegrass under lead stress[J]. Acta Prataculturae Sinica, 2021, 30(9): 97-104.
图1 外源GSH和BSO诱导Pb胁迫下多年生黑麦草的茎叶长、根长及分蘖数不同小写字母表示处理间差异显著(P<0.05)。Different lowercase letters indicate significant difference among different treatments at P<0.05.
Fig.1 Shoot length, root length and tiller number of perennial ryegrass induced by exogenous GSH and BSO under Pb stress
处理 Treatment | 鲜重Fresh weight (g·pot-1) | 干重Dry weight (g·pot-1) | 根冠比 Root-shoot ratio (DW) | ||
---|---|---|---|---|---|
茎叶Shoot | 根Root | 茎叶Shoot | 根Root | ||
CK | 13.57±0.23a | 3.09±0.19a | 1.24±0.03a | 0.24±0.01a | 0.191±0.009a |
Pb | 6.50±0.15c | 1.06±0.01c | 0.77±0.01c | 0.14±0.00c | 0.177±0.001b |
Pb+GSH | 8.05±0.12b | 1.26±0.04b | 0.85±0.01b | 0.16±0.01b | 0.184±0.003a |
Pb+BSO | 5.99±0.17d | 0.85±0.03c | 0.63±0.01d | 0.12±0.00d | 0.186±0.005a |
表1 外源GSH和BSO诱导Pb胁迫下多年生黑麦草的生物量及根冠比
Table 1 Plant biomass and root-shoot ratio of perennial ryegrass induced by exogenous GSH and BSO under Pb stress
处理 Treatment | 鲜重Fresh weight (g·pot-1) | 干重Dry weight (g·pot-1) | 根冠比 Root-shoot ratio (DW) | ||
---|---|---|---|---|---|
茎叶Shoot | 根Root | 茎叶Shoot | 根Root | ||
CK | 13.57±0.23a | 3.09±0.19a | 1.24±0.03a | 0.24±0.01a | 0.191±0.009a |
Pb | 6.50±0.15c | 1.06±0.01c | 0.77±0.01c | 0.14±0.00c | 0.177±0.001b |
Pb+GSH | 8.05±0.12b | 1.26±0.04b | 0.85±0.01b | 0.16±0.01b | 0.184±0.003a |
Pb+BSO | 5.99±0.17d | 0.85±0.03c | 0.63±0.01d | 0.12±0.00d | 0.186±0.005a |
处理 Treatment | 叶绿素a Chlorophyll a content(mg·g-1 FW) | 叶绿素b Chlorophyll b content(mg·g-1 FW) | 总叶绿素 Total chlorophyll content (mg·g-1 FW) | 叶绿素a/b Chlorophyll a/b | 类胡萝卜素 Carotenoid content (mg·g-1 FW) | 类胡萝卜素/总叶绿素 Carotenoid/total chlorophyll |
---|---|---|---|---|---|---|
CK | 1.16±0.02a | 0.41±0.01a | 1.57±0.03a | 2.86±0.03a | 0.25±0.00a | 0.16±0.00b |
Pb | 1.06±0.00b | 0.36±0.00c | 1.42±0.01c | 2.94±0.02a | 0.24±0.00a | 0.17±0.00a |
Pb+GSH | 1.13±0.00a | 0.40±0.01b | 1.53±0.02b | 2.86±0.09a | 0.24±0.01a | 0.16±0.00b |
Pb+BSO | 1.06±0.02b | 0.37±0.02c | 1.43±0.03c | 2.86±0.10a | 0.21±0.01b | 0.15±0.01c |
表2 外源GSH和BSO诱导Pb胁迫下多年生黑麦草的叶片光合色素含量
Table 2 Photosynthetic pigment content of perennial ryegrass leaf induced by exogenous GSH and BSO under Pb stress
处理 Treatment | 叶绿素a Chlorophyll a content(mg·g-1 FW) | 叶绿素b Chlorophyll b content(mg·g-1 FW) | 总叶绿素 Total chlorophyll content (mg·g-1 FW) | 叶绿素a/b Chlorophyll a/b | 类胡萝卜素 Carotenoid content (mg·g-1 FW) | 类胡萝卜素/总叶绿素 Carotenoid/total chlorophyll |
---|---|---|---|---|---|---|
CK | 1.16±0.02a | 0.41±0.01a | 1.57±0.03a | 2.86±0.03a | 0.25±0.00a | 0.16±0.00b |
Pb | 1.06±0.00b | 0.36±0.00c | 1.42±0.01c | 2.94±0.02a | 0.24±0.00a | 0.17±0.00a |
Pb+GSH | 1.13±0.00a | 0.40±0.01b | 1.53±0.02b | 2.86±0.09a | 0.24±0.01a | 0.16±0.00b |
Pb+BSO | 1.06±0.02b | 0.37±0.02c | 1.43±0.03c | 2.86±0.10a | 0.21±0.01b | 0.15±0.01c |
处理 Treatment | 净光合速率 Net photosynthetic rate (Pn, μmol CO2·m-2·s-1) | 蒸腾速率 Transpiration rate ( Tr, mmol H2O·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, μmol CO2·m-2·s-1) | 胞间二氧化碳浓度 Intercellular carbon dioxide concentration (Ci, mmol·mol-1) |
---|---|---|---|---|
CK | 4.26±0.46a | 3.38±0.48a | 55.20±4.32a | 334.50±7.01d |
Pb | 1.52±0.30c | 1.64±0.50b | 18.24±0.43c | 351.92±2.74b |
Pb+GSH | 3.08±0.59b | 2.84±1.02a | 33.44±7.12b | 379.34±3.84a |
Pb+BSO | 1.06±0.26c | 1.42±0.53b | 16.44±4.01c | 340.72±3.12c |
表3 外源GSH和BSO诱导Pb胁迫下多年生黑麦草的叶片光合参数
Table 3 Photosynthetic parameters of perennial ryegrass leaf induced by exogenous GSH and BSO under Pb stress
处理 Treatment | 净光合速率 Net photosynthetic rate (Pn, μmol CO2·m-2·s-1) | 蒸腾速率 Transpiration rate ( Tr, mmol H2O·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, μmol CO2·m-2·s-1) | 胞间二氧化碳浓度 Intercellular carbon dioxide concentration (Ci, mmol·mol-1) |
---|---|---|---|---|
CK | 4.26±0.46a | 3.38±0.48a | 55.20±4.32a | 334.50±7.01d |
Pb | 1.52±0.30c | 1.64±0.50b | 18.24±0.43c | 351.92±2.74b |
Pb+GSH | 3.08±0.59b | 2.84±1.02a | 33.44±7.12b | 379.34±3.84a |
Pb+BSO | 1.06±0.26c | 1.42±0.53b | 16.44±4.01c | 340.72±3.12c |
处理 Treatment | 最小荧光强度 Minimum ?uorescence yield (Fo) | 最大荧光强度 Maximum ?uorescence yield (Fm) | 可变荧光 Variable ?uorescence yield (Fv) | 潜在活性 Potential activity (Fv/Fo) | 最大光化学效率 Maximum photochemical efficiency (Fv/Fm) | 整体性能指数 Performance index (PIABS) |
---|---|---|---|---|---|---|
CK | 468.67±14.50a | 2714.67±88.08a | 2246.00±75.94a | 4.793±0.096a | 0.827±0.003a | 3.321±0.517a |
Pb | 402.67±13.32b | 2134.33±81.12b | 1731.67±69.95b | 4.300±0.100bc | 0.811±0.003bc | 2.126±0.389b |
Pb+GSH | 410.00±16.97b | 2234.50±14.85b | 1821.50±31.82b | 4.448±0.262b | 0.816±0.008b | 2.680±0.190ab |
Pb+BSO | 421.67±16.74b | 2158.00±126.44b | 1736.33±109.70b | 4.115±0.095c | 0.804±0.004c | 2.131±0.019b |
表4 外源GSH和BSO诱导Pb胁迫下多年生黑麦草的叶绿素荧光动力学参数
Table 4 Chlorophyll fluorescence kinetic parameters of perennial ryegrass leaf induced by exogenous GSH and BSO under Pb stress
处理 Treatment | 最小荧光强度 Minimum ?uorescence yield (Fo) | 最大荧光强度 Maximum ?uorescence yield (Fm) | 可变荧光 Variable ?uorescence yield (Fv) | 潜在活性 Potential activity (Fv/Fo) | 最大光化学效率 Maximum photochemical efficiency (Fv/Fm) | 整体性能指数 Performance index (PIABS) |
---|---|---|---|---|---|---|
CK | 468.67±14.50a | 2714.67±88.08a | 2246.00±75.94a | 4.793±0.096a | 0.827±0.003a | 3.321±0.517a |
Pb | 402.67±13.32b | 2134.33±81.12b | 1731.67±69.95b | 4.300±0.100bc | 0.811±0.003bc | 2.126±0.389b |
Pb+GSH | 410.00±16.97b | 2234.50±14.85b | 1821.50±31.82b | 4.448±0.262b | 0.816±0.008b | 2.680±0.190ab |
Pb+BSO | 421.67±16.74b | 2158.00±126.44b | 1736.33±109.70b | 4.115±0.095c | 0.804±0.004c | 2.131±0.019b |
1 | Sarret G, Uzu G, Sobanska S. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science and Technology, 2010, 44(3): 1036-1042. |
2 | Schreck E, Foucault Y, Sarret G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Science of the Total Environment, 2012, 427/428: 253-262. |
3 | Wang H H, Shan X Q, Wen B, et al. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and Experimental Botany, 2007, 61(3): 246-253. |
4 | Pourrut B, Perchet G, Silvestre J, et al. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. Journal of Plant Physiology, 2008, 165(6): 571-579. |
5 | Xu Y M, Wang C Q, Wu J X, et al. Effects of Mn2+ and Pb2+ on seed germination and seedling growth of Elymus nutans. Acta Prataculturae Sinica, 2018, 27(3): 194-200. |
徐雅梅, 王传旗,武俊喜, 等. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响. 草业学报, 2018, 27(3): 194-200. | |
6 | Xie C J , Yang J H, Zhou S B , et al. Effects on physiological characteristics of Eremochloa ophiuroides and Zoysia japonica under progressive lead stress. Acta Prataculturae Sinica, 2008, 17(4): 65-70. |
谢传俊, 杨集辉, 周守标, 等. 铅递进胁迫对假俭草和结缕草生理特性的影响. 草业学报, 2008, 17(4): 65-70. | |
7 | Li H F, Wang Y, Yuan Q H, et al. Effects of lead stress on growth, physiology, and lead ion accumulation and transportation in gramineous forages. Acta Prataculturae Sinica, 2015, 24(9): 163-172. |
李慧芳, 王瑜, 袁庆华, 等. 铅胁迫对禾本科牧草生长、生理及Pb2+富集转运的影响. 草业学报, 2015, 24(9): 163-172. | |
8 | Zhang Z J, Gao J, Cai C J, et al. Absorption and distribution of mineral nutrients in Pleioblastus fortunei under lead stress. Scientia Silvae Sinicae, 2011, 47(1): 153-157. |
张志坚, 高健, 蔡春菊, 等. 铅胁迫下菲白竹的矿质营养吸收和分配. 林业科学, 2011, 47(1): 153-157. | |
9 | Li T L, Li M. Effect of short-term daytime sub-high temperature stress on photosynthesis of tomato leaves. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 220-225. |
李天来, 李淼. 短期昼间亚高温胁迫对番茄光合作用的影响. 农业工程学报, 2009, 25(9): 220-225. | |
10 | Zhou J, Zhang Z, Zhang Y, et al. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 2018, 13(3): e0191139. |
11 | Jia C C, Ji J, Wang G, et al. Over-expression of glutathione synthetase gene enhances cadmium tolerance in transgenic tobacco plant. China Biotechnology, 2014, 34(10): 79-86. |
贾翠翠, 季静, 王罡, 等. 过表达谷胱甘肽合成酶基因增强烟草对镉的耐受性. 中国生物工程杂志, 2014, 34(10): 79-86. | |
12 | Zhao J, Shi G X,Xu Q S, et al. Alleviatory effect of exogenous glutathione (GSH) on Hydrocharis dubia toxicited by Zn2+. Journal of Tropical and Subtropical Botany, 2006(3): 213-217. |
赵娟, 施国新, 徐勤松, 等. 外源谷胱甘肽(GSH)对水鳖Zn2+毒害的缓解作用. 热带亚热带植物学报, 2006(3): 213-217. | |
13 | Chen F, Wang F, Wu F, et al. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiology Biochemistry, 2010, 48(8): 663-672. |
14 | Wang J, Huang B, Chen X, et al. Alleviation of cadmium toxicity to Cole (Brassica campestris L. Cruciferae) by exogenous glutathione. IOP Conference Series: Earth and Environmental Science, 2017, 61: 12080. |
15 | Qian M , Zhu C H. Alleviation of glutathione on copper toxicity of Elsholtzia haichowensis sun. Plant Physiology Communications, 2010, 46(12): 1243-1246. |
钱猛, 朱昌华. 外源GSH对海州香薷铜毒害的缓解作用. 植物生理学通讯, 2010, 46(12):1243-1246. | |
16 | Liu C P,Zheng A Z, Tian N, et al. Alleviation of glutathione on cadmium toxicity of Brassica chinensis L.and Brassica pekinensis Rupr . Journal of Nanjing Agricultural University, 2004,27(4): 26-30. |
刘传平, 郑爱珍, 田娜, 等. 外源GSH对青菜和大白菜镉毒害的缓解作用. 南京农业大学学报, 2004, 27(4): 26-30. | |
17 | Cao F, Wang N, Zhang M, et al. Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa). Biometals, 2013, 26(2): 297-308. |
18 | Ding J J, Pan Y Z, Li L, et al. Mitigation effects of exogenous glutathione on the growth of Dianthus chinensis seedlings under Cd stress. Chinese Journal of Plant Ecology, 2013, 37(10): 950-960. |
丁继军, 潘远智, 李丽, 等. 外源谷胱甘肽对石竹幼苗镉毒害的缓解效应. 植物生态学报, 2013, 37(10): 950-960. | |
19 | Griffith O W, Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). Journal of Biological Chemistry, 1979, 254(16): 7558-7560. |
20 | Mariana E, Dario F, Elizabeth A, et al. Glutathione, a key compound for as accumulation and tolerance in soybean plants treated with AsV and AsIII. Environmental and Experimental Botany, 2019, 162: 272-282. |
21 | Yuan H Y, Guo Z, Tong H Y, et al. Effects of exogenous glutathione on Pb accumulation and non-protein thiol content in Iris Lactea var.chinensis under Pb stress. Journal of Soil and Water Conservation, 2013, 27(4): 212-216. |
原海燕, 郭智, 佟海英, 等. Pb胁迫下外源GSH对马蔺体内Pb积累和非蛋白巯基化合物含量的影响. 水土保持学报,2013, 27(4): 212-216. | |
22 | Zhou Y, Liu H Y, Wang S et al. Effects of exogenous GSH on tomato seedling growth and physiological indexes of resistance stress under salt stress.Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3) : 515-520. |
周艳, 刘慧英, 王松等. 外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响, 西北植物学报, 2016, 36(3) : 515-520. | |
23 | Sun J, Wang J G, Liu H L, et al. Dynamic QTL analysis of rice seedling height and tiller number under salt stress. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 235-243. |
孙健, 王敬国, 刘化龙, 等. 盐胁迫下水稻苗高和分蘖数的发育动态QTL分析. 核农学报, 2015, 29(2): 235-243. | |
24 | Gao J F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
25 | Zhou H, Guo S R, Shao H J, et al. Effects of iso-osmotic Ca(NO3)2 and NaCl stress on growth and physiological characteristics of cucumber seedlings. Acta Ecologica Sinica, 2014, 34(7): 1880-1890. |
周珩, 郭世荣, 邵慧娟, 等. 等渗NaCl和Ca(NO3)2胁迫对黄瓜幼苗生长和生理特性的影响. 生态学报, 2014, 34(7): 1880-1890. | |
26 | Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180. |
李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. | |
27 | Li K, Shi C, He F Y. et al. Effects of endophyte infection on growth and physiological characteristics of Melica transsilvanica under Pb stress.Acta Prataculturae Sinica, 2020, 29(3): 112-120. |
李柯, 施宠, 何飞焱, 等. Pb胁迫下内生真菌侵染对德兰臭草生长及生理的影响. 草业学报, 2020, 29(3): 112-120. | |
28 | Cheng M C, Ko K, Chang W L, et al. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. The Plant Journal, 2015, 83(5): 926-939. |
29 | Jin X F. Glutathione metabolisms in cadmium hyperaccumulator Sedum alfredii hance and its proteomics analysis. Hangzhou: Zhejiang University, 2008. |
金晓芬. 镉超积累植物东南景天谷胱甘肽代谢特征及比较蛋白质组学研究. 杭州: 浙江大学, 2008. | |
30 | Zhang H, Zhang B B, Jing Q, et al. Differences in germination, growth, chlorophyll content and fluorescence dynamics of different wheat varieties. Acta Agriculturae Jiangxi, 2019, 31(9): 9-15. |
张辉, 张蓓蓓, 景琦, 等. 不同小麦品种种子萌发生长、叶片叶绿素含量和荧光动力学特征差异分析. 江西农业学报, 2019, 31(9): 9-15. | |
31 | Rousos P A, Harrison H C. Identification of differential responses of cabbage cultivars to copper toxicity in solution culture. Environmental and Experimental Botany, 1987, 34(2): 165-172. |
32 | Cai Y, Cao F, Cheng W, et al. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biological Trace Element Research, 2011, 143(2): 1159-1173. |
33 | Bai Z Y, Li C D, Sun H C, et al. The effect and chromosomal control on chlorophyll content and corticoid content under drought stress in wheat (Triticum aestivum L.). Acta Agriculturae Boreali-Sinica, 2009, 24(1): 1-6. |
白志英, 李存东, 孙红春, 等. 干旱胁迫对小麦叶片叶绿素和类胡萝卜素含量的影响及染色体调控. 华北农学报, 2009, 24(1): 1-6. | |
34 | Liang T S, Liu C X, Kang J Q, et al. Effects of sulfur on cadmium accumulation, photosynthesis and some other physiological characteristics of pakchoi (Brassica chinensis L.) under cadmium stresses. Journal of Agro-Environment Science, 2015, 34(8): 1455-1463. |
梁泰帅, 刘昌欣, 康靖全, 等. 硫对镉胁迫下小白菜镉富集、光合速率等生理特性的影响. 农业环境科学学报, 2015, 34(8): 1455-1463. | |
35 | Zhou M L, Shen G S, Zhao R R, et al. Effects of lead stress on photosynthesis and physiological and biochemical characteristics of Amorpha fruti cosa. Journal of Agricultural Resources and Environment, 2017, 34(3): 286-292. |
周美利, 沈广爽, 赵瑞瑞, 等. 铅胁迫对紫穗槐光合作用及生理生化特征的影响.农业资源与环境学报, 2017, 34(3): 286-292. | |
36 | Wang F, Chen F, Cai Y, et al. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biological Trace Element Research, 2011, 144(1/2/3): 1275-1288. |
37 | Su X Q, Wang M Y, Shu S , et al. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress. Acta Horticulturae Sinica, 2013, 40(12): 2409-2418. |
苏晓琼, 王美月, 束胜, 等. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013, 40(12): 2409-2418. | |
38 | Hou X L, Cai L P, Hang H , et al. Effect of lead stress on the chlorophyll fluorescence characteristics and antioxidative enzyme activities of Paspalum notatum. Acta Prataculturae Sinica, 2017, 26(3): 142-148. |
侯晓龙, 蔡丽平, 韩航, 等. 铅胁迫对百喜草叶绿素荧光特性及酶活性的影响. 草业学报, 2017, 26(3): 142-148. | |
39 | Zhong C F , Wu X Y, Yao H J, et al. Characteristics of chlorophyll a fluorescence kinetics of Euonymus japonicus during early spring in Beijing region. Journal of Beijing Forestry University, 2008, 30(6): 9-15. |
钟传飞,武晓颖,姚洪军,等. 北京地区大叶黄杨春初返青过程的叶绿素荧光动力学研究. 北京林业大学学报, 2008, 30(6): 9-15. |
[1] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[2] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
[3] | 蓝婧婷, 任瑞, 周瑞, 戴洪伟, 舒文秀, 朱凯, 王略宇, 徐红伟, 臧荣鑫. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. |
[4] | 索效军, 张年, 杨前平, 陶虎, 熊琪, 李晓锋, 张凤, 陈明新. 日粮添加花生秧和苜蓿草粉对波麻杂交羊增重性能、内脏器官发育及血液指标的影响[J]. 草业学报, 2021, 30(5): 146-154. |
[5] | 包赛很那, 王向涛, 武俊喜, 苗彦军, 贾祥, 田彦婷. 苗期劲直黄芪根浸提液对8种西藏野生植物化感作用的研究[J]. 草业学报, 2021, 30(5): 211-220. |
[6] | 任艳, 刘莎, 刘付松, 王道清, 吴发明. 不同生长年限黄芪田间杂草群落结构特征[J]. 草业学报, 2021, 30(5): 34-41. |
[7] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[8] | 张宁, 曹允馨, 徐伟, 常智慧. 干旱胁迫下污泥对草地早熟禾生长及激素代谢的影响[J]. 草业学报, 2021, 30(3): 167-176. |
[9] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[10] | 李凤兰, 武佳文, 姚树宽, 赵梓颐, 赵潇璨, 贺付蒙, 朱元芳, 石奇海, 周磊, 徐永清. 假苍耳不同部位水浸提液对5种土著植物化感作用的研究[J]. 草业学报, 2020, 29(9): 169-178. |
[11] | 崔雪莲, 夏超. 外源脱落酸对醉马草内生真菌共生体幼苗建植过程的影响[J]. 草业学报, 2020, 29(7): 70-80. |
[12] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[13] | 周瀚洋, 孙鹏越, 尉欣荣, 周雨, 张智伟, 高金柱, 赵东豪, 罗艺岚, 呼天明, 付娟娟. 琥珀酸黄杆菌缓解遮阴对多年生黑麦草胁迫的效应[J]. 草业学报, 2020, 29(6): 137-143. |
[14] | 王泳超, 张颖蕾, 闫东良, 何灵芝, 李卓, 燕博文, 邵瑞鑫, 郭家萌, 杨青华. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J]. 草业学报, 2020, 29(6): 191-203. |
[15] | 魏勇, 王晓瑜, 李应德, 段廷玉. AM真菌在白三叶-黑麦草体系中对抗逆信号的传导作用[J]. 草业学报, 2020, 29(4): 138-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||